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Electromagnetism, with its scalar charges, is based on an Abelian gauge theory, whereas non-Abelian gauge theories
with vector charges describe strong and weak interactions, with a coupled spatial and charge (color) dynamics. New
Abelian gauge fields have been synthesized artificially, allowing the study of extraordinary physical effects. The most
well-known example is the Berry curvature, the cornerstone of topological physics. Synthetic non-Abelian gauge
fields have been implemented only recently, but their action on the spatial dynamics of their emergent charges has
not been studied experimentally so far. Here, by exploiting optically anisotropic 2D perovskite in the strong light—
matter coupling regime, we experimentally synthesized a static non-Abelian gauge field, acting on an exciton-polariton
quantum flow at room temperature. We observe experimentally the corresponding curved trajectories and spin pre-
cession. Our work could therefore open perspectives to study the non-Abelian physics using highly flexible photonic
simulators. © 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.427088

1. INTRODUCTION

Historically, the first gauge theory was developed for the electro-
magnetic field in 1865. It is an Abelian gauge theory: the particle
charges are scalars and the components of the vector potential
commute with each other. The next step was realized by Yang and
Mills [1] who introduced a non-Abelian gauge theory by replacing
a scalar charge by a vector, i.e., the isospin. The components of the
vector potential are the Pauli matrices forming the SU(2) group,
which do not commute [2]. Complemented by the Higgs mecha-
nism [3], non-Abelian Yang-Mills gauge theories for both the
strong and the weak interactions allow to build the whole standard
model of elementary particles [4].

Since then, a new playground has been found for gauge theories
with the invention and experimental implementation of emergent
gauge fields [5]. The most well-known example is the Berry cur-
vature, which is often interpreted as a magnetic field analog [0],
but defined in a parameter space (e.g., momentum space). In all
cases, the evolution along a trajectory—either in parameter or real
space—is associated with an additional phase (Berry or Aharonov—
Bohm phase). Topological physics can therefore be considered a
consequence of an emergent Abelian gauge field, similar to the

2334-2536/21/111442-06 Journal © 2021 Optica Publishing Group

electromagnetic field [7-10]. Real-space Abelian gauge fields are
already successfully used in photonics for spin filtering [11]. In
contrast, emergent non-Abelian gauge fields have been much less
explored so far.

A promising strategy relies on recently discovered mapping
[12,13] between the Rashba spin-orbit coupling (SOC) [14] for
massive particles, well-known in solid state physics, and the static
limit of a non-Abelian gauge field of the Yang—Mills type. This
mapping opened the exciting perspective of developing analogue
non-Abelian gauge field theories in solid state systems.

It is crucial to distinguish recent different realizations of artifi-
cial Rashba-like SOCs. Alone, or with a “mass”-like term, it gives
a 2D Dirac Hamiltonian with non-commuting x and y projec-
tions, but without a non-Abelian gauge field (see Supplement 1,
Section III). A 1D Dirac Hamiltonian has been first implemented
in cold atoms systems [15], followed by a 2D realization [16]. Only
when the Rashba SOC applies in addition to the main kinetic
energy term for a particle described by the Schrédinger equation,
it can be considered as a minimally coupled non-Abelian gauge
potential. A scheme to synthesize such Rashba (and similar) SOC
has been theoretically proposed for photons [17,18] and only very
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recently implemented experimentally using planar microcavities
in the strong exciton—photon coupling regime [19] and filled with
liquid crystals [20]. At the same time, other researchers confronted
the problem of non-Abelian gauge fields from another side, by
considering a non-Abelian version of the Aharonov—Bohm effect
[21,22]. It consists of making the light polarization pseudospin
successively rotate across two differently oriented effective mag-
netic fields. Indeed, the final pseudospin orientation depends on
the ordering of the two constant fields. This ordering sensitivity
is a consequence of the non-commutativity of Pauli matrices.
However, the corresponding terms are the time-like components of
the four-vector potential, affecting the phase and the interference
of the particles, but not their real space trajectories.

In this work, we implement experimentally another type of
non-Abelian vector potential with space-like components, affect-
ing the real space trajectories via an analog of the Lorentz force.
This vector potential is deduced from the mapping to a Rashba—
Dresselhaus bosonic Hamiltonian, which emerges from a 2D
confined optical system with both linear birefringence and energy
splitting between TE (transverse electric) and TM (transverse mag-
netic) polarized modes. The non-Abelian character of the gauge
field implies the existence of a non-zero effective magnetic field. In
the following, we provide a direct measurement of the transverse
acceleration of an exciton-polariton wave packet, caused by the
resulting effective magneto-static force, together with the corre-
sponding spin precession. This coupled spatial and spin dynamics
is successfully described by analytical equations of motion. We
therefore have an SU(2) non-Abelian gauge field with a direct
experimental accessibility.

