P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm et al., Single-nanowire solar cells beyond the Shockley-Queisser limit, Nature Photonics, vol.7, pp.306-310, 2013.

H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nature Materials, vol.9, p.865, 2010.

N. Guan, X. Dai, A. Babichev, F. Julien, and M. Tchernycheva, Flexible inorganic light emitting diodes based on semiconductor nanowires, Chemical Science, vol.8, pp.7904-7911, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01651119

M. R. Ramdani, Croissance sélective HVPE et VLS-HVPE d'objets et de structures GaAsà morphologie contrôléeà l'échelle sub-micrométrique et nanométrique, 2012.

M. R. Ramdani, E. Gil, C. Leroux, Y. André, A. Trassoudaine et al., Fast growth synthesis of GaAs nanowires with exceptional length, Nano Letters, vol.10, issue.5, pp.1836-1841, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01727417

E. Gil, V. G. Dubrovskii, G. Avit, Y. André, C. Leroux et al., Record pure zincblende phase in GaAs nanowires down to 5 nm in radius, Nano Letters, vol.14, issue.7, pp.3938-3944, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01727364

G. Avit, -. Micro, and . Nanofils-de-ga, N et GaAs parépitaxie en phase vapeur par la méthode aux hydrures (HVPE), 2015.

G. Monier, Nanostructuration de surfaces de GaAs : oxydation et nitruration, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00673419

H. Mehdi, Etude de la passivation du GaAs ( 100 ) par nitruration par plasma N2 sous ultravide, 2018.
URL : https://hal.archives-ouvertes.fr/tel-02100972

R. S. Wagner and W. C. Ellis, Vaporliquidsolid mechanism of single crystal growth, Applied Physics Letters, vol.4, issue.5, pp.89-90, 1964.

T. Bryllert, L. E. Wernersson, T. Löwgren, and L. Samuelson, Vertical wrap-gated nanowire transistors, Nanotechnology, vol.17, issue.11, 2006.

C. P. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask et al., Monolithic GaAs / InGaP nanowire light emitting diodes on silicon, Nanotechnology, vol.19, issue.30, p.305201, 2008.

E. Dimakis, M. Ramsteiner, A. Tahraoui, H. Riechert, and L. Geelhaar, Shell-doping of GaAs nanowires with Si for n-Type conductivity, Nano Res, vol.5, issue.11, pp.796-804, 2012.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature, vol.415, p.617, 2002.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg et al., InP nanowire array solar cells achieving 13 . 8 % efficiency by exceeding the ray optics limit, Sciencexpress, vol.339, issue.6123, pp.1057-60, 2013.

P. Yang, R. Yan, and M. Fardy, Semiconductor nanowire: Whats next?, Nano Letters, vol.10, issue.5, pp.1529-1536, 2010.

V. T. Duoc, D. T. Le, N. D. Hoa, N. Van-duy, C. M. Hung et al., New design of ZnO nanorod-and nanowire-based NO2 room-temperature sensors prepared by hydrothermal method, Journal of Nanomaterials, vol.2019, pp.1-9, 2019.

M. Mongillo, P. Spathis, G. Katsaros, P. Gentile, and S. De-franceschi, Multifunctional devices and logic gates with undoped silicon nanowires, Nano Letters, pp.3074-3079, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00984197

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, High performance silicon nanowire field effect transistors, Nano Letters, vol.3, issue.2, pp.149-152, 2003.

E. Roche, Y. André, G. Avit, C. Bougerol, D. Castelluci et al., Circumventing the miscibility gap in InGaN nanowires emitting from blue to red, Nanotechnology, vol.29, p.465602, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01913823

V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tonkikh, N. V. Sibirev et al., Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment, Physical Review B, vol.71, pp.5-7, 2005.

J. C. Harmand, G. Patriarche, N. Péré-laperne, M. Mérat-combes, L. Travers et al., Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth, Applied Physics Letters, vol.87, p.203101, 2005.

J. C. Harmand, M. Tchernycheva, G. Patriarche, L. Travers, F. Glas et al., GaAs nanowires formed by Au-assisted molecular beam epitaxy : Effect of growth temperature, Journal of Crystal Growth, pp.853-856, 2007.

H. Hijazi, V. G. Dubrovskii, G. Monier, E. Gil, C. Leroux et al., Influence of silicon on the nucleation rate of GaAs nanowires on silicon substrates, Journal of Physical Chemistry C, vol.122, issue.33, pp.19230-19235, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01886260

H. Hijazi, G. Monier, E. Gil, A. Trassoudaine, C. Bougerol et al., Si doping of vapor-liquid-solid GaAs nanowires: n-type or p-type?, Nano Letters, vol.19, pp.4498-4504, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02185447

C. Y. Yeh, Z. W. Lu, S. Froyen, and A. Zunger, Zinc-blendewurtzite polytypism in semiconductors, Physical Review B, vol.46, issue.16, pp.10086-10097, 1992.

M. I. Mcmahon and R. J. Nelmes, Observation of a wurtzite form of gallium arsenide, Physical Review Letters, vol.95, issue.21, pp.18-21, 2005.

F. Glas, J. C. Harmand, and G. Patriarche, Why does wurtzite form in nanowires of III-V zinc blende semiconductors?, Physical Review Letters, vol.99, issue.14, pp.3-6, 2007.

