

Magmatic and phreatomagmatic contributions on the ash-dominated basaltic eruptions: Insights from the April and November–December 2005 paroxysmal events at Karthala volcano, Comoros

Simon Thivet, Jean Carlier, Lucia Gurioli, Andrea Di Muro, Pascale Besson, Magali Smietana, Georges Boudon, Patrick Bachèlery, Julia Eychenne,

Jean-Marie Nedelec

▶ To cite this version:

Simon Thivet, Jean Carlier, Lucia Gurioli, Andrea Di Muro, Pascale Besson, et al.. Magmatic and phreatomagmatic contributions on the ash-dominated basaltic eruptions: Insights from the April and November–December 2005 paroxysmal events at Karthala volcano, Comoros. 2022. hal-03578724

HAL Id: hal-03578724 https://uca.hal.science/hal-03578724

Preprint submitted on 17 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

- 1 Magmatic and phreatomagmatic contributions on the ash-dominated basaltic eruptions: insights
- 2 from the April and November-December 2005 paroxysmal events at Karthala volcano, Comoros
- 3
- Simon THIVET^(1,2), Jean CARLIER⁽²⁾, Lucia GURIOLI⁽²⁾, Andrea DI MURO⁽³⁾, Pascale BESSON⁽⁴⁾, Magali
 SMIETANA⁽²⁾, Georges BOUDON⁽⁴⁾, Patrick BACHELERY⁽²⁾, Julia EYCHENNE^(2,5), Jean-Marie NEDELEC⁽⁶⁾
- 6
- 7 (1) Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, München,
 8 Germany
- 9 (2) Laboratoire Magmas et Volcans, Université Clermont Auvergne CNRS IRD, OPGC, Campus
- 10 Universitaire des Cézeaux, 6 Avenue Blaise Pascal, 63178 Aubière Cedex, France
- 11 (3) Université de Paris, Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du
- 12 Globe de Paris, CNRS, F-97418, La Plaine des Cafres, La Réunion, Paris, France
- (4) Institut de Physique du Globe (IPGP), Sorbonne Paris-Cité, CNRS UMR-7154, Univ. Paris Diderot, 1
 rue Jussieu, 75238 Paris, France
- 15 (5) GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
- 16 (6) Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
- 17
- 18 Corresponding author: Simon Thivet, simon.thivet@lmu.de
- 19

20 <u>Abstract</u>

Basaltic eruptions are commonly associated with lava emissions and relatively weak 21 22 explosive activities, but they can sometimes produce strong explosive eruptive phases. In April and 23 November 2005, two paroxysmal eruptive events occurred within the summit crater of Karthala 24 basaltic shield volcano (Grande Comore Island, Comoros), which hosted a water lake before each of 25 these events. Both 2005 ash plumes spread across the Comoros Archipelago and heavily impacted 26 the whole Grande Comore Island. Associated deposits on the volcano summit are extremely fine-27 grained (up to 50 wt% of fine ash < 63 μ m for some analyzed layers) and rich in millimeter-sized 28 rounded accretionary lapilli aggregates. Field observations, as well as textural and chemical analyses 29 performed on both coarse- and fine-grained pyroclasts permit to identify juvenile and non-juvenile 30 components and quantify their peculiar characteristics. Coarse ash (710-1000 µm) mainly consists of juvenile pumice particles (vesicle number density $N_V = 4.5 \ 10^4 \ \text{mm}^{-3}$ and gas to melt ratio $V_G/V_L = 1.5$, 31 32 on average), characterized by free groundmasses and representative of magma portions ascending quickly within the eruptive conduits (up to 10 m s⁻¹). A relatively low amount of juvenile scoria 33 particles are also observed in the coarse ash fractions, which are characterized by magma degassing 34 $(N_V = 4.7 \ 10^4 \text{ mm}^{-3} \text{ and } V_G/V_L = 0.5 \text{ on average})$ and associated crystallization (occurrence of dendritic 35 36 microlites). Non-juvenile fragments (from blocks to coarse ash) are dense lava or intrusive fragments. 37 Their amount decreases exponentially toward the fine ash fractions, which are mainly composed of 38 juvenile, blocky, dense and glassy particles that are characterized by unambiguous textural signs of 39 brittle fragmentation (hackle lines, stepped features and cracks). We support that Molten Fuel-40 Coolant Interactions between highly porous fast ascending basaltic magmas and external waters 41 occurred during the paroxysmal phases of the studied eruptions, leading to a brittle-dominant and 42 efficient regime of magma fragmentation. Variable but large amount of fine ash grains through the 43 stratigraphic depth of the deposits can be ascribed to the brittle failure of the vesicle walls of the initial porous magma. Concurrently, thermohydraulic explosions caused the host rock fragmentation 44 45 at shallow level, generating the relatively coarse non-juvenile particles. A short-lived episode of 46 intense lava fountaining associated with steam explosions eventually occurred at the end of the 47 November 2005 paroxysm, forming the last and relatively coarse tephra layer at the top of the 48 studied eruptive sequence. Each paroxysmal phase lasted about a day as each associated water lake 49 and shallow water table progressively vaporized and dried away. Both eruptions ended with lava 50 pond and weak lava fountaining activities confined within the summit crater. We conclude that the 51 contributions of both magmatic processes and phreatomagmatic interaction mechanisms ultimately 52 generated the grain size, grain component and grain texture variabilities observed within the paroxysmal deposits. This work contributes to a better understanding of the generation of unusual 53 54 fine ash from basaltic explosions as well as their eruptive dynamics and associated mechanisms, from 55 magma ascent in the conduit to the fragmentation level and the interaction with intra-crateric lake 56 waters.

57

58 Keywords

59 Ash; basaltic; Karthala; Comoros; phreatomagmatism; texture

60

61 Highlights

- Karthala basaltic volcano produced two paroxysmal events in 2005
- Associated fallout deposits were highly spread out and rich in fine ash
- Tephra deposits record the signatures of shallow water-magma interactions
- Phreatomagmatism enhanced host rock and magma fragmentation efficiencies
- 66

67 <u>1. Introduction</u>

68 Volcanic activity represents an important part of natural hazards and risks on Earth (Small 69 and Naumann, 2001). Active basaltic volcanism is widespread, present in all tectonic contexts, and is 70 usually associated with effusive as well as weak explosive events from Hawaiian-like to Strombolian-71 like activities (Siebert et al., 2015). Low magma viscosities and low magmatic volatile contents 72 (Taddeucci et al., 2015) ultimately lead to low efficiency fragmentation mechanisms when the 73 magma is emitted at the surface, typically forming lava flows and relatively coarse-grained tephra 74 (Cashman and Scheu, 2015). Many studies on active basaltic volcanoes highlight this common 75 volcanic behavior, for instance at Piton de la Fournaise (e.g., Gurioli et al., 2018; Edwards et al., 2020; 76 Thivet et al., 2020b), Stromboli (e.g., Gurioli et al., 2014; Gaudin et al., 2017; Thivet et al. 2021), Etna 77 (e.g., Polacci et al., 2006; Andronico and Corsaro, 2011; Vergniolle and Gaudemer, 2012), as well as 78 for Hawaiian (e.g., Head and Wilson, 1987; Stovall et al., 2011; Parcheta et al., 2013) and Icelandic 79 volcanoes (e.g., Thordarson and Larsen, 2007; Pedersen et al., 2017; Bonny et al., 2018).

However, eruptive intensity can fluctuate, even during a single eruption, paroxysmal phases/events corresponding to the moments of greatest intensity. Basaltic volcanism can indeed shift toward more intense activities from Strombolian (Pioli et al., 2008) to sub-Plinian (Jordan et al., 2016) and Plinian-like (Costantini et al., 2010).

Basaltic paroxysmal events can be due to specific magmatic processes such as fast ascent of deep volatile-rich primitive magma (Métrich et al., 2010), gas transfer from deep to shallow levels resulting in destabilization of the upper magma column (Aiuppa et al., 2010), plug pressurization resulting in intermittent decompressions of the upper system (Thivet et al., 2020a), syn-eruptive magma degassing and crystallization resulting in the drastic increase of the magma viscosity in the volcanic conduit (Giordano and Dingwell, 2003) and sudden tectonic events such as caldera collapse resulting in secondary tephra fragmentation (Thivet et al., 2020c).

91 Moreover, magmas or lavas can also interact with external fluids at different levels (e.g. 92 intra-crateric lake waters, fluids from hydrothermal systems, ocean) resulting in the so-called 93 hydrovolcanism, which can lead to relatively explosive behaviors, as during phreatic or phreatomagmatic activities (e.g., Mastin and Witter, 2000; Belousov and Belousova, 2001;
Graettinger et al., 2013; Houghton et al., 2015; White et al., 2015; Zimanowski et al., 2015; Németh
and Kósik, 2020). This kind of activities is reported for several basaltic systems, such as Piton de la
Fournaise (e.g., Staudacher et al., 2009; Michon et al., 2013; Thivet et al., 2020c), Hawaii (e.g.,
McPhie et al., 1990; Dvorak, 1992; Dzurisin et al., 1995) and Iceland (e.g., Dellino et al., 2012;
Gudmundsson et al., 2012; Magnússon et al., 2012).