2. RESULTS

The sample is based on a single crystal of 2D hybrid organic—
inorganic perovskite (Fig. 1A) placed in an asymmetric
planar microcavity (Fig. 1B). The active material is 4-fluoro-
phenethylammonium tetraiodoplumbate (henceforth referred to
as PEAI-F), a multiple quantum well system consisting of (Pbls)*~
layers sandwiched between organic insulator layers. The qual-
ity factor of the planar microcavity modes is Q r 2 1000. The
wavevector k, of the bare light modes perpendicular to the mirrors
is quantized, giving rise to a series of 2D bands, with approximately
parabolic dispersion at ., £, ~ 0. The role of the charge vector in
our case is played by the pseudospin associated with the polari-
zation of light. The components of the pseudospin, which in our
case is the Stokes vector of light, are directly determined by the
polarization degrees, measured in three possible bases: horizon-
tal/vertical (HV, s!), diagonal/antidiagonal (DA s%), and left/right
circular (LR, s2). The explicit expressions allowing to obtain the
pseudospin from the measured intensities read

g lv=ln
Iy + 1y

X2=[D_[A,
Ip+ 14
Irp — 1,

G= L 1)
Ip+ I

The spin-orbit coupling arises from the energy splitting
between the microcavity TE and TM modes[17]. The polar-
ized modes form two parabola with different effective masses
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Fig. 1.  Experimental implementation of a non-Abelian gauge field.
A: Sketch of a PEAI-F 2D perovskite structure. B: Schematic represen-
tation of the microcavity sample. Perovskite flakes are embedded in an
optical microcavity made by a distributed Bragg reflector (7 TiO,/SiO,
pairs) and a 80-nm-thick silver mirror. C, D: Experimental dispersions
along 4, and &, showing two diabolical points along k.. E: Experimental
dispersion along £, for a fixed value of £, = 4.48 um™" (crossing point)
highlights the formation of a Rashba-type dispersion. Solid and dashed
lines are the theoretical fits of the modes dispersion (parameters are given
in the main text). F: Transmission map at the diabolical point energy
together with the pseudo-spin orientation (black and green arrows) of the
eigenstate obtained from polarization measurements. The monopolar
pseudospin texture around the diabolical points is another signature of the

Rashba SOC.

mtMm, m1E. The perovskite excitons located at 2.39 eV are strongly
coupled with the photonic modes of the cavity, forming exciton-
polariton modes (polaritons) at room temperature [23] with a
Rabi splitting of 208 meV. Thanks to the presence of the fluorine,
the crystal symmetry of the perovskite determines a strong linear
birefringence. Such birefringence, and all the effects we are describ-
ing, could be obtained for bare photonic modes, whereas strong
coupling allows us to get the effect with a sizeable magnitude.
The birefringence breaks the cylindrical symmetry of the TE and
TM modes and lifts their degeneracy at 4, /ey =0. Figures 1C
and 1D show the dispersion maps of the cavity transmission for
wavevectors along the two perpendicular orientations k., k,.
Our microcavity is relatively thick (=7 pm) and the quantized
polarization doublets are close to each other, separated by about
50 meV. Within a polarization doublet, the behavior is radically
different along the two wavevector orientations and can be under-
stood by writing down an effective Hamiltonian in the parabolic
approximation on the circular polarization basis [17]:

22 .
H, = Eo+ % /30 - ﬁkZe—Zup )
k= _ BR22i¢ e |
Bo — Bke Eo+ %
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where m = myv mre/(mvm + mrE). k= k= [k + /ej is

the in-plane wavevector (k, =k cos ¢, k}, =ksing, ¢ is the
propagation angle). B is the optical birefringence. This effective
Hamiltonian is expected to describe each of the polarization dou-
blets with different parameter values (two of them are reported in
Figs. 1C and 1D). By working with other polarisation doublets—
for which the exciton—photon fractions are different—we can
also scan over different values of these parameters. Along k., the
X-polarized mode corresponds to the TM mode with the smaller
mass. The two parabola cross at £% = (8y/B)"/? = £4.48 um ™',
as shown in Fig. 1C, giving rise to a diabolical point. Along £,,
(¢ = m/2), the off-diagonal terms add up. It means that the lowest
polarization mode at # =0 (polarized along X) corresponds to
the TE mode with the larger mass: the splitting increases with
ky (Fig. 1D). The fit of the experimental data with the effective
Hamiltonian (2) yields Eo=2.1415eV, m=2.4-10"m,,
B=2.5-10"%eV um?, and By = 10 meV. m, is the free electron
mass.