V. G. Dubrovskii, N. V. Sibirev, J. C. Harmand, and F. Glas, Growth kinetics and crystal structure of semiconductor nanowires, Physical Review B -Condensed Matter and Materials Physics, vol.78, issue.23, 2008.

J. C. Harmand, G. Patriarche, F. Glas, F. Panciera, I. Florea et al., Atomic step flow on a nanofacet, Physical Review Letters, vol.121, issue.16, p.166101, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02349114

C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. Fontcuberta, Gaassisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy, Physical Review B, vol.77, p.155326, 2008.

F. Jabeen, V. Grillo, S. Rubini, and F. Martelli, Self-catalyzed growth of {GaAs} nanowires on cleaved Si by molecular beam epitaxy, Nanotechnology, vol.19, issue.27, p.275711, 2008.

F. Glas, M. R. Ramdani, G. Patriarche, and J. Harmand, Predictive modeling of selfcatalyzed III-V nanowire growth, Physical Review B, vol.88, p.195304, 2013.

V. G. Dubrovskii, Nucleation theory and growth of nanostructures. Nanoscience and Technology, 2014.

K. Hiruma, T. Katsuyama, K. Ogawa, M. Koguchi, H. Kakibayashi et al., Quantum size microcrystals grown using organometallic vapor phase epitaxy, Applied Physics Letters, vol.59, issue.4, pp.431-433, 1991.

T. Hamano, H. Hirayama, and Y. Aoyagi, New technique for fabrication of two-dimensional photonic bandgap crystals by selective epitaxy, Japanese Journal of Applied Physics, vol.36, issue.3 A, pp.286-288, 1997.

H. Paetzelt, V. Gottschalch, J. Bauer, G. Benndorf, and G. Wagner, Selective-area growth of GaAs and InAs nanowires-homo-and heteroepitaxy using SiNx templates, Journal of Crystal Growth, vol.310, issue.23, pp.5093-5097, 2008.

J. Bauer, H. Paetzelt, V. Gottschalch, and G. Wagner, GaAs nanowires grown by MOVPE, Physica Status Solidi (B) Basic Research, vol.247, issue.6, pp.1294-1309, 2010.

K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi et al., Growth and optical properties of nanometer-scale GaAs and InAs whiskers, Journal of Applied Physics, vol.77, issue.2, pp.447-462, 1995.

P. Paiano, P. Prete, E. Speiser, N. Lovergine, W. Richter et al., GaAs nanowires grown by Au-catalyst-assisted MOVPE using tertiarybutylarsine as group-V precursor, Journal of Crystal Growth, vol.298, pp.620-624, 2007.

S. Ermez, E. J. Jones, S. C. Crawford, and S. Grade?ak, Self-seeded growth of gaas nanowires by metal-organic chemical vapor deposition, Crystal Growth and Design, vol.15, issue.6, pp.2768-2774, 2015.

E. Gil, Y. André, R. Cadoret, and A. Trassoudaine, Hydride Vapor Phase Epitaxy for current III-V and nitride semiconductor compound issues, Handbook of Crystal Growth, pp.51-93, 2015.

R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin et al., Benchmarking nanotechnology for high-performance and low-power logic transistor applications, IEEE Transactions on Nanotechnology, vol.4, issue.2, p.153, 2005.

K. Volz, W. Stolz, A. Dadgar, and A. Krost, Growth of III/Vs on Silicon, pp.1249-1300, 2015.

M. Kaya and Y. Atici, Studies of lattice mismatch and threading dislocations in GaAs/Si grown by MBE, Superlattices and Microstructures, vol.35, issue.1-2, pp.35-44, 2004.

Y. B. Bolkhovityanov and O. P. Pchelyakov, GaAs epitaxy on Si substrates: modern status of research and engineering, Physics Uspekhi, vol.51, issue.5, pp.473-456, 2008.

S. Breuer, F. Karouta, H. H. Tan, and C. Jagadish, MOCVD growth of GaAs nanowires using Ga droplets, IEEE, pp.39-40, 2012.

Z. Dong, Y. André, V. G. Dubrovskii, C. Bougerol, C. Leroux et al., Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy, Nanotechnology, vol.28, issue.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01658266

M. Harrous, L. Chaput, A. Bendraoui, M. Cadoret, C. Pariset et al., Phosphine and arsine decomposition in CVD reactors for InP and InGaAs growth, Journal of Crystal Growth, vol.92, issue.3-4, pp.423-431, 1988.

E. Gil-lafon, J. Napierala, A. Pimpinelli, R. Cadoret, A. Trassoudaine et al., Direct condensation modelling for a two-particle growth system: application to GaAs grown by hydride vapour phase epitaxy, Journal of Crystal Growth, vol.258, issue.1-2, pp.14-25, 2003.

A. Pimpinelli, R. Cadoret, E. Gil-lafon, J. Napierala, and A. Trassoudaine, Two-particle surface diffusion-reaction models of vapour-phase epitaxial growth on vicinal surfaces, Journal of Crystal Growth, vol.258, issue.1, pp.1-13, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00272617

G. B. Stringfellow, Fundamental aspects of vapor growth and epitaxy, Journal of Crystal Growth, vol.115, issue.1, pp.1-11, 1991.

R. Cadoret and E. Gil-lafon, Mécanismes de croissance des faces 001 exactes et désorientées de GaAs par la méthode aux chlorures sous H2 : diffusion superficielle, croissance par spirale, mécanismes de désorption HCl et GaCl3, Journal de Physique I, vol.7, issue.7, pp.889-907, 1997.