100 The large range of possible scenarios associated with basaltic explosive activity makes the 101 related hazards and associated risks difficult to anticipate. With respect to weak intensity basaltic 102 volcanism (e.g. lava flows, Hawaiian fountaining and mild Strombolian explosions; Thivet et al. 103 2020b), paroxysmal basaltic events are more impactful mainly because of the emission of large 104 amounts of fine-grained tephra, which can disperse over large areas (Jenkins et al., 2015). This is a 105 critical point for awareness and anticipation of such volcanic crises as well as for hazard assessment 106 (Nassor, 2001; Morin et al., 2016).

107 In the present study, we focus on two distinct paroxysmal basaltic phases of the Karthala 108 shield volcano (Grande Comore Island, Comoros, Fig. 1) producing large plumes and regionally 109 dispersed ash-rich deposits, in April and November 2005. Hazards associated with both paroxysms 110 impacted most of the Grande Comore Island (Bachèlery et al., 2016): projections of ballistics were reported within the summit uninhabited area of the volcano, while significant ash fallouts and 111 112 associated mudflows spread downslope within inhabited areas, including in Moroni, the capital of 113 Comoros. Here, we summarize the morphological and eruptive history of the volcano in the last 30 114 years and present the results of a detailed textural study of the ash-rich fallout deposits the both 115 2005 paroxysms. These deposits are also compared with more typical Hawaiian-like deposits, in 116 particular that from the 1977 eccentric eruption that occurred at low altitude on the southwestern 117 flank of Karthala volcano. A chemical overview is also addressed in order to contextualize the 118 compositions of the emitted magmas during the recent activity of the volcano. All these insights are 119 discussed in order to constrain the syn-eruptive dynamics of the studied eruptions, in terms of 120 reservoir, conduit processes and fragmentation mechanisms as derived from pre-, syn- and post-121 eruptive observations, as well as from features of the investigated deposits.

122

123 2. Geological context

124 **2.1. Comoros archipelago**

125 Karthala volcano is located on the Grande Comore (or Ngazidja) Island, which is the 126 westernmost island of the Comoros archipelago that is formed by four main volcanic islands (from 127 West to East: Grande Comore, Mohéli, Anjouan and Mayotte) in the northern part of the 128 Mozambique Channel (Fig. 1a). The tectonic setting and the origin of the Comoros archipelago is the 129 subject of controversy (e.g., Flower and Strong, 1969; Emerick and Ducan, 1982; Nougier et al., 1986) 130 but recent tectonic and geomorphological measurements rule out the presence of a hotspot and 131 interpret the Comoros archipelago as the boundary between two tectonic plates, favoring upwelling 132 of mantellic magmas (Famin et al., 2020; Tzevahirtzian et al., 2021). Magnetic data support the 133 presence of oceanic crust in this area (Coffin and Rabinowitz, 1987), which is also compatible with 134 sedimentary and tectonic arguments to explain the presence of detrital crustal rocks in the area as 135 well as abundant sandstone enclaves within the Comorian lavas. The Comorian volcanism started in 136 Mayotte around 20 Ma, emitting a wide range of alkaline and variably undersaturated (from 137 basanite-tephrite up to phonolite) magma compositions and forming a wide range of eruption styles, 138 as evidenced by the variability of deposits and edifice morphologies in the archipelago (Bachèlery et 139 al., 2016; Michon, 2016; Tzevahirtzian et al., 2021).

140 **2.2. Grande Comore Island and Karthala volcano**

141 Karthala basaltic shield volcano is the largest emerged active volcano of the area (Bachèlery 142 et al., 2016). It represents one of the two recently active Comorian volcanic systems, with the newly 143 formed submarine volcano of Mayotte (e.g., Cesca et al., 2020; Lemoine et al., 2020; Feuillet et al., 144 2021). Karthala (summit at 2361 m above sea level) forms the southern two-thirds of the Grande 145 Comore Island, while La Grille volcano (summit at 1087 m above sea level) forms the northern part of 146 it (Fig. 1b). A third and old massif, named M'Badjini, has also been identified in the southernmost 147 part of the Island (Bachèlery and Coudray, 1993; Bachèlery et al., 2016). Karthala eruptions are 148 mostly effusive and associated with weak explosive activities (lava fountaining and mild Strombolian 149 explosions), although explosive events have usually occurred as shown by the alternation of lavas 150 and pyroclastic deposits on the summit crater walls. Products are mainly alkaline basalts (Bachèlery 151 and Hémond, 2016) that usually contain olivine, clinopyroxene and more rarely plagioclase 152 phenocrysts.

The summit area of Karthala volcano corresponds to the junction of two well-defined riftzones and hosts a remarkable caldera complex (Strong and Jacquot, 1970; Poppe, 2012) which is 3.5 km long and 2.8 km wide (Fig. 1c). The presence of several collapse structures, scattered craters and pit craters of different sizes within the summit area, suggests that several shallow magmatic reservoirs feed the volcano summit activity. Geophysical investigations (Lénat et al., 1998; Savin et al., 2001, 2005; Bernabeu et al., 2018) have permitted to define the structure of the summit area, which can be schematically divided in three main units: (i) an upper 200-400 m thick sequence of dry basaltic rocks, (ii) an intermediate 300 to 1200 m thick water-saturated unit and (iii) a deep conductive unit hosting the hydrothermal system. The second unit forms the ground water body whose surface expression was the Choungou-Chahalé intra-crateric lake (visible each of the 2005 eruptions), while the deeper hydrothermal system is better developed below the northern caldera lobe where is located the Changou-Chagnoumeni pit-crater.

165 **2.3. Recent eruptive activity and summit morphology evolution of Karthala volcano**

166 According to the observations of the inhabitants of the Grande Comore Island, Karthala 167 erupted at least 15 times during the 20th century (Bachèlery et al., 2016). In April 1977, an eccentric magmatic eruption occurred at low altitude (around 390 m above sea level) on the southwest flank 168 169 of the volcano, producing lava fountains and lava flows, which invaded the adjacent villages of 170 Singani and Hetsa, and which attained the coastline (Krafft, 1982). Then, and since the creation of the 171 Karthala Volcanological Observatory (OVK) in 1988, five summit eruptions occurred in July 1991, April 172 2005, November-December 2005, May-June 2006 and January 2007, which all took place within the 173 Choungou-Chahalé crater, except the 2007 one, which took place within the Choungou-174 Chagnoumeni pit-crater (Fig. 1c). Mainly due to these volcanic events, the morphology of the summit 175 area has frequently changed (Fig. 2). Bachèlery et al. (2016) detailed the pre- and syn-eruptive 176 phases of each of these recent eruptions and the following paragraph summarizes the most 177 important points derived from that study.

178 After the one-day, July 11, 1991 phreatic eruption (Bachèlery et al., 1995; Savin et al., 2005), 179 a new crater formed (around 280 m in diameter and 40 m in depth) and was rapidly filled by an intra-180 crateric water lake that regularly changed in terms of water level and color, probably indicating 181 acidity changes (Fig. 2a). The first precursors of the April 2005 eruption were recorded by mid-2003, 182 characterized by a progressive increase in the seismic activity. The eruption (Fig. 2b) began on April 183 16, on the same location of the lake, after a seismic crisis of three hours (drastic increase of the 184 volcano-tectonic earthquakes frequency). The initial paroxysmal phase of the eruption was 185 characterized by the emission of a gas-rich and ash-rich plumes associated with the projections of 186 ballistics. During this phase, which lasted until the night between April 17 and April 18, rumbles, 187 volcanic lightning, sulphur smell and mudflows were reported by several coastal villages (Morin et al., 2009). Most importantly, the two thirds of the island were covered by ash due to heavy ash fallouts. 188 From April 18, the main explosive activity stopped, revealing that the lake disappeared and was 189 190 replaced by an active lava pond associated with weak lava fountaining, which progressively in 191 intensity until the end of the eruption on April 19. A water lake formed again in the Choungou-192 Chahalé crater around May 8. Between May and November 2005, seismicity rates were oscillating, 193 and a new eruption began on November 24 within the Choungou-Chahalé crater (Fig. 2c). As during 194 the April eruption, the initial phase was characterized by the emission of a large plume, which 195 reached the altitude of 12 km above sea level, with a lateral East-West extension over the whole 196 Comoros archipelago. During the first day of the eruption, heavy ash falls obscured sunlight over half 197 part of Grande Comore Island. The paroxysmal phase ended on November 25, again revealing that 198 the lake disappeared and was replaced by an active lava pond at the bottom of the crater associated 199 with weak lava fountaining, which progressively decreased in intensity until the end of the eruption 200 on December 8. In total, these two similar eruptions affected around 250,000 people, mainly 201 because of syn-eruptive ash fallouts and significant SO₂ emissions (Prata and Kerkmann, 2007) that 202 affected aviation safety, air quality and drinking water resources (Morin et al., 2009; 2016). Syn- and 203 post-eruptive mudflows caused a lot of disruption as well (Dille et al., 2020). A few centimeters of 204 ash accumulated on the coast, while the summit area was covered by several meters of pyroclastic 205 deposits (Smietana, 2007) made of blocks, bombs and ash (Fig. S1). After the November-December 206 2005 eruption, the intra-crateric water lake has not returned. In May 2006, an increase in seismicity 207 was recorded again. On May 28, approximately after two hours of seismic crisis, a new magmatic 208 eruption started within the Choungou-Chahalé crater (Fig. 2d). The eruption was characterized by 209 lava fountains, reaching 50 meters in height and forming a lava pond inside the crater, which caused 210 no major threat to the population. The lava pond progressively cooled down until the end of the 211 eruption on June 1 and raised up the crater floor by approximately a hundred meters. Finally, a oneday magmatic eruption occurred on January 13, 2007, within the Choungou-Chagnoumeni pit-crater 212 213 (Fig. 1c), which was entirely filled by lava at the end of the eruptive activity (Bernabeu et al., 2018). This latter eruption ended a three-year cycle of notable activity. The current morphology of the 214 215 summit area of Karthala volcano results from these recent eruptive events as well as constant 216 erosion (Fig. 2e).