Interestingly, around this diabolical point, the effec-
tive Hamiltonian can be rewritten [17,19] as a Rashba-like
Hamiltonian [14]

N 1 1
e=- 7 +ao p=o(p+mac) —mas’. )
2m Zm

where o is a vector of Pauli matrices. p = hig is the momentum,
qg=k— /e;). In addition, @ = /BoB/2. The Rashba-like nature
of this diabolical point is experimentally proven in Figs. 1E and
1E Figure 1E shows the dispersion along £, at 4, = /eg, which
demonstrates a conical shape around the crossing point. Figure 1F
shows the pseudospin distribution of the eigenstates at the energy
of the crossing point. The pseudospin is deduced from the mea-
sured polarisation degree of the trasmission signal (see Methods
and Supplement 1, Fig. $3). One can see that the pseudospin is
pointing in opposite directions at each side of the crossing (black
and green arrows), in agreement with the Rashba Hamiltonian pic-
ture. The visibility of the crossing point, given by k;) = (Bo/B)/?,
is considerably enhanced compared to GaAs-based microcavities
[19] due to the large birefringence of the PEAI-F.

A general non-relativistic Hamiltonian of a massive matter field
(quantum particle) minimally coupled with a non-Abelian gauge
field determined by a vector potential Ay, reads:

1 2 a a a a
I—[YM=—(p—nAG)2+nAta . (4)
2m

It can be derived from the complete gauge-invariant Yang—Mills
Lagrangian [1,2] (see Supplement 1, Section IV for details). Here,
the coupling constant is 7 = h/2 (the quantum of spin). We use
upper number indices, 2, 0-3 for Pauli matrices. Comparing
this expression with Eq. (3), we see that only two components
of the emergent vector potential are non-zero: Al = —ma/n,
Aj = —ma/1n. The emergent vector potential is constant, but
since the underlying symmetry group is SU(2) and not U(1)
(which means that the gauge field is non-Abelian), a constant
vector potential results in a non-zero field strength tensor with
components given by Fj, =09,4] —0,4] — ne“b‘AﬁAlZ,
where @, v span (¢, x, y, ). The non-zero components read
fo = —ny = —m?a?/n and they couple to the spatial degrees of
freedom, as discussed below.

Similar to the Lorentz force, which is given by the product
between the electric current and the field, the general form of the

force provided by the non-Abelian field links a unified spin-current
vector J and the field strength tensor F. The equations of motion
for the velocity v and spin (color) s of a classical relativistic particle
coupled to the non-Abelian field read:

mdvtjdt =], - F", ds/dtv=—-nd, x J*, (5)

where J, = sv, is the spin current. These two equations are solved
together to find the particle trajectory and spin dynamics [24].

In our case, the acceleration is given by 4, = —47/20{2]},3”12
and 2, = 4ma* J3 /h?, where J2 and ]f are the circular (spin-
up/down) components of the polariton spin current propagating
along x and y, respectively. The acceleration is therefore trans-
verse, but it acts on the circular component of the spin current,
instead of affecting the charge current as the Lorentz force. The
magnitude of the force is given by a? = Bof/2, three orders of
magnitude larger than in GaAs-based microcavities [19], thanks
to the high anisotropy of the PEAI-F (high value of ;). We stress
that the effect of the effective magnetic non-Abelian field we con-
sider here differs crucially from a simple spin-dependent Lorentz
force appearing in the presence of Abelian gauge fields different
for the two spin components [11,20,25], since the equations for
the two spin components are decoupled. In particular, Ref. [20]
corresponds to a special case with equal Rashba and Dresselhaus
coupling constants. This case can still be mapped to an Abelian
gauge field (different for different spins, which are uncoupled). A
distinctive feature of a non-Abelian gauge field is a non-zero field
tensor (and force), which can be present in spite of a constant vector
potential. For equal Rashba and Dresselhaus constants, such field
and force are absent [12].

To demonstrate experimentally this transverse acceleration,
we use a unique specificity of cavity polaritons: the possibility to
resonantly create a wave packet with a well-defined pseudospin,
centered on a specific state in reciprocal space, and then to study
its real space evolution. The first experiment we perform consists
in exciting resonantly the vicinity of the Rashba diabolical point
with a pulsed polarized laser, which in the language of Yang—Mills
gauge theories corresponds to creating a color current. The energy
of the laser is tuned to the diabolical point, while the wavevector
is slightly detuned from it, providing a color (spin) current. The
scheme of the experiment is shown in Fig. 2A. The blue, white and
red arrows represent the sigmas+, vertical and sigma- polarization
states of the incident laser, respectively.