T. J. Wang, C. W. Tu, and F. K. Liu, Integrated-optic surface-plasmon-resonance biosensor using gold nanoparticles by bipolarization detection, IEEE Journal on Selected Topics in Quantum Electronics, vol.11, issue.2, pp.493-499, 2005.

J. Richard, Étude des propriétés optiques anormales de certains métaux pris en couches minces, Journal de Physique, vol.25, issue.1-2, pp.99-104, 1964.

J. G. Skofronick and W. B. Phillips, Morphological changes in discontinuous gold films following deposition, Journal of Applied Physics, vol.38, issue.12, pp.4791-4796, 1967.

T. Liu, J. Tang, and L. Jiang, The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity, Biochemical and Biophysical Research Communications, vol.313, issue.1, pp.3-7, 2004.

Y. T. Tseng, Y. J. Chuang, Y. C. Wu, C. S. Yang, M. C. Wang et al., A goldnanoparticle-enhanced immune sensor based on fiber optic interferometry, Nanotechnology, vol.19, issue.34, 2008.

S. G. Ihn and J. I. Song, InAs nanowires on Si substrates grown by solid source molecular beam epitaxy, Nanotechnology, vol.18, issue.35, pp.7-10, 2007.

S. Sharma, T. I. Kamins, and R. S. Williams, Synthesis of thin silicon nanowires using goldcatalyzed chemical vapor deposition, Applied Physics A: Materials Science and Processing, vol.80, issue.6, pp.1225-1229, 2005.

M. Orvatinia and R. Imani, Effect of catalyst layer on morphology and optical properties of zinc-oxide nanostructures fabricated by carbothermal evaporation method, Micro & Nano Letters, vol.6, issue.8, p.650, 2011.

R. Dowdy, D. A. Walko, S. A. Fortuna, and X. Li, Realization of unidirectional planar GaAs, IEEE Electron Device Letters, vol.33, issue.4, pp.522-524, 2012.

I. Aharonovich, Y. Lifshitz, and S. Tamir, Growth mechanisms of amorphous SiOx nanowires, Applied Physics Letters, vol.90, issue.26, 2005.

Y. M. Shao, T. X. Nie, Z. M. Jiang, and J. Zou, Behavior of Au-Si droplets in Si(001) at high temperatures, Applied Physics Letters, vol.101, issue.5, pp.2012-2015, 2012.

H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim et al., Unexpected benefits of rapid growth rate for III-V nanowires, Nano Letters, vol.9, issue.2, pp.695-701, 2009.

K. Lekhal, G. Avit, Y. André, A. Trassoudaine, E. Gil et al., Catalyst-assisted hydride vapor phase epitaxy of GaN nanowires: Exceptional length and constant rod-like shape capability, Nanotechnology, vol.23, issue.40, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00855826

F. Ruffino, A. Canino, M. G. Grimaldi, F. Giannazzo, F. Roccaforte et al., Kinetic mechanism of the thermal-induced self-organization of Au/Si nanodroplets on Si(100): Size and roughness evolution, Journal of Applied Physics, vol.104, issue.2, 2008.

F. Ruffino and M. G. Grimaldi, Atomic force microscopy study of the growth mechanisms of nanostructured sputtered Au film on Si(111): Evolution with film thickness and annealing time, Journal of Applied Physics, vol.107, issue.10, 2010.

E. Jiran and C. V. Thompson, Capillary instabilities in thin films, Journal of Electronic Materials, vol.19, issue.11, pp.1153-1160, 1990.

M. A. Mahjoub, G. Monier, C. Robert-goumet, L. Bideux, and B. Gruzza, XPS combined with MM-EPES technique for in situ study of ultra thin film deposition: Application to an Au/SiO2/Si structure, Applied Surface Science, vol.357, pp.1268-1273, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01827587

G. , L. Lay, and J. P. Faurie, AES study of the very first stages of condensation of gold films on silicon (111) surfaces, Surface Science, vol.69, issue.1, pp.295-300, 1977.

J. R. Levine, J. B. Cohen, and Y. W. Chung, Thin film island growth kinetics: a grazing incidence small angle X-ray scattering study of gold on glass, Surface Science, vol.248, issue.1-2, pp.215-224, 1991.

Z. Shi, S. Shao, and Y. Wang, Improved the surface roughness of silicon nanophotonic devices by thermal oxidation method, Journal of Physics: Conference Series, vol.276, issue.1, 2011.

O. Stein, J. Ankri, and M. Asscher, Surface diffusion of gold nanoclusters on Ru(0001): Effects of cluster size, surface defects and adsorbed oxygen atoms, Physical Chemistry Chemical Physics, vol.15, issue.32, pp.13506-13512, 2013.

G. L. Lay, G. Quentel, J. P. Faurie, and A. Masson, Epitaxy of noble metals and (111) surface superstructures of silicon and germanium part I: Study at room temperature, Thin solid films, vol.35, pp.273-287, 1976.

F. A. Otter, H. C. Abbink, and O. L. De-lange, Possibility of a surface-stabilized compound of Au and Si on surfaces, Surface Science, vol.27, pp.273-278, 1971.

G. L. Lay, G. Quentel, J. P. Faurie, and A. Masson, Epitaxy of noble metals and (111) surface superstructures of silicon and germanium part II: Sudy After Annealing, Thin solid films, vol.35, pp.289-303, 1976.