217

218 **3. Methods**

219 3.1. Field work and sampling

Samples from 1977, April 2005, November-December 2005, May-June 2006 and January 2007 eruptions were collected during several field expeditions performed in November 2006, April 2007 and October 2018 (Table S1). 223 Concerning both 2005 eruptions, several stratigraphic logs were excavated and described 224 within or near the summit caldera complex, 500 to 1500 meters from the center of the Choungou-225 Chahalé crater (Fig. 1c). Six logs were described in detail in November 2006 (annotated KAR 5, 226 KAR_9, KAR_10, KAR_15, KAR_17 and KAR_18) and two others were added in October 2018 227 (annotated KAR_2005a and KAR_2005b). In addition, 185 measurements of deposit thickness were realized within 10 km² in the summit area of the volcano to constrain ash dispersal and volumes and 228 229 to characterize the lateral facies evolution of both 2005 eruptions (Table 1, Fig. S1). KAR 10 log (Figs. 3a and 3b), of 130 cm in thickness, represents the best sequence of the whole fallout deposits 230 231 representative of both April and November 2005 paroxysms. Within this log, each identifiable layer 232 (identified thanks to grain size and color changes, annotated with letters from KAR_10_a to 233 KAR_10_u) was carefully sampled and analyzed. In addition, the very last identifiable deposit of the 234 November 2005 paroxysm was also collected from the more proximal outcrop (KAR_2005b), for a 235 total of 22 collected samples. The other logs were described and used to (i) better distinguish and 236 extrapolate the limit between the April 2005 and the November 2005 deposits, (KAR 5, Fig. S2), (ii) 237 observe the distal, medial and proximal deposit facies and measure thickness variations (KAR 9, 238 KAR 15 and KAR 17 respectively, Fig. S3), (iii) identify surge deposits that were also locally emplaced 239 during the eruptions (KAR_18, Fig. S4). , (iv) represent the heterogeneity and main features of the 240 medial to proximal fallout deposit facies (KAR_2005a, Fig. S5) and (v) complete the sampling for 241 chemical analysis. Eruptive products from the lava pond and associated weak explosive lava fountain 242 activities of both April and November-December 2005 eruptions were unfortunately inaccessible due to their low dispersion (mainly falling and recycling into the active lava pond). 243

244 Proximal bombs and lapilli from the magmatic May-June 2006 and January 2007 eruptions were collected near their respective vents (KAR_2006 and KAR_2007 respectively, Fig. 1c), in 245 November 2006 and April 2007 respectively. In October 2018, the purely magmatic lava fountain 246 247 deposits of the 1977 eccentric Singani eruption (KAR_1977_a and KAR_1977_b) were collected 100 248 m far from the corresponding eruptive vent (Figs. 1b and S6), in order to be compared with the 2005 249 ash-rich paroxysmal deposits of the summit activity. All the samples were systematically dried in the 250 oven at 70°C for 48 hours. This low temperature drying step preserved any potential phases present 251 on the samples, eased the manual sieving and allowed to perform accurate density measurements 252 (Ross et al., 2022).

253 3.2. Grain size analysis

Grain size analysis was performed on the two pyroclastic samples of the 1977 eruption (KAR_1977_a and KAR_1977_b samples) as well as on all pyroclastic samples of the both 2005 256 paroxysms (samples that belong to the KAR_10 log and KAR_2005b sample), using both manual 257 sieving (above 22 μ m in intermediate diameter using sieves each $\frac{1}{2}$ ϕ) and laser diffraction 258 measurements (below 45 μ m, with a detection limit of 0.1 μ m in equivalent diameter) for fine ashrich samples, following the Eychenne et al. (2012) and Thivet et al. (2020c) procedures. Accretionary 259 260 lapilli (when occurring) were gently dismantled beforehand. The overlap between 22 and 45 µm for 261 the two techniques was used to fit both results, in order to quantify representative particle size 262 distributions for the whole eruptive sequences (Table S2). Traditional millimeter and phi scales were 263 used to describe the deposit grain sizes, both being linked by this equation: $\phi = -\log_2(d)$, with d the 264 particle grain size in mm (Taner, 1969).

265 **3.3. Tephra component and ash morphology analyses**

266 Pyroclast components were identified and quantified in the same samples as the grain size 267 analysis and for different grain size fractions (Table S3), in order to distinguish juvenile (material 268 representative of the magma feeding the eruptions) and non-juvenile (material representative of 269 pre-existing fully solidified lithic rocks that are expulsed/fragmented during the eruptions) particles 270 (White and Houghton, 2006). This distinction was based on the color, surface texture, morphology, 271 porosity, crystal content and assemblage of the particles. Particle counting was performed on a 272 selection (based on sample quantity and quality) of $\frac{1}{2}$ ϕ grain size fractions previously isolated by 273 sieving. Lapilli (when occurring) were systematically counted for each layer by hand and using a 274 binocular microscope. Selected ash fractions between 500 μ m and 2 mm were counted using a 275 binocular microscope. Selected ash fractions below 500 µm were embedded in epoxy resin and then 276 polished. These ash particles were then counted using a JEOL JSM-5910 LV scanning electron 277 microscope (SEM), acquiring back-scattered electron (BSE) images with an acceleration voltage of 15 278 kV. For all analyzed layers and analyzed grain size fractions, at least 500 particles were counted (when enough were available), in order to perform a statistically representative counting following 279 280 the Van der Plas and Tobi (1965) statistic rules.

281 Ash morphology measurements, which correspond to an apparent projected shape of ash 282 (APASH), were performed using the automated Malvern Morpho-Grainsizer Morphologi G3 following 283 the method developed by Leibrandt and Le Pennec (2015) and adapted by Thivet et al. (2020c). In 284 total, 20979 particles were analyzed (Table S3) with different magnification (from x2.5 to x20 285 depending on the analyzed grain sizes), allowing the representative quantification of several particle shape parameters: solidity (SLD), convexity (CVX), sphericity (SPH) and aspect ratio (AR) parameters 286 287 are specifically discussed in this study, respectively representing the morphological roughness 288 (mostly based on the particle area), the textural roughness (mostly based on the particle perimeter), the angularity (based on both particle area and perimeter) and the elongation (ratio between the particle width and length) of the measured particles (specific definitions and formulas can be found in the previously cited studies). Ash morphology measurements were performed on different grain fractions, almost covering the whole range of ash sizes from 63 to 1400 μm (loss of analytical precision below and above this range), for some 2005 paroxysmal layers (KAR_10_a, b, c, j, k, l, n and o; Carlier, 2019) as well as a layer from the 1977 eruption (KAR_1977_a).

295 3.4. Textural analyses

296 Textural analyses of tephra particles were then performed using several techniques. The 297 different components identified were analyzed distinctly. For each component, several tephra layers 298 have been selected based on sample quality and quantity. First, 3D images were acquired on coarse 299 (710-1000 μm) and fine (< 63 μm) grain size fractions, using a Zeiss-Supra 55VP Gemini Column field 300 emission scanning electron microscope (FE-SEM) and acquiring secondary electron (SE) images with 301 an acceleration voltage of 3 kV. All the acquired 3D images are shown in Fig. S7 (98 images in total, 302 performed on KAR_10_c, k, l, n, o, p, t, KAR_2005b and KAR_1977_a samples). These images allowed 303 to identify specific textural features on the particle surfaces for the different identified components.

304 Then, 2D images were also acquired using the JEOL JSM-5910 LV SEM, in BSE mode with an 305 acceleration voltage of 15 kV, in order to investigate the internal textures of the ash particles. For 306 each juvenile sample, the vesicle density number (N_v), the vesicle to melt ratio (V_G/V_L), the vesicle 307 size distribution (VSD) and the total porosity fraction were reconstructed in 3D and quantified (Table 308 S4) following the procedure adapted by Thivet et al. (2020b) and measuring about a thousand 309 vesicles (equivalent to around seven ash particles on the 710-1000 µm grain size fraction), in order to 310 perform a statistically representative vesicle count (Van der Plas and Tobi, 1965). The acquired 2D 311 images as well as their corresponding binarized counterparts are shown in Fig. S8 (68 images in total 312 performed on KAR 10 a, b, c, l, n, o, KAR 2005b and KAR 1977 a samples). Crystal contents are not 313 quantified (due to their scarcity and/or relatively small sizes in some of the components) but 314 qualitative observations on crystallinity is nevertheless shown, compared and discussed in this study.