Figures 2B—2D show the spatial intensity distribution together
with the center-of-mass trajectories for three excitation conditions:
o, vertical,and o~ polarization, respectively (s 3—=1,0, —1with
s1=0, 1, 0). The difference between the three cases is also clearly
visible on the transverse profiles of the total intensity (Fig. 2H). In
an ideal case, the center of mass trajectory and circular polarisation
degree (charge vector) shown in Fig. 21 are expected to be repro-
duced theoretically (Fig. 2]) by the equations of motion (5) using
parameters 72, o, B, By extracted from the experiments and given
above. Red and blue colors in the figure correspond to the two 53
spin components (0 * and 0 7) and are strongly correlated with the
trajectories. The non-Abelian magnetic-like field acts on the spin
currents, which exhibit lateral deviations depending on their spin
and velocity. At the same time, the spin itself changes depending
on the propagation direction. This gives rise to opposite oscillat-
ing trajectories for red (67) and blue (0~) wave packets. Both
effects are absent for spinless excitation (vertical polarization):
the wave packet propagates along a straight line. The correlated



Research Article

Vol. 8, No. 11 / November 2021 / Optica

Y-M forces

L X=23 pm

-10 0 10

20
X (um)

| —
~ "
-1

20 30 40
X (pm)

0 10

Fig.2. Polariton propagation in a non-Abelian field. A: Scheme of the experiment. A polarized laser creates a flow that is deviated by the gauge field,
depending on the sign of the spin current. Polarization of the excitation: left-circular (s> = —1), vertical (s' = 1, s®> = 0), right-circular (s*> = 1). B-D:

Spatial images of the total emission intensity for the three spin excitation conditions. Log-scale false color map is used for all images. The dashed lines are
the center of mass trajectories. B: s> = +1, the center of mass deviated downwards and then back. C: s = 0, the center of mass has no deviation along the
in-plane propagation. D: s> = —1, the center of mass deviated upwards and then back. E-G: Calculated spatial images of the total emission intensity based
on Eq. (2) for three excitations (s> = —1, 0, 1). H: Transverse profiles of the total intensity at x = 20 pm (curve color corresponds to local s* of emission).
I: Experimentally measured center of mass trajectories extracted from panels B-D and spin dynamics for three excitation conditions (s> = —1, 0, 1). Dot
color corresponds to 5. J: Classical simulations of propagation trajectories and spin for the same initial conditions (s> = —1, 0, 1). Dot color corresponds

tos?. Lines are extracted from the quantum simulations (E-G).

evolution of the wave packet position and its spin, described by
the Eq. (5), is a specific feature of a non-Abelian gauge field: the
spatial dynamics is controlled by the evolution of the vectorial
charge, making an important difference with the spin-dependent
Abelian fields [11,20], where the spin does not change over time.
The scale of the effect is much larger than the typical deviation (the
Hall angle) for the Hall effect [26] and of the same order as that of
the spin Hall effect [27]. The deviation of the spin current from the
straightforward trajectory is known as a manifestation of a “spin
transverse force” in spintronics (and also in photonics [18]) since
[28], while the configuration was understood to be a particular case
ofanon-Abelian Yang—Mills field only later [12].

In Figs. 2B and 2D, a secondary intensity peak appears around
x A2 20 um (green arrows). As a result, the center of mass trajectory
deviates from the straight trajectory. This is also visible in Fig. S4 of
Supplement 1, showing waterfall plots of the transverse intensity
at different x. The wave packet splitting is due to its finite size: for
some components, the spin becomes aligned with the effective
field and its precession stops, while the non-Abelian magnetic force
becomes zero. This is confirmed by the full simulations based on
the spinor Schrédinger equations with the Hamiltonian (2), shown
in Figs. 2E-2G, where a second peak appears and propagates away
from the center. The center of mass trajectory and spin extracted

from the Schrodinger simulations are shown in Fig. 2], where
they are compared with the results of the classical equations (5).
We conclude that this secondary peak is a real feature depend-
ing on the wave packet finite size and is not due to experimental
imperfections, such as the disorder-induced scattering.

The second experiment consists of creating an energy potential
in the plane of the cavity and launch the flow of spin-neutral par-
ticles (vertically polarized polaritons, s! =1, 53 =0) against this
defect, as shown in Fig. 3A. This type of experiment in the high
density regime and with a standard microcavity dispersion allowed
to demonstrate polariton superfluidity [29,30], the formation of
oblique solitons [31], half-solitons [32], and of vortex anti-vortex
pairs [33]. Here, we excite the flow with polarized light at the emer-
gent diabolical point of the dispersion, in the linear, low density
regime.