F. W. Smith and G. Ghidini, Reaction of Oxygen with Si(111) and (100): Critical Conditions for the Growth of SiO2, J. Electrochem. Soc, vol.129, issue.6, pp.1300-1306, 1982.

H. Dallaporta, M. Liehr, and J. E. Lewis, Silicon dioxide defects induced by metal impurities, Physical Review B, vol.41, issue.8, pp.5075-5083, 1990.

A. Rath, J. K. Dash, R. R. Juluri, A. Rosenauer, M. Schoewalter et al., Growth of oriented Au nanostructures : Role of oxide at the interface, Journal of Applied Physics, vol.111, p.64322, 2012.

A. Hiraki, E. Lugujjo, and J. W. Mayer, Formation of silicon oxide over gold layers on silicon substrates, Journal of Applied Physics, vol.43, p.3643, 1972.

F. Cheynis, F. Leroy, A. Ranguis, B. Detailleur, P. Bindzi et al., Combining low-energy electron microscopy and scanning probe microscopy techniques for surface science: Development of a novel sample-holder, Review of Scientific Instruments, vol.85, issue.4, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00992919

V. G. Dubrovskii, Refinement of nucleation theory for vapor-liquid-solid nanowires, Crystal Growth & Design, vol.17, pp.2589-2593, 2017.

S. Breuer, M. Hilse, A. Trampert, L. Geelhaar, and H. Riechert, Vapor-liquid-solid nucleation of GaAs on Si(111): Growth evolution from traces to nanowires, Physical Review B, vol.82, p.75406, 2010.

Y. André, K. Lekhal, P. Hoggan, G. Avit, F. Cadiz et al., Vapor Liquid Solid-Hydride vapor phase epitaxy (VLS-HVPE) Growth of Ultra-Long Defect-Free GaAs Nanowires: Ab initio Simulations Supporting Center Nucleaction, The Journal of Chemical Physics, vol.140, p.194706, 2014.

A. Ali, Y. Chen, V. Vasiraju, and S. Vaddiraju, Nanowire-based thermoelectrics, Nanotechnology, vol.28, p.282001, 2017.

F. Leroy, T. Passanante, F. Cheynis, S. Curiotto, E. B. Bussmann et al., Catalytically enhanced thermal decomposition of chemically grown silicon oxide layers on Si(001), Applied Physics Letters, vol.108, p.111601, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455015

F. Matteini, V. G. Dubrovskii, D. Rüffer, Y. Fontana, and A. Fontcuberta, Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon, Nanotechnology, vol.26, p.105603, 2015.

V. G. Dubrovskii, T. Xu, S. R. Plissard, F. Glas, and B. Grandidier, Self-equilibration of the diameter of Ga-catalyzed GaAs nanowires, Nano Letters, vol.15, pp.5580-5584, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01713077

K. Wonjong, V. G. Dubrovskii, J. Vukajlovic-plestina, L. Francaviglia, L. Gu et al., Bistability of contact angle and its role in achieving quantum-thin self-assisted GaAs nanowires, Nano Letters, vol.18, pp.49-57, 2018.

T. Tauchnitz, T. Nurmamytov, R. Hu, M. Engler, S. Facsko et al., Decoupling the two roles of Ga droplets in the self-catalyzed growth of GaAs nanowires on SiOx/Si(111) substrates, Crystal Growth & Design, vol.17, pp.5276-5282, 2017.

J. Dufouleur, C. Colombo, T. Garma, B. Ketterer, E. Uccelli et al., P-Doping mechanisms in catalyst-free gallium arsenide nanowires, Nano Letters, vol.10, issue.5, pp.1734-1740, 2010.

F. Glas, Chemical potentials for Au-assisted vapor-liquid-solid growth of III-V Nanowires, Journal of Applied Physics, vol.108, p.73506, 2010.

V. G. Dubrovskii, Refinement of nucleation theory for vapor-liquid-solid nanowires, Crystal Growth & Design, vol.17, pp.2589-2593, 2017.

V. G. Dubrovskii, A. A. Koryakin, and N. V. Sibirev, Understanding the composition of ternary III-V nanowires and axial nanowire heterostructures in nucleation-limited regime, Materials & Design, vol.132, pp.400-408, 2017.

E. D. Leshchenko, M. Ghasemi, V. G. Dubrovskii, and J. Johansson, Nucleation-limited composition of ternary III-V nanowires forming from quaternary gold based liquid alloys, Crys-tEngComm, vol.20, pp.1649-1655, 2018.

A. Mostafa and M. Medraj, Binary phase diagrams and thermodynamic properties of silicon and essential doping elements, Materials, vol.10, p.676, 2017.

D. T. Hurle, A comprehensive thermodynamic analysis of native point defect and dopant solubilities in gallium arsenide, Journal of Applied Physics, vol.85, issue.10, pp.6957-7022, 1999.

P. Chevalier, A Thermodynamic Evaluation of the Au-Ge and Au-Si Systems, Thermochimica Acta, vol.141, pp.217-226, 1989.
URL : https://hal.archives-ouvertes.fr/hal-00785860

G. B. Stringfellow, Calculation of ternary phase diagrams for III-V systems, Journal of Physics and Chemistry of Solids, vol.33, pp.665-677, 1972.

V. G. Dubrovskii and J. Grecenkov, Zeldovich nucleation rate, self-consistency renormalization, and crystal phase of Au-catalyzed GaAs nanowires, Crystal Growth & Design, vol.15, pp.340-347, 2015.