Density and derived porosity, as well as connected porosity (vesicle connectivity) measurements (Table S4) were performed on 31 lapilli fragments from the 1977 eruption (KAR_1977_a and b samples) and both 2005 paroxysms (KAR_10_b, c, g, i, s and KAR_2005b samples), following the procedure adapted by Thivet et al. (2020b). (i) Clast density measurements were performed using a Micromeritics Geopyc 1360 envelope density analyzer, (ii) porosity was derived using a vesicle-free rock density of 2874 kg m⁻³, which was determined by powdering four lapilli fragments (from KAR_10_a and KAR_2005b samples) and by measuring their masses and volumes using the Micromeritics Accupyc 1340 helium pycnometer. (iii) This pycnometer was also
 used to determine the skeletal volumes of the samples in order to calculate the connected porosity
 for each corresponding clast.

325 3.5. Chemical analyses

Analyses of bulk rock composition as well as in situ matrix and mineral chemistry (Table S5) were performed on selected clasts from the 2005, 2006 and 2007 eruptions (Smietana, 2007).

For bulk rock analyses, each selected sample (bombs or lapilli from KAR_10_c, I, s, KAR_17, KAR_2006 and KAR_2007 samples) was powdered and dissolved in acid solutions. The final solutions were analyzed using a Horiba Jobin-Yvon Ultima C inductively coupled plasma atomic emission spectrometer (ICP-AES) for major elements analysis and using an Agilent 7500 quadrupole inductively coupled plasma mass spectrometer (ICP-MS) for rare earth element (REE) analysis. One additional bulk lava composition from the 1977 eruption has also been added from Desgrolard (1996) for comparison.

In situ measurements of matrix (glass) and mineral chemistry were performed on representative samples (KAR_10_c, s, KAR_2006 and KAR_2007) using a Cameca SX100 electron probe micro-analyzer (EPMA), with an acceleration voltage of 15 kV and a current intensity of 10 nA. A 10 µm beam and a focused beam were used for the glass and crystal analyses, respectively.

In addition to these analyses, mineral phases on the 1977 (KAR_1977_a) and both 2005 paroxysmal (KAR_10_f, t and KAR_2005b) ash deposits were identified by X-ray diffraction (XRD) analysis (Table S5), using an Empyrean diffractometer, operated at 43 kV and 38 mA, following a method described in Thivet et al. (2020c). Qualitative Energy-dispersive X-ray spectroscopy (EDXS) spectrums were also acquired on some ash surfaces from both 2005 eruptions (KAR_10_c, p and t), in order to identify potential secondary phases from the primary ash surface backgrounds, using the Zeiss-Supra 55VP Gemini Column FE-SEM, with an acceleration voltage of 15 kV (Table S5).

346

347 <u>4. Results</u>

348 **4.1. Fallout deposit features and grain size characteristics**

Despite heavy rain falls and strong winds that caused constant soil erosion, the April and November 2005 deposits were still well preserved during the 2006 and 2018 field campaigns, both inside the summit Karthala caldera complex and on its outer proximal slopes. Their thickness and grain size drastically increase when moving towards the eruptive vent. Juvenile bombs and non353 juvenile blocks (from a few cm to a meter in equivalent diameter) are also very abundant in the 354 proximal areas (Figs. 2e, S1 and S3c). Eruptive deposits sampled within the KAR_10 log, which is the 355 most complete stratigraphic log of the April and November 2005 fallout deposits (Figs. 3a and 3b), are located towards the northwest and 500 m of distance from the Choungou-Chahalé crater rim, 356 which corresponds to a medial area (intermediate deposit thickness, absence of bombs and blocks 357 358 and absence of cross-stratified surge deposits that are mainly visible in the northwestern part of the 359 caldera, cf. Fig. S4). At this location, the April and November deposits are respectively 70 and 60 cm 360 thick, with 12 (from KAR 10 a to KAR 10 I) and 10 (from KAR 10 m to KAR 10 u with also 361 KAR_2005b) identifiable and sampled layers, respectively. Each layer has a constant lateral thickness 362 ranging from a minimum of 1 (KAR_10_e) up to 17 cm (KAR_10_f) within the April 2005 deposits, 363 whereas in the November 2005 deposits the variation ranges from 3 (KAR_10_m) to 12 cm 364 (KAR_10_t). Most of the layers, especially the fine-grained ones (e.g., KAR_10_d, f, h, p, r, and t), are 365 enriched in millimeter-sized rounded accretionary lapilli.

366 Grain size parameters of each layer are represented in Fig. 3c, which reveal the dominantly 367 fine-grained characteristics of the 2005 paroxysmal deposits, whose sorting values range between 1 368 and 3 φ and whose grain size mean range between 32 and 500 μm , except for the last emitted 369 products of November (KAR_2005b) that represent the coarsest tephra layer (grain size mean of 4 370 mm) of all 2005 beds. In the whole sequence, 16 layers show unimodal grain size distributions (main 371 modes ranging from 31 to 1000 μ m), whereas 6 are bimodal (finer modes ranging from 31 to 90 μ m 372 and coarser modes ranging from 250 to 1400 μ m). The coarsest grains are 1.6 cm in diameter (except 373 for the KAR 2005b sample, which contains clasts up to 3.2 cm in diameter) and most importantly, 15 374 layers contained fine ash particles as fine as $1 \, \mu m$.

April and November 2005 paroxysmal deposits are much finer-grained than the 1977 typical magmatic deposit (Table S2), which is characterized by unimodal grain size distributions (modes between 4 and 8 mm), the coarser grains being 22.6 cm in diameter and lacking particles finer than 45 µm (grain size mean values at 5.66 mm).

379 **4.2. Tephra grain components and associated characteristics**

Four main tephra components are identified in each sampled layer of the April and November 2005 deposits: (i) coarse juvenile pumice (Fig. 4), (ii) juvenile scoria (Fig. 5), (iii) nonjuvenile (Fig. 6) and fine juvenile dense glassy (Fig. 7) grains. They are described hereafter based on the observations made on coarse (lapilli and coarse ash in the 710-1000 μ m grain size fraction) and fine ash (< 63 μ m) grain size fractions. Juvenile vs. non-juvenile component distributions as a function of grain size (Fig. 8) as well as ash morphological features (Fig. 9) are also described.

386 **4.2.1. Juvenile pumice grains**

387 Juvenile pumice grains are characterized by a yellow and shiny color, well-visible on the 388 lapilli-sized clasts, whose surfaces are often characterized by bread-crusted cracks (Figs. 4a and 4b). 389 They have also characterized by a pumiceous matrix. Scarce (< 5 vol%) micro-phenocrysts (up to 200 390 µm in length) of olivine, clinopyroxene and plagioclase are observed in some lapilli clasts and rare 391 loose crystals are present in the ash fraction. SEM images of the coarse ash fraction reveal that 392 pumice grains can either have sub-rounded shapes with no broken angular surfaces (Fig. 4c) or can 393 have some broken angular surfaces characterized by the occurrence of microscopic hackle lines, 394 stepped features and branching quench cracks (Fig. 4d). Pumice ash particles are also characterized 395 by the scarcity of both micro-phenocrysts and microlites, hence are mainly composed of glass and 396 vesicles, which can be rounded (spongy texture, Figs. 4c and 4e), elongated (tube pumice texture, 397 Fig. 4d), or highly deformed (shrinkage texture, Fig. 4f) with often thin vesicle walls (around 1 μ m) 398 that can be sometimes broken (Fig. 4g). Highly fluidal, Pele's hairs and tears are not observed in the 399 2005 deposits.

As a comparison, the 1977 magmatic deposit (Fig. S6) is composed of fluidal (with Pele's hairs and tears) particles, characterized by a slightly lower content of vesicles and slightly higher content of microlites than the 2005 juvenile pumice grains. The 1977 ash grains do not show any significant angular faces, with no cracks and stepped features (Fig. S7). Moreover, these particles do not show any significant deformation features such as vesicle shrinkage or breakage, contrary to some of the 2005 ash particles.

406 **4.2.2. Juvenile scoria grains**

407 Juvenile scoria lapilli grains are characterized by spiny and rough surfaces without any 408 significant cracks and bread-crusted features, as well as by dark/mat colors and by less abundant 409 vesicles than their pumiceous counterparts (Figs. 5a and 5b). Their low content in micro-phenocrysts 410 (< 5 vol%) is similar to those of pumice grains. SEM images of the coarse ash fraction highlight that 411 scoria grains have irregular and rough shapes (Fig. 5c). These scoria grains are also characterized by a 412 variable content in microlites (from around 5 vol% to a fully crystallized matrix, representing 413 sideromelane to tachylite textures) accompanied with a decrease in vesicle abundance compared to 414 the pumice grains. Microlites (up to 20 μ m in length) are sometimes protruding from the grain 415 surfaces (Fig. 5d) suggesting tachylitic textures. Microlites are made of plagioclase, clinopyroxene, 416 olivine and Fe-Ti oxides (in order of abundance) and have dendritic textures. The higher the microlite 417 content, the more coalesced the vesicles (Figs. 5e, 5f and 5g).