The polariton flow (black line, Fig. 3B) is upstream (left side
of defect) and downstream (right side of defect). Upstream, the
particle trajectory is strongly constrained by the defect poten-
tial and by the quantum pressure. The effect of the non-Abelian
magnetic force is negligible compared to these two other contribu-
tions. However, the effects of the gauge field on the spin evolution,
described by the second equation in (5), are not negligible. For
downward propagation, the gained s* components, proportional
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(A) < Laser

Fig. 3. Non-Abelian dynamics behind a defect potential. A: Scheme
of the experiment. A linear-polarized laser creates a propagating flow,
which hits a potential and splits into circular-polarized flows deviated by
the non-Abelian magnetic field. The curve blue and red arrows schemati-
cally indicate the spatial deviation of the left- (s3=-1) and right- (s3=1)
circular polarized flow, respectively. B: Experimental image of the total
emission intensity (false color). Colored dots show the theoretical results
(color corresponds to the s3 spin projection, the scale is the same as on
Fig. 3). The white circle shows the position of the potential defect. C:
Experimental image of the difference between the diagonal polarization
intensities (s?). Dashed lines mark the theoretical trajectories. D, E:
Calculated total intensity and s 2 based on Eq. (1).

to /!, have opposite signs. Opposite spins are thus generated
above and below the defect, as shown in the sketch Fig. 3A. In the
region after the defect, the magnetic non-Abelian force becomes
dominant, and the coupled equations (5) completely describe
the particle trajectories and their spins. Due to the opposite spin
(and therefore of the spin currents /. 3 ) above and below the spatial
defect (Figs. 3B and 3C), the transverse force in Eq. (5) is also
opposite. This force brings the particles into the shadow of the
defect. This convergent flow is clearly visible in Fig. 3B, showing
experimental spatial image of the total particle density. The results
of the simulations based on Eq. (5) corresponding to the wave
packet trajectories are shown as points, whose color shows the s°
spin projection. Figure 3C presents the difference between the
5% components (chosen as the new spin basis), showing the best
contrast due to the particular spin dynamics. Dashed lines show
the calculated particle trajectories (same as in panel B). We also
show the results of the full spinor Schrédinger simulations based
on Eq. (2) in Figs. 3D and 3E. The agreement between the experi-
ment and the classical and quantum simulations confirms that the
density flows observed in total intensity in Fig. 3B originate from
the non-Abelian coupled spin and spatial dynamics.

We would like to underline that these curved trajectories have
nothing in common with the recently observed anomalous Hall
drift [19] of accelerated polariton wave packets, which is induced
by the non-zero Berry curvature of the polariton bands when time-
reversal symmetry is broken. Anomalous Hall effect caused by
an emergent Abelian magnetic field in the reciprocal space occurs
during the adiabatic motion of a wave packet within a single band.
On the opposite, the non-Abelian magnetic field in the present
work acts in 7eal space, and the oscillating trajectories in Figs. 2 and
3 are due to beatings between #wo coherently excited eigenstates,

that is spin precession, described by the second equation in Eq. (5).
We note that different types of oscillating or wiggling patterns,
often called Zitterbewegung, are generally caused by beatings
between two or more eigenstates. They are studied theoretically
and experimentally in different photonic systems [34-36] includ-
ing polaritons [37,38]. The advantage of our configuration is that
the behavior of the beam can be described by Eq. (5), taking into
account a non-Abelian gauge field, which is in general not possible
for an arbitrary system exhibiting Zitterbewegung. These equa-
tions provide an analytical description of the system’s behavior,
giving expressions for the transverse acceleration as a function of
the spin current.

3. CONCLUSION

Our work offers an experimental investigation of the spin-
dependent particle trajectories in a non-Abelian gauge field
obtained by using a 2D perovskite-based microcavity at room tem-
perature. This physics is accessible thanks to the high anisotropy of
the material that induces the formation of diabolical points in the
polariton dispersion. Despite the stability issues and short propaga-
tion lengths imposed by the sample, we successfully measured the
lateral deviation of the spin currents of a resonantly injected propa-
gating polariton wave packet. The analogy with the Rashba-type
SOC Hamiltonian in an engineered polariton system [13] offers an
extremely straightforward platform for experimental studies which
are hardly accessible in the field of particle physics, where complex
interactions are often encountered.
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