V. G. Dubrovskii, Theory of VLS growth of compound semiconductors, vol.93, 2015.

H. Okamoto and B. Massalski, The Au-Si (gold-silicon) system, Calphad, vol.4, issue.2, pp.190-198, 1983.

R. W. Olesinski, N. Kanani, and G. J. Abbaschian, The Ga-Si (gallium-silicon) system, Bulletin of Alloy Phase Diagrams, vol.6, issue.4, pp.362-364, 1985.

V. G. Dubrovskii, Mono-and polynucleation , atomistic growth , and crystal phase of III-V nanowires under varying group V flow, The Journal of Chemical Physics, vol.142, p.204702, 2015.

A. Dadgar, M. Poschenrieder, J. Bläsing, O. Contreras, F. Bertram et al., ) substrates, MOVPE growth of GaN on Si, vol.248, issue.111, pp.556-562, 2003.

K. Werner, A. Beyer, J. O. Oelerich, S. D. Baranovskii, W. Stolz et al., Structural characteristics of gallium metal deposited on Si (001) by MOCVD, Journal of Crystal Growth, vol.405, pp.102-109, 2014.

V. Khorenko, I. Regolin, S. Neumann, W. Prost, F. Tegude et al., Photoluminescence of GaAs nanowhiskers grown on Si substrate, Applied Physics Letters, vol.85, pp.6047-6048, 2004.

L. C. Chuang, M. Moewe, C. Chase, N. P. Kobayashi, C. Chang-hasnain et al., Critical diameter for III-V nanowires grown on lattice-mismatched substrates, Applied Physics Letters, vol.90, p.43115, 2007.

E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal et al., Coaxial multishell ( In , Ga ) As / GaAs nanowires for near-infrared emission on Si substrates, Nano Letters, vol.14, pp.2604-2609, 2014.

M. D. Thompson, A. Alhodaib, A. P. Craig, A. Robson, A. Aziz et al., Low leakage-current InAsSb nanowire photodetectors on silicon, Nano Letters, vol.16, issue.1, pp.182-187, 2016.

S. A. Dayeh, R. Chen, Y. G. Ro, and J. Sim, Progress in doping semiconductor nanowires during growth, Materials Science in Semiconductor Processing, vol.62, pp.135-155, 2017.

E. F. Schubert, Doping in III-V Semiconductors, 1993.

C. Y. Wang, Y. C. Hong, Z. J. Ko, Y. W. Su, and J. H. Huang, Electrical and optical properties of Au-catalyzed GaAs nanowires grown on Si (111) substrate by molecular beam epitaxy, Nanoscale Research Letters, vol.12, p.290, 2017.

M. Piccin, G. Bais, V. Grillo, F. Jabeen, S. De-franceschi et al., Growth by molecular beam epitaxy and electrical characterization of GaAs nanowires, Physica E: Low-Dimensional Systems and Nanostructures, vol.37, pp.134-137, 2007.

M. Hilse, M. Ramsteiner, S. Breuer, L. Geelhaar, and H. Riechert, Incorporation of the dopants Si and Be into GaAs nanowires, Applied Physics Letters, vol.96, issue.19, pp.1-4, 2010.

B. Ketterer, E. Mikheev, E. Uccelli, and A. Fontcuberta, Compensation mechanism in silicon-doped gallium arsenide nanowires, Applied Physics Letters, vol.97, p.223103, 2010.

C. Gutsche, A. Lysov, I. Regolin, K. Blekker, W. Prost et al., n -Type doping of vapor-liquid-solid grown GaAs nanowires, Nanoscale Research Letters, vol.6, pp.1-6, 2011.

R. Sun, D. Jacobsson, I. J. Chen, M. Nilsson, C. Thelander et al., Snseeded GaAs nanowires as self-assembled radial p-n junctions, Nano Letters, vol.15, issue.6, pp.3757-3762, 2015.

S. Suomalainen, T. V. Hakkarainen, T. Salminen, R. Koskinen, M. Honkanen et al., Te-doping of self-catalyzed GaAs nanowires, Applied Physics Letters, vol.107, issue.1, pp.1-5, 2015.

N. I. Goktas, E. M. Fiordaliso, and R. R. Lapierre, Doping assessment in GaAs nanowires, Nanotechnology, vol.29, issue.23, p.234001, 2018.

M. Orrù, E. Repiso, S. Carapezzi, A. Henning, S. Roddaro et al., A roadmap for controlled and efficient n-Type doping of self-assisted GaAs nanowires grown by molecular beam epitaxy, Advanced Functional Materials, vol.26, issue.17, pp.2836-2845, 2016.

S. Arab, M. Yao, C. Zhou, P. D. Daniel, and S. B. Cronin, Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires, Applied Physics Letters, vol.108, p.182106, 2016.

W. Seifert, M. Borgstro, K. Deppert, K. A. Dick, J. Johansson et al., Growth of one-dimensional nanostructures in MOVPE, Journal of Crystal Growth, vol.272, pp.211-220, 2004.

S. J. Moss and A. Ledwith, The chemistry of the semiconductor industry, 1997.

F. Fischer, D. Schuh, M. Bichler, G. Abstreiter, M. Grayson et al., Modulating the growth conditions: Si as an acceptor in (110) GaAs for high mobility p -type heterostructures, Applied Physics Letters, vol.86, issue.19, pp.1-3, 2005.