418 **4.2.3. Non-juvenile grains**

419 Non-juvenile grains are dense and characterized by blocky shapes (Figs. 6a, 6b and 6c). These 420 grains are sometimes partially embedded in vesicular juvenile melt (Figs. 6d and 6e) and show 421 variable crystallized textures, from tachylite (rapid crystallization textures that could correspond to 422 ancient lavas, Fig. 6f) to micro-gabbro (relatively slow crystallization texture that could correspond to 423 plutonic rocks, Figs. 6g and 6h), with the occurrence of plagioclase, clinopyroxene and olivine crystals 424 as well as oxides from 10 to 200 µm in length (Figs. 6e, 6f, 6g and 6h). Note that rare micro-gabbroic 425 enclaves containing interstitial melt in between their own crystals also occur inside coarse juvenile 426 fragments (Fig. 6i). Hence, we suggest that these enclaves represent crystallized parts of the involved 427 magmatic chamber and are thus considered as juvenile material.

428 **4.2.4. Fine ash characteristics**

429 The fine ash (< 63 μ m) grains include the three components previously described except that 430 the coarse juvenile pumice component is replaced by the fine juvenile dense glassy one (Fig. 7a). 431 Accretionary lapilli aggregates are omnipresent in the fine-grained layers of both April and November 432 2005 deposits and are mainly composed of fine ash particles, with some scarce coarse ash grains, the 433 coarser ones being in the inner parts and the finer ones being on the outer rims (Fig. 7b). Contrary to 434 the relatively coarse-grained juvenile pumice grains that are glassy and highly vesicular (Fig. 4), the 435 corresponding fine-grained particles are glassy but dense, with scarce < 50 µm vesicles (Figs. 7a and 7b) and are characterized by ubiquitous microscopic hackle lines and stepped features with scarce 436 437 branching quench cracks on their surfaces (Figs. 7c, 7d, 7e, 7f, 7g, 7h and S7). Hackles lines are 438 characterized by repeated irregularities that are parallel to sub-radial on the broken faces of the 439 particles. The length of these irregularities does not exceed 40 µm and are repeated every 1 to 10 440 µm. The stepped features yield irregular particles with an uneven surface made up of three-441 dimensional polyhedral elements. The branching quench cracks are fracture networks within fresh 442 glass. SEM images also highlight the occurrence of many very fine particles down to 0.1 µm on the 443 surface of the fine ash particles (these very fine particles are not visible on the grain size 444 measurements because of their relatively low masses and volumes). Some particles are also 445 characterized by secondary thin mineral depositions on their surface (< 1 µm thin), which could not be clearly identified by EDXS analysis in term of chemical composition (Table S5). Most importantly, 446 447 the juvenile dense glassy grains undoubtedly dominate the fine ash grain size fractions compared to 448 both non-juvenile (corresponding to loose crystal fragments) and juvenile scoria grains.

449 XRD measurements performed on the fine ash fractions (< 45 μm) of KAR_10_f and KAR_10_t
 450 samples show similar results as the measurements performed on coarser ash fractions (250 to 355
 451 μm) of KAR_10_f (April 2005 paroxysm), KAR_10_t and KAR_2005b (November 2005 paroxysm), as

well as KAR_1977a (1977 eruption) samples: only typical magmatic phases are detected among with plagioclase, clinopyroxene, rhönite, olivine, and Fe-Ti oxide in order of average abundance (Table S5), with the notable absence of hydrothermal phases. The analyzed ash sample from the 1977 eruption (KAR_1977a, 250 to 355 μ m) show a higher content of olivine than in the 2005 products, in accordance with the optical observations.

457 4.2.5. Ash components and morphologies

458 Juvenile vs. non-juvenile component proportions have been determined within all April and 459 November 2005 layers and within different grain size fractions. No significative differences are 460 observed between the different analyzed layers (Table S3). However, the component proportions 461 significantly vary with the grain size (Fig. 8) for all the layers. Non-juvenile grains occur mostly within the coarser grain size fractions, with a juvenile grains/non-juvenile grains ratio of 1 within the 22.6-462 463 32 mm grain size fraction, on average. The ratio is then oscillating at low values (between 1 and 7, on 464 average) for grain size fractions between 32 mm and 500 μ m. From 500 μ m and towards fine-grained 465 fractions, the ratio is drastically increasing, reaching an average value of 37 for the 31-45 μ m grain 466 size fraction. Note that standard deviations considering all analyzed layers for each grain size bin 467 (represented by the error bars in Fig. 8) are decreasing from coarse-grained to fine-grained fractions, 468 which suggests that component proportion variability from a layer to another is decreasing towards 469 fine-grained fractions. Note that no distinctive quantification has been made between the different 470 juvenile components (complexity of the observed textures would often lead to significant and 471 unquantifiable errors). However, preliminary observations made through different grain size 472 fractions and layers, suggest that juvenile pumice and dense glassy are dominant compared to the 473 juvenile scoria within the coarse-grained (lapilli and coarse ash) and fine-grained (fine ash) fractions 474 respectively. Juvenile scoria grains are almost absent in the fine-grained fractions (Fig. 7).

475 As shown by ash morphology measurements, all 2005 analyzed layers (KAR 10 a, b, c, j, k, l, 476 n and o) show similar morphological signatures and ranges, looking at similar grain size fractions 477 (Table S3). However, focusing on a representative layer of both 2005 paroxysms (KAR_10_a), ash 478 morphology quantifications (Table S3) show differences in function of the observed grain sizes: SLD 479 (Fig. 9a), CVX (Fig. 9b) and SPH (Fig. 9c) ranges progressively evolve toward higher values with decreasing grain sizes, reflecting the occurrence of relatively irregular-shaped and/or smoothed 480 481 particles within coarse grain size fractions (e.g., 500-1000 μm), whereas blocky-shaped and/or angular particles dominate within finer grain size fractions (e.g., $63-125 \mu m$). AR parameter exhibits 482 the higher ranges of values (Fig. 9d) for deposits from the 1977 eruption (KAR_1977_a) and both 483 484 2005 paroxysms. This variability does not change with grain size and reflects that elongated or blocky equidimensional grains coexist within the deposits. On the whole, 2005 ash particles have a significantly different morphological signature than to those of the 1977 eruption (Fig. 9). This shift reflects the presence of both well rounded and highly elongated particles within the 1977 magmatic sample, leading to a wider range of fluidal morphologies in terms of SLD, CVX, SPH and AR, compared 2005 samples. Note that the significant data overlap between the 1977 and 2005 samples is reinforced by the occurrence of abundant olivine loose crystals within the crystal-rich 1977 sample, which have similar morphological properties as the blocky-shapes and angular 2005 particles.

492 **4.3. Textural quantifications on porosity**

493 VSD analysis performed on the coarse juvenile ash particles (700-1000 μ m) shows distinct 494 results for the pumice grains (Fig. 10a) and for the scoria grains of the April and November 2005 paroxysmal deposits (Fig. 10b). VSDs of pumice grains show, on average, a symmetrical and unimodal 495 496 distribution, vesicle diameters ranging from 5 to 400 µm with a main mode around 90 µm. Note that 497 KAR_1_c and KAR_1_n samples have a second but minor VSD mode between 200 and 400 µm. On all 498 these pumice grains, the measured vesicle content is 61 vol% on average. In contrast, VSDs of scoria 499 grains show, on average, a significantly different distribution, vesicle diameters still ranging from 5 to 500 400 µm but with an asymmetrical distribution, main modes being shifted towards larger vesicle 501 diameters (between 100 and 200 μ m) and with second minor modes up to 400 μ m. Moreover, the 502 measured vesicle content is half (31 vol%) that of the pumice grains. The 1977 ash show a slightly 503 different pattern from the two 2005 components described before (Fig. 10b): a unimodal distribution 504 is observed, with vesicle diameters ranging from 10 to 400 μ m and with a mode at around 120 μ m 505 and a total vesicle content of 54 vol%.

Textural distinctions between these different components are also visible focusing on N_V and V_G/V_L values (Fig. 10c). N_V values for both pumice and scoria grains range in the same order of magnitude (from 2 10⁴ and 8 10⁴ mm⁻³) and have similar average values (4.5 10⁴ and 4.7 10⁴ mm⁻³ for pumice and scoria respectively). On the other hand, V_G/V_L ratios are significantly lower in the scoria than in the pumice grains (1.46 and 0.53 respectively). Note that the 1977 sample show the lowest N_V (2.4 10⁴ mm⁻³) with an intermediate V_G/V_L ratio (1.17).

512 Finally, porosity and vesicle connectivity measurements (Fig. 10d) highlight that the juvenile 513 lapilli fragments (both pumice and scoria clasts) from both 2005 eruptions have relatively high 514 porosities (from 61 to 90 vol%, 82 vol% on average) compared to the juvenile lapilli fragments from 515 the 1977 lava fountaining eruption (from 45 to 72 vol%, 60 vol% on average). In parallel, the 516 connected porosity measured within the 2005 lapilli clasts (from 71 to 95 vol%, 84 vol% on average) 517 are slightly lower than that measured on the 1977 lapilli clasts (from 66 to 99 vol%, 91 vol% on 518 average).

519

All the detailed data described in this section can be found on Table S4.

520 4.4. Magma chemical composition evolution from 1977 to 2007

521 Magma compositions, from the 1977 eruption until the 2007 one, show a complex 522 evolutionary trend (Fig. 11). The 1977 bulk rock composition shows a relatively high MgO content of 523 13.7 wt%, reflecting the olivine-rich nature of the emitted magma, with also a relatively high 524 CaO/Al₂O₃ ratio of 0.90 reflecting the presence of clinopyroxene (in accordance with the XRD 525 measurements and the optical observations). The next emitted magmas were aphyric, with, in April 526 2005, the lowest MgO content (6.4 wt%) and the lowest CaO/Al₂O₃ ratio (0.79) recorded on the 1977-527 2007 period. Then, the November 2005 (6.6 wt% of MgO, CaO/Al₂O₃ ratio of 0.81), May-June 2006 (6.6 wt% of MgO, CaO/Al₂O₃ ratio of 0.81) and January 2007 (6.7 wt% of MgO, CaO/Al₂O₃ ratio of 528 529 0.83) magmas progressively show a slight increase in these values.