N. Ghaderi, M. Peressi, N. Binggeli, and H. Akbarzadeh, Structural properties and energetics of intrinsic and Si-doped GaAs nanowires: First-principles pseudopotential calculations, Physical Review B -Condensed Matter and Materials Physics, vol.81, issue.155311, pp.1-9, 2010.

F. Glas, Comparison of modeling strategies for the growth of heterostructures in III-V nanowires, Crystal Growth and Design, vol.17, issue.9, pp.4785-4794, 2017.

N. Hannay, Solid-state chemistry, 1976.

J. Murota, E. Arai, and K. Kudo, Arsenic doping of chemical vapor deposited polycrystalline silicon using SiH4-H-AsH3 gas system, J. Electrochem. Soc.: Solid-State Science and Technology, vol.31, pp.1188-1192, 1980.

J. Ushio, K. Nakagawa, M. Miyao, and T. Maruizumi, Surface Segregation Behavior of B, Ga, and Sb during Si MBE : Calculations using a First-Principles Method, Physical Review B, vol.58, issue.7, pp.3932-3936, 1998.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters, vol.77, issue.18, pp.3865-3868, 1996.

K. Doblhoff-dier, J. Meyer, P. E. Hoggan, and G. J. Kroes, Quantum monte carlo calculations on a benchmark molecule-metal surface reaction: H2 + Cu(111), Journal of Chemical Theory and Computation, vol.13, issue.7, pp.3208-3219, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01671876

A. Y. Cho and J. R. Arthur, Molecular Beam Epitaxy, Progress in Solid State Chemistry, vol.10, pp.157-191, 1980.
URL : https://hal.archives-ouvertes.fr/hal-01492483

J. De-sheng, Y. Makita, K. Ploog, and H. J. Queisser, Electrical properties of doped GaAs nanowire grown by molecular beam epitaxy, Journal of Applied Physics, vol.53, issue.999, p.1982, 1982.

G. Borghs, K. Bhattacharyya, K. Deneffe, P. Vanmieghem, and R. Mertens, Band-gap narrowing in highly doped n-and p-type GaAs studied by photoluminescence spectroscopy, Journal of Applied Physics, vol.66, p.4381, 1989.

E. Burstein, Anomalous Optical Absorption Limit in InSb, Physical Review, vol.93, pp.632-633, 1954.

T. S. Moss, The interpretation of the properties of indium antimonide, Proceedings of the Physical Society B, vol.67, pp.775-782, 1954.

N. Y. Lee, K. J. Lee, C. Lee, J. E. Kim, H. Y. Park et al., Determination of conduction band tail and Fermi energy of heavily Si-doped GaAs by roomtemperature photoluminescence, Journal of Applied Physics, vol.78, issue.5, pp.3367-3370, 1995.

J. Johansson and M. Ghasemi, Kinetically limited composition of ternary III-V nanowires, Physical Review Materials, vol.1, issue.040401, pp.1-5, 2017.

V. G. Dubrovskii, Fully analytical description for the composition of ternary vapor-liquidsolid nanowires, Crystal Growth and Design, vol.15, issue.12, pp.5738-5743, 2015.

V. G. Dubrovskii, Understanding the vapor-liquid-solid growth and composition of ternary III-V nanowires and nanowire heterostructures, Journal of Physics D, vol.50, issue.45, 2017.

M. I. Dyakonov and V. I. Perel, Current induced spin orientation of electrons in semiconductors, Physics Letters, vol.35, issue.6, pp.459-460, 1971.

F. Dirnberger, M. Kammermeier, J. König, M. Forsch, P. Junior et al., Ultralong spin lifetimes in onedimensional semiconductor nanowires, Applied Physics Letters, vol.114, p.202101, 2019.

F. Cadiz, P. Barate, D. Paget, D. Grebenkov, J. P. Korb et al., All optical method for investigation of spin and charge transport in semiconductors : Combination of spatially and time-resolved luminescence, Journal of Applied Physics, vol.116, p.23711, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01024991

R. A. Smith, Semiconductors, 1978.

F. Cadiz, D. Paget, A. C. Rowe, and S. Arscott, Ambipolar spin-spin coupling in p+ GaAs, Physical Review B, vol.92, p.121203, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02345549

J. Lu, M. J. Hoch, P. L. Kuhns, W. G. Moulton, Z. Gan et al., Nuclear spinlattice relaxation in n-type insulating and metallic GaAs single crystals, Physical Review B, vol.74, issue.12, p.125208, 2006.

J. M. Kikkawa and D. D. Awschalom, Lateral drag of spin coherence in gallium arsenide, Letters to nature, vol.1893, 1998.

T. Henn, T. Kiessling, W. Ossau, L. W. Molenkamp, K. Biermann et al., Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution, Review of Scientific Instruments, vol.84, p.123903, 2013.

A. R. Cameron, P. Riblet, and A. Miller, Spin gratings and the measurement of electron drift mobility in multiple quantum mell memiconductors, Physical Review Letters, vol.76, issue.25, pp.4793-4796, 1996.

G. Wang, B. L. Liu, A. Balocchi, P. Renucci, C. R. Zhu et al., Gate control of the electron spin-diffusion length in semiconductor quantum wells, Nature Communications, vol.4, pp.1-5, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02050697

C. Gutsche, R. Niepelt, M. Gnauk, A. Lysov, W. Prost et al., Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions, Nano Letters, vol.12, pp.1453-1458, 2012.

G. Gilliland and M. Petrovic, Time-dependent heterointerfacial band bending and quasi-twodimensional excitonic transport in GaAs structures, Physical Review B -Condensed Matter and Materials Physics, vol.58, issue.8, pp.4728-4732, 1998.

D. Paget, F. Cadiz, A. C. Rowe, F. Moreau, S. Arscott et al., Imaging ambipolar diffusion of photocarriers in GaAs thin films, Journal of Applied Physics, vol.111, p.123720, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02345681

H. Ohno, Making nonmagnetic semiconductors ferromagnetic, Science, vol.281, issue.5379, pp.951-956, 1998.

S. Bieker, T. Henn, T. Kiessling, W. Ossau, and L. W. Molenkamp, Spatially resolved thermodynamics of the partially ionized exciton gas in GaAs, Physical Review Letters, vol.114, issue.22, pp.1-5, 2015.

Y. Nagamune, H. Watabe, F. Sogawa, Y. Arakawa, Y. Nagamune et al., Onedimensional exciton diffusion in GaAs quantum wires, Appl. Phys. Lett, vol.67, issue.11, pp.1535-1537, 1995.

J. Bolinsson, K. Mergenthaler, L. Samuelson, and A. Gustafsson, Diffusion length measurements in axial and radial heterostructured nanowires using cathodoluminescence, Journal of Crystal Growth, vol.315, issue.1, pp.138-142, 2011.

A. Darbandi, S. P. Watkins, and S. P. Watkins, Measurement of minority carrier diffusion lengths in GaAs nanowires by a nanoprobe technique, Journal of Applied Physics, vol.120, p.14301, 2016.

A. Gustafsson, J. Bolinsson, N. Sköld, and L. Samuelson, Determination of diffusion lengths in nanowires using cathodoluminescence, Applied Physics Letters, vol.97, p.72114, 2010.

D. Spirkoska, J. Arbiol, A. Gustafsson, S. Conesa-boj, F. Glas et al., Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures, Physical Review B, vol.80, p.245325, 2009.

G. Lampel, Nuclear dynamic polarization by optical electronic saturation and optical pumping in semiconductors, Physical Review Letters, vol.20, p.491, 1968.

I. Favorskiy, D. Vu, E. Peytavit, S. Arscott, D. Paget et al., Circularly polarized luminescence microscopy for the imaging of charge and spin diffusion in semiconductors, Review of Scientific Instruments, vol.81, p.103902, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00548703

S. Fang, R. Zhu, and T. Lai, Spin relaxation dynamics of holes in intrinsic GaAs quantum wells studied by transient circular dichromatic absorption spectroscopy at room temperature, Scientific Reports, vol.7, issue.287, pp.1-7, 2017.

L. H. Teng, P. Zhang, T. S. Lai, and M. W. Wu, Density dependence of spin relaxation in GaAs quantum well at room temperature, EPL (Europhysics letters), vol.84, issue.2, pp.1-4, 2018.

D. Vu, S. Arscott, R. Ramdani, E. Gil, Y. André et al., Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces, Physical Review B, vol.82, p.115331, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02345816

S. Park, D. Paget, V. L. Berkovits, V. P. Ulin, P. A. Alekseev et al., Photovoltage-induced blockade of charge and spin diffusion in semiconducting thin films, Journal of Applied Physics, vol.126, 2019.

O. Demichel, M. Heiss, J. Bleuze, H. Mariette, and A. Fontcuberta, Impact of surfaces on the optical properties of GaAs nanowires, Applied Physics Letters, vol.97, p.201907, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00997210

M. Heiss, C. Colombo, and A. Fontcuberta, Nanowire based heterostructures: fundamental properties and applications, Nanoepitaxy: Materials and Devices III, vol.8106, p.810603, 2011.

J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin et al., Inx Ga1-x as nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics, Nano Letters, vol.11, issue.11, pp.4831-4838, 2011.

J. C. Shin, A. Lee, M. P. Katal, D. Y. Kim, L. Yu et al., Wafer-scale production of uniform InAs y P 1-y nanowire array on silicon for heterogeneous integration, ACS Nano, vol.7, issue.6, pp.5463-5471, 2013.

J. W. Hwang, B. K. Kim, S. J. Lee, M. H. Bae, and J. C. Shin, Catalyst-free heteroepitaxial growth of very long InAs nanowires on Si, Current Applied Physics, vol.15, pp.35-39, 2015.

J. Shah, R. F. Leheny, and W. Wiegmann, Low-temperature absorption spectrum in GaAs in the presence of optical pumping, Physical Review B, vol.16, issue.4, pp.1577-1580, 1977.

M. Benzaquen, D. Walsh, and K. Mazuruk, Conductivity of n-type GaAs near the Mott transition, Physical Review B, vol.36, issue.9, pp.4748-4753, 1987.

A. L. Efros, Y. S. Halpren, and B. I. Shklovskii, Low temperature conductivity of strongly compensated semicondcutors, Proceedings of the International Conference on Physics of semiconductors, (Warsaw), Polish Scientific publishers, 1972.

B. I. Shklovskii and A. L. Efros, Electronic properties of doped semiconductors, 1984.

R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev, B. Y. Meltser et al., Low temperature spin relaxation in n-type GaAs, Physical Review B, vol.66, p.245204, 2002.