530 Matrix glass compositions (Fig. 11) show similar or lower MgO and CaO/Al₂O₃ ratio values 531 from each corresponding bulk rock composition. Glass compositions closed to bulk rocks correspond 532 to uncrystallized pumiceous and dense glassy grains, while glass compositions that are progressively 533 depleted in MgO content with decreasing CaO/Al2O3 ratios correspond to partially crystallized scoria 534 grains.

535 Crystals of plagioclase, clinopyroxene and olivine, as well as Fe-Ti oxides were analyzed for 536 the 2005, 2006 and 2007 eruptions. Only one euhedral micro-phenocryst of plagioclase was measured at An₇₈ (November-December 2005 eruption, in equilibrium with the bulk rock 537 538 composition) whereas 27 microlites (dendritic texture in scoria grains) of plagioclase were measured ranging from An₅₅ to An₆₆ for the 2005 and 2007 eruptions (in equilibrium with their surrounding 539 540 depleted matrices). 46 clinopyroxenes were analyzed, for the 2005, 2006 and 2007 eruptions, showing compositions ranging between salite and augite. 60 analyses were realized on olivine 541 542 crystals for the 2005, 2006 and 2007 eruptions, ranging from Fo₃₉ to Fo₈₆: Fo₈₁₋₈₆ olivines are euhedral 543 antecrysts that were measured in the May-June 2006 products, Fo₇₆₋₈₁ olivines are euhedral or 544 skeletal micro-phenocrysts that were measured in the 2005, 2006 and 2007 eruptions and in 545 equilibrium with their corresponding bulk rock compositions, and Fo₃₉₋₇₆ olivines are dendritic 546 microlites in equilibrium with their surrounding depleted matrices that were mainly analyzed in the 547 2005 scoria products.

548 All the detailed data described in this section, as well as crystal compositions and REE 549 concentrations can be found on Table S5.

550

551 **<u>5. Discussion</u>**

552 The distinction between magmatic and phreatomagmatic fragmentation regimes, especially 553 concerning mafic magmas, is widely discussed in volcanology (e.g., Houghton et al., 1996; Ort and 554 Carrasco-Núñez, 2009; Graettinger et al., 2013; Colombier et al. 2019a, Latutrie and Ross, 2020; 555 Thivet et al., 2020c), but in some cases, is unattainable looking only at deposit features of a given eruptive event (White and Valentine, 2016). In our study, pre-, syn and post-eruptive visual 556 557 observations of the active crater are available, providing a reliable support for interpreting on the 558 eruption dynamics (Fig. 2). We also had the opportunity to study a complete and well-preserved 559 deposit sequence (Fig. 3), representative of the two targeted explosive events. In this section, both 560 magmatic and phreatomagmatic processes are addressed in order to explain the physical 561 characteristics of the related deposits and products, such as grain size (Fig. 3), texture (Figs. 4, 5, 6, 7 562 and 10) and shape variations (Fig. 9), as well as grain components distributions (Fig. 8) and chemical 563 compositions (Fig. 11).

564 <u>5.1. The magmatic contribution on the conduit conditions: magma degassing and ascent rates</u> 565 <u>controlling the initial eruptive dynamics</u>

566 Pre-eruptive seismic activity recorded since mid-2003 suggested a deep magmatic input from 567 20 km below sea level under the summit caldera (Bachèlery et al., 2016). Deep volcano-tectonic 568 events were recorded both before and during the 2005 eruptive events by the seismic network of the 569 Karthala Volcano Observatory (OVK). This seismic unrest anticipated a new phase of intense eruptive 570 activity, the highest since the phreatic eruption of 1991 and heralded the 2005-2007 sequence of 571 eruptions (Bachèlery et al., 2016). The decrease of both CaO/Al₂O₃ ratio and MgO content starting from April 1977 (composition corrected for the cumulative olivine content, step 1 in Fig. 11) to April 572 573 2005 bulk rocks (step 2 in Fig. 11), reflects a differentiation trend within feeding magmatic system 574 during this period. We can speculate that volatiles concentration increased in the cooling and 575 evolved melts during the 1977-2005 time period. On the other hand, the progressive increase of 576 MgO and CaO/Al₂O₃ values from April 2005 and January 2007 eruptions reflects progressively less 577 evolved compositions during this period and highlights that a new magma input is progressively 578 contributing to the April 2005, November-December 2005, May-June 2006 and January 2007 579 eruptions (step 3 in Fig. 11). The eruption of these magmas is likely the result of the mixing of this 580 evolved and this more primitive magmatic components.

581 **5.1.1.** Insights from the juvenile pumice component

582 Because of their small size and their textural signatures suggesting their interaction with 583 external water, we are confident that the analyzed ash particles are rapidly quenched when formed 584 (Xu and Zhang, 2002), hence representative of the magma texture and composition at the 585 fragmentation level.

586 The juvenile pumice component (Fig. 4), which is predominant within the 2005 fallout deposits (Fig. 8), represents microlite-free and highly porous magma portions. Pumice ash grains are 587 characterized by high N_V values and high V_G/V_L ratios (Fig 10c), compared for instance to the recent 588 589 and typically weakly explosive basaltic eruptions of Piton de la Fournaise volcano (Thivet et al., 590 2020a; 2020b). These data, together with mainly unimodal VSDs (Fig. 10a), suggest that the 591 corresponding magma portion exhibit one significant episode of degassing, resulting in bubble 592 nucleation and growth, during the relatively high magma decompression in the volcanic conduit 593 (Shea et al., 2010, 2017). From these insights, we can speculate the occurrence of a closed-degassing 594 regime for the magmas emitted during both paroxysms (Figs. 12a and 12b).

595 Pre-eruptive magma temperatures are estimated using the MgO-dependent thermometer 596 for basaltic melts (using bulk rocks) at atmospheric pressure, from Thivet et al. (2020a): 1121 and 597 1131 °C are the average estimated magma temperatures for the April and November-December eruptions, respectively. In parallel, Lange et al. (2009) model, based on plagioclase-melt equilibrium, 598 599 is used to estimate residual dissolved H₂O content in the magmatic melts, giving relatively low 600 dissolved H_2O contents, typically < 1 wt%, for both eruptions. These estimations together with the 601 textural N_v parameter, are also used to quantify magma decompression rates using the N_v-602 dependent decompression rate meter of Toramaru (2006). Relatively high N_v values measured within 603 several distinct deposit layers of both 2005 paroxysms lead to variable but relatively high magma decompression rates between 0.16 and 0.31 MPa s⁻¹ compared to relatively lower magma 604 decompression rates (< 0.15 MPa s⁻¹) estimated for recent and typically weak explosive basaltic 605 606 eruptions of Piton de la Fournaise (Thivet et al., 2020a, 2020b). Magma decompression rates are 607 typically linked with ascent and mass discharge rates (Gonnermann and Manga, 2003) as well as 608 eruptive dynamic regimes and fragmentation efficiencies (Cashman and Scheu, 2015). Interestingly, the higher calculated decompression rate is from the KAR 2005b layer (0.31 MPa s⁻¹, corresponding 609 to an ascent rate of about 10 m s⁻¹), which corresponds to the last identifiable deposits of the 610 November 2005 paroxysm, which is also the coarsest tephra layer of the 2005 paroxysms sequence 611 (Fig. 3c). We suggest that this high decompression and ascent rate was the main contributor to the 612 613 formation of a short-lived but intense lava fountaining at the origin of the deposition of the

KAR_2005b layer that is part of a relatively large bomb field area (Fig. S1c). Vesicle connectivity 614 615 measurements performed on lapilli clasts fit with this interpretation as these measurements fall in 616 the range characterized by sustained lava fountaining (Fig. 10d). As a comparison, the measured 617 clasts from the 1977 eruption show relatively lower porosities and lower vesicle connectivity values, 618 reflecting much less intense magmatic activities ranging between Hawaiian-style and mild 619 Strombolian-style dynamics. The absence of fine ash particles in the KAR_2005b layer (Fig. 3c) 620 suggests the predominance of purely magmatic dynamics that can be explained by the progressive 621 end of phreatomagmatic dynamics as the intra-crateric water lake and the water table system dried 622 up. The short-term increase in magma ascent rate may also have contributed to the cessation of 623 water-magma interactions (Fig. 12b). Note that non-juvenile blocks and coarse ash present in the 624 KAR_2005b layer are either attributed to remnant steam explosions or to purely magmatic processes 625 that can produce such deposits, as supposed for instance at Stromboli (Métrich et al. 2005; Calvari et 626 al. 2006).

627 **5.1.2.** Insights from the juvenile scoria component

628 Besides the juvenile pumice component, variably crystallized magmatic portions are 629 associated with the presence of the juvenile scoria component (Fig. 5), which occurred in all the 630 studied layers but in relatively small proportions (as also shown in Carlier, 2019). We associate this scoria component with a process of crystallization near the conduit margins, induced by degassing 631 during the magma decompression that is a common process in basaltic melts (e.g., Lipman et al., 632 633 1985; Applegarth et al., 2013; Thivet et al., 2020b). More than a crystallization process, it can be 634 referred as a zoning of the textural features of the ascending magma column (Fig. 12). The 635 occurrence of syn-eruptive crystallization during both 2005 Karthala paroxysms, and also during the 636 2006 and 2007 relatively weak explosive eruptions, is evidenced by differentiated glass compositions (microlites of olivine deplete the MgO content of the glass and microlites of clinopyroxene and 637 638 plagioclase decrease or increase the CaO/Al_2O_3 ratio, respectively) with respect to their bulk rock 639 counterparts (step 4 in Fig. 11). Crystal compositions and textures can also be used as an indicator of 640 the presence of this degassed magma: degassing-driven crystallization usually forms dendritic 641 textures with no preferential orientations and most likely occurred during the final stages of the 642 magma ascent before the fragmentation (Applegarth et al. 2013). This explains why the analyzed 643 microlites are not in equilibrium with the bulk rocks but rather with their surrounding depleted 644 matrices.

645 The occurrence of microlites in the scoria component is also associated with vesicle 646 coalescence and gas loss processes, clearly visible on VSDs and N_v vs. V_G/V_L patterns (Figs. 10b and 647 10c). This textural evolution reflects that a large proportion of the magma in the conduit is bubbly 648 and non-crystallized (corresponding the juvenile pumice component) while small proportion is more 649 degassed and crystallized (corresponding to the juvenile scoria component). This leads to a drastic increase in magma viscosity from 10^2 (juvenile pumice) to 10^9 Pa s (fully crystallized scoria portions) 650 651 using the three-phase viscosity model, which integrates Maron and Pierce (1956), Llewellin and 652 Manga (2005), Giordano et al. (2008), Mader et al. (2013) and Truby et al. (2015) models. In some 653 cases, this increase of magma viscosity can drastically change eruptive dynamics and increase the magma fragmentation efficiency (e.g., Sable et al., 2006, 2009; Thivet et al., 2020a, 2020c). However, 654 655 the viscous portion identified in all analyzed layers from both 2005 Karthala paroxysms, was not 656 dominant enough, especially within the fine tephra fractions, to be considered as the main process 657 leading to increasing fragmentation. Moreover, the occurrence of differentiated melts within the 658 2006 and 2007 weak explosive eruptions (Fig. 11), with a composition close to that of the scoria 659 components, confirm that this syn-eruptive crystallization process cannot be at the origin of the main 660 fragmentation mechanism observed during the 2005 paroxysmal phases.

5.2. The phreatomagmatic contribution on the fragmentation efficiencies: water-magma interactions controlling the formation of a wide range of tephra in terms of component and size

663 **5.2.1. Insights from the non-juvenile component**

The occurrence of non-juvenile particles within the 2005 paroxysmal deposits (Fig. 6) is 664 665 interpreted as a typical consequence of water-magma interactions (e.g., Self et al., 1980; Dvorak, 666 1992; Dzurisin et al., 1995; Houghton et al., 1996; Doubik and Hill, 1999). The presence of large (up to 667 meters) blocks of old and dense lavas within proximal fallout areas (Figs. 2e, S1c and S3c), suggests 668 the occurrence of thermohydraulic explosions (Thiéry and Mercury, 2009; Montanaro et al., 2021) 669 and associated shock waves (Büttner et al., 2005) able to fragment and project these ballistics (Fig. 670 12), originating from dense, crystallized and sometimes oxidized lava and micro-gabbro units that are 671 visible on the crater walls (Fig. 2). The absence of extended hydrothermal alteration on these non-672 juvenile particles suggests that they are fragmented within the upper 1 km of the volcano 673 (corresponding to the thick water-satured rock unit), as the hydrothermal system is located deeper 674 and represent a weak activity in the Choungou-Chahalé crater area (Lénat et al., 1998; Savin et al., 675 2001, 2005; Bernabeu et al., 2018; Liuzzo et al., 2021).

676 Within medial and distal fallout areas, block occurrence rapidly decreases (Fig. S1c) as they 677 travelled in ballistic paths. In parallel, non-juvenile particles are mainly observed within relatively 678 coarse grain size fractions of fallout deposits (Fig. 8). This distribution pattern suggests that 679 phreatomagmatic-induced host rock fragmentation mainly contributes to the formation of coarse680 tephra grains but do not contributes to the significant formation of fine ash particles.

681 **5.2.2.** Insights from the juvenile dense glassy component

Active or interactive particles are tephra grains that exhibit Molten Fuel-Coolant Interactions (MFCIs), which in the case of phreatomagmatic eruptions, are related to the interaction between magmatic melts and external fluids, especially water (e.g., Büttner et al., 1999; 2002; Fitch and Fagents, 2020). As shown by natural and experimental particles (Dürig et al., 2012a), they are typically characterized by visible branching quench cracks and stepped features on their surface as well as blocky shapes, reflecting the occurrence of crack bifurcation and shock wave propagations induced by MFCIs and a dominant brittle fragmentation mechanism (Wohletz et al., 2013).

689 Within the 2005 paroxysmal deposits, these active particles (with stepped features and 690 cracks) mainly occur in the fine-grained juvenile dense glassy component (Fig. 7), suggesting that 691 brittle fragmentation induced by phreatomagmatism is the main contributor of the formation of fine 692 ash particles, which are not considerably formed during purely magmatic and weak explosive 693 activities (e.g., Parfitt, 1998; Thivet et al., 2020a; 2020c). Note that stepped features are not to be 694 confused with the ubiquitous hackle lines, which are not a direct diagnostic of phreatomagmatism 695 but only of brittle facture of glass. Nevertheless, many examples of interactive grains in the literature 696 include both stepped features and hackle lines (e.g., Heiken and Wohletz, 1987; Buttner et al. 1999; 697 Austin-Erickson et al., 2008).

698 The relatively high porosity of the initial magma, as shown by the coarse pumice fragments 699 (Fig. 4), also facilitated the fragmentation during the water-magma interactions, as relatively low 700 deformation energy is required to break highly vesicular material (Zhang 1999; Zimanowski et al., 701 2015). This efficient brittle fragmentation led to the emission of fine dense ash fragments, made of 702 glassy vesicle wall fragments or glassy rinds (Mastin, 2007), which are inherited from the 703 fragmentation of the initial vesicular magma. The genetic link made between the coarse-grained 704 pumice and fine-grained dense glassy particles is also supported by the VSDs measured on coarse ash 705 particles, which show that the main porosity is represented by vesicles larger than 50 µm in diameter 706 (Fig. 10a), thus the main porosity cannot be recorded in particles finer than this size (Fig. 7). This 707 highlights the role of bubbles (and associated characteristics, especially high N_v) in generating fine 708 ash during hydromagmatic eruptions (Liu et al., 2015). The rapid stress and deformation processes, 709 as well as volatile degassing from the melt, occurred shortly before and at fragmentation (e.g., 710 Dingwell, 1996; Papale, 1999, Dürig et al., 2012b). These fast processes probably caused a rapid 711 transition from a viscous regime (above the glass transition temperature) to a brittle regime (below the glass transition temperature), whose textural footprints might be identifiable in some ash grains,
in which vesicle walls are highly deformed and/or broken (Figs. 4f and 4g), also suggesting the
occurrence of in situ particle granulation (Colombier et al., 2019a).

715 The fact that no significant variations were observed in ash morphology for the investigated 716 2005 layers and for a same grain size fraction (also shown in Carlier, 2019), suggests that similar 717 fragmentation mechanisms occurred during both 2005 paroxysms. The comparison made between a 718 1977 and a 2005 ash sample has been performed (Fig. 9) in order to focus on ash morphology 719 variations in function of the nature and origin of the deposits (weak magmatic vs. strong 720 phreatomagmatic activities respectively) as well as of the grain size fractions. The 1977 deposit, 721 contain smooth, rounded as well as Pele's hair and tear particles (Fig. 9) that are typically absent in 722 the 2005 ash deposits but present in other deposits associated with Hawaiian-like activities (e.g., 723 Cannata et al., 2019; Thivet et al., 2020a; 2020c). Brittle and efficient fragmentation is better 724 recorded in the 2005 fine ash fraction, as solidity, convexity and sphericity shape parameters tend to 725 higher values, typically reflecting blocky shapes (Figs. 9a, 9b and 9c).

The occurrence of accretionary lapilli within the 2005 deposits (Fig. S5), gradually composed of relatively coarse particles in their cores to relatively fine particles in their rims (Fig. 7b), support the idea that these ash particles were produced by phreatomagmatism and transported within wet plumes (Houghton et al., 2015), in which accretionary lapilli can develop from a wet nucleus thanks to surface tension and electrostatic attraction (Colombier et al., 2019b).