B. J. Skromme and G. E. Stillman, Excited-state-donor-to-acceptor transitions in the photoluminescence spectrum of GaAs and InP, Physical Review B, vol.29, issue.4, pp.1982-1992, 1984.

D. W. Kisker, H. Tews, and W. Rehm, Luminescence study of C, Zn, Si, and Ge acceptors in GaAs, Journal of Applied Physics, vol.54, issue.3, pp.1332-1336, 1983.

G. L. Bir, A. G. Aronov, and G. E. Pikus, Spin relaxation of electrons due to scattering by holes, Sov. Phys. JETP, vol.42, issue.4, pp.705-712, 1975.

V. L. Berkovits, D. Paget, A. N. Karpenko, V. P. Ulin, and O. E. Tereshchenko, Soft nitridation of GaAs(100) by hydrazine sulfide solutions: Effect on surface recombination and surface barrier, Applied Physics Letters, vol.90, issue.2, p.22104, 2007.

V. L. Berkovits, V. P. Ulin, M. Losurdo, P. Capezzuto, G. Bruno et al., Wet chemical nitridation of GaAs (100) by hydrazine solution for surface passivation, Applied Physics Letters, vol.80, issue.20, pp.3739-3741, 2002.

V. L. Berkovits, V. P. Ulin, O. E. Tereshchenko, D. Paget, A. C. Rowe et al., GaAs(111) A and B surfaces in hydrazine sulfide solutions: Extreme polarity dependence of surface adsorption processes, Phys. Rev. B, vol.80, p.233303, 2009.

V. L. Berkovits, L. Masson, I. V. Makarenko, and V. P. Ulin, Structural properties of GaAs surfaces nitrided in hydrazine-sulfide solutions, Applied Surface Science, vol.254, issue.24, pp.8023-8028, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00386880

P. A. Alekseev, M. S. Dunaevskiy, V. P. Ulin, T. V. Lvova, D. O. Filatov et al., Nitride Surface Passivation of GaAs Nanowires: Impact on Surface State Density, Nano Letters, vol.15, pp.63-68, 2014.

V. Badescu and P. T. Landsberg, Theory of some effects of photon recycling in semiconductors, Semiconductor Science and Technology, vol.8, issue.7, pp.1267-1276, 1993.

O. Tereshchenko, S. Chikichev, and A. Terekhov, Atomic structure and electronic properties of HCl-isopropanol treated and vacuum annealed GaAs(100) surface, Applied Surface Science, vol.142, pp.75-80, 1999.

C. Weisbuch, R. C. Miller, R. Dingle, A. C. Gossarg, and W. Wiegmann, Intreinsic Radiative Recombination from Quantum States in GaAsAlx Ga 1-x As Multi-Quantum Well Structures, Solid State Communications, vol.373, pp.219-222, 1981.

H. Böttger and V. V. Bryksin, Hopping conductivity in ordered and disordered solids (II), Physica Status Solidi (b), vol.78, issue.2, pp.415-451, 1976.

B. G. Arnaudov, D. S. Domanevskii, and I. Y. Yanchev, Hopping conductivity in heavily doped strongly compensated GaAs, Physica Status Solidi (b), vol.91, issue.1, pp.311-318, 1979.

D. Lemoine, C. Pelletier, S. Rolland, and R. Granger, Hopping conduction in epitaxial n-GaAs layers, Physics Letters A, vol.56, issue.6, pp.493-495, 1976.

D. Bimberg, H. Munzel, A. Steckenborn, and J. Christen, Kinetics of relaxation and recombination of nonequilibrium carriers in GaAs : carrier capture by impurities, Phys. Rev. B, vol.31, p.7788, 1985.

Y. Qi, Z. G. Yu, and M. E. Flatté, Spin gunn effect, Physical Review Letters, vol.96, p.26602, 2006.

T. Paul, P. Leboeuf, N. Pavloff, K. Richter, and P. Schlagheck, Nonlinear transport of Bose-Einstein condensates through waveguides with disorder, Physical Review A -Atomic, Molecular, and Optical Physics, vol.72, issue.6, pp.1-14, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00016839

B. Santos, L. P. Viana, M. L. Lyra, and F. A. De-moura, Diffusive, super-diffusive and ballistic transport in the long-range correlated 1D Anderson model, Solid State Communications, vol.138, issue.12, pp.585-589, 2006.

D. N. Arnold, G. David, D. Jerison, S. Mayboroda, and M. Filoche, Effective Confining Potential of Quantum States in Disordered Media, Physical Review Letters, vol.116, issue.5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01150766

H. Mehdi, G. Monier, P. E. Hoggan, L. Bideux, C. Robert-goumet et al., Combined angle-resolved X-ray photoelectron spectroscopy, density functional theory and kinetic study of nitridation of gallium arsenide, Applied Surface Science, vol.427, pp.662-669, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01827585

C. Stampfl and C. G. De-walle, Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation, Physical Review B, vol.59, issue.8, pp.5521-5535, 1999.

M. Fuchs, J. Silva, C. Stampfl, and M. Scheffler, Cohesive properties of group-III nitrides: A comparative study of all-electron and pseudopotential calculations using the generalized gradient approximation, Physical Review B, vol.65, issue.24, pp.245212-245213, 2002.

D. B. Wittry and D. F. Kyser, Measurement of diffusion lengths in direct-gap semiconductors by electron-beam excitation, Journal of Applied Physics, vol.38, issue.1, pp.375-382, 1967.