731 **5.3.** Insights from observational data and knowledge of the summit area of Karthala volcano

732 Lénat et al. (1998) and Savin et al. (2001) highlight that the Choungou-Chahalé crater, 733 periodically hosting a water lake, is underlain by a maximum of 1 km of water-saturated rocks. Both 734 April and November-December 2005 eruptions, which began with paroxysmal phases producing high 735 ash-rich plumes, occurred when water lakes were visible at the bottom of the Choungou-Chahalé 736 crater. Water-magma interactions can thus have occurred both during dyke propagation through the 737 water-saturated rocks and at shallow level at the surface water lake. Each paroxysmal phase was 738 then followed by a lava pond and weak explosive (lava fountaining) activity, from the same vent area 739 feeding the paroxysmal activity and after the disappearance of the intra-crateric water lake. This 740 evolution highlights that the lakes were rapidly heated and vaporized in contact with the hot magma 741 rising to the surface during the initial paroxysmal phases. We can thus infer that the water/magma 742 ratio evolved from relatively high values at the beginning of the eruption and tended to zero over 743 time, within a short duration of around 24 hours for each 2005 paroxysm. These contrasting water-744 magma interactions (Fig. 12) resulted in different degree of released energy for the magma/rock

fragmentation (e.g., Frazzetta et al., 1983; Sheridan and Wohletz, 1983; Wohletz and McQueen,
1984; Wohletz et al., 2013; Houghton et al., 2015; Zimanowski et al., 2015).

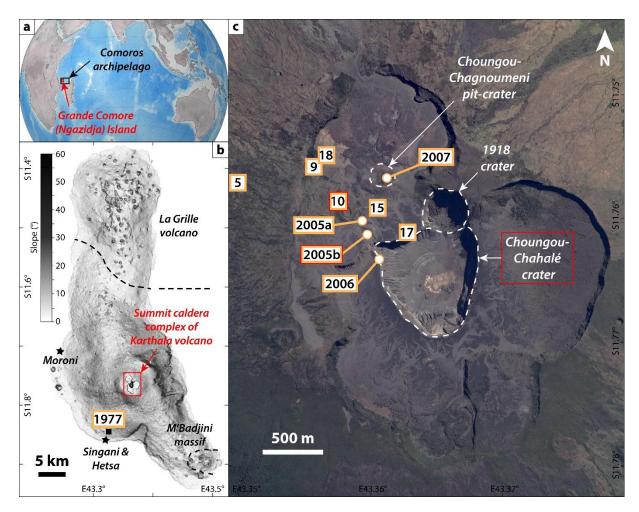
747 Also, lava emissions observed during both 2005 eruptions after the paroxysmal phases, 748 resulted in the elevation of the crater bottom, which caused the absence of visible water at the 749 surface after the November-December 2005 eruption. The notable absence of water lake before, 750 during and after the May-June 2006 eruption can thus be correlated with its effusive and weak 751 explosive behavior (Fig. 2d). Furthermore, these newly emitted lavas represent a new thermo-752 lithological boundary within the crater floor, which can significantly drag hydrothermal fluids from 753 the crater center towards peripheral areas (Bernabeu et al., 2018). Interestingly, the northern 754 caldera lobe and the northern rift area hosts the strongest hydrothermal activity (fumaroles and soil 755 degassing) of the volcanic system (Liuzzo et al., 2021) and produce dominantly effusive activities 756 (e.g., 1965; 1972; 2007), whereas the hydrothermal activity is much weaker in the area of the central 757 Choungou-Chahalé crater that feeds the most violent explosive activity (e.g., 1918; 1991; 2005). This 758 geographical pattern suggests that, in the whole 2005-2007 Karthala activity, hydrothermal activity 759 did not contribute to modulate the degree of explosivity. On the other hand, we can infer that a link 760 exists between the occurrence of shallow water (i.e. the water lake and associated water-saturated 761 rocks) and the degree of explosivity.

762

763 6. Conclusions

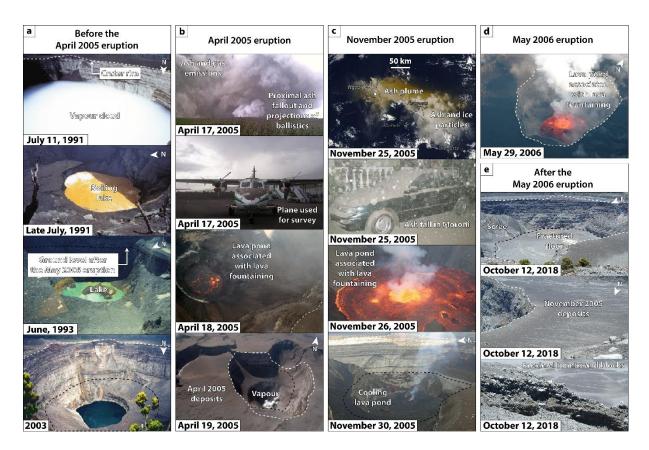
Field observations and laboratory analyses performed on the 2005 eruptive deposits of
 Karthala volcano permit to identify and quantify distinct eruptive processes.

1 – Initial syn-eruptive magmatic processes, especially degassing (dominance of highly porous magma portions) and in a less important proportion crystallization (occurrence of microlite-rich portions) within the volcanic conduits were relatively significant during the two 2005 paroxysmal phases compared to the weak explosive basaltic eruptions forming lava fountains (i.e., 1977's Karthala eruption). However, these processes alone could not lead to the observed characteristics of the deposits (i.e., occurrence of non-juvenile block to coarse ash particles, as well as abundant accretionary lapilli and fine ash particles).


2 – MFCI interactions between highly porous magmatic melts and external water occurred
 during the initial paroxysmal phases, leading to brittle and efficient fragmentation mechanism and
 forming a large amount of fine ash from the initial porous magma. Thermohydraulic explosions

caused by the water-magma interaction resulted in the host rock fragmentation, forming relativelycoarse (from blocks to coarse ash) non-juvenile particles.

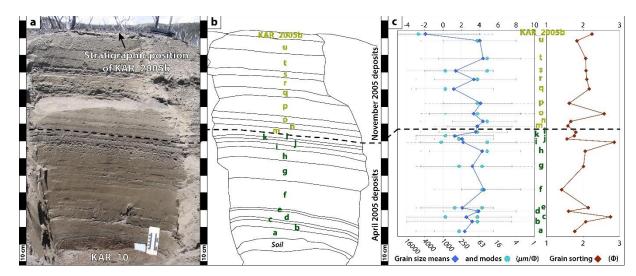
778 3 - Fluctuating host rock and magma fragmentation efficiencies can be controlled by the 779 variability of water/magmatic melt ratios through the eruptions. In natural systems, access of the 780 magma to water includes many parameters difficult to assess (e.g. variations of magma ascent rate, 781 surface area to volume ratios, vent shape, host rock permeabilities, amount and variations of syn-782 eruptive debris within the eruptive vent, Houghton et al., 2015). This makes phreatomagmatic 783 interactions more complex than theoretical and experimental models. However, in the present study 784 we argued and conclude that the observed deposit variabilities in term of grain size, grain 785 componentry and layer thickness might be linked by variable phreatomagmatic interactions, which 786 released variable energy, resulting in variable fragmentation efficiencies. (i) Fine and unimodal (grain 787 size modes < 90 μ m) tephra layers (KAR_10_b, d, f, h, l, m, n, p, r, t and u) result from a relatively 788 homogenous and efficient phreatomagmatic fragmentation (we can speculate relatively high 789 water/magma ratios, Fig. 12a). This fragmentation regime can be short-lived or relatively steady as 790 suggested by highly variable tephra layer thicknesses (from < 5 to 20 cm). (ii) Intermediate-sized and 791 unimodal (grain size modes between 250 and 710 µm) tephra layers (KAR_10_a, j, k and q) result 792 from homogeneous but relatively weak phreatomagmatic fragmentation mechanism (we can 793 speculate intermediate water/magma ratios, Fig. 12a). (iii) Bimodal (the coarser modes being 794 between 250 and 1400 μ m and the finer modes being between 31 and 90 μ m) tephra layers 795 (KAR 10 c, e, g, i, o and s), originated from several combined mechanisms. The finest modes of these 796 layers are mainly composed of juvenile material which undergone intense and efficient 797 fragmentation. In contrast the coarser modes are composed of both inefficiently fragmented juvenile 798 material (residual juvenile part of the phreatomagmatic fragmentation mechanism) and 799 synchronously emitted non-juvenile coarse grains (from thermohydraulic explosions). (iv) The 800 coarsest and unimodal (grain size mode between 5,66 and 8 mm) tephra layer (KAR 2005b), forming 801 the uppermost part of the 2005 tephra sequence, mainly result from magmatic processes (Fig. 12b), 802 forming a short-lived (tephra layer < 5 cm in thickness) but sustained lava fountaining episode at the 803 end of the November 2005 paroxysm (which might be associated with remnant steam explosions 804 forming non-juvenile blocks and coarse ash grains).


4 – Available external water volumes rapidly decreased during both 2005 paroxysms, which lasted only one day each, as the water vaporized and wet rocks dried in contact with relatively hot magmas and/or lavas and/or tephras. As the shallow system dried up, phreatomagmatic regimes progressively stopped for both 2005 eruptions, leading to lava pond and weak fountaining activities until the end of both 2005 eruptions. 810 In conclusion, and beyond field observations that were made at the time of the eruptions, 811 the present study highlights the importance of in-depth analysis for such deposits in order to gain 812 insights on shallow magmatic systems and associated processes potentially leading to relatively 813 important and uncommon volcanic hazards.

822 Figures and tables

824 Figure 1 – (a) Location of the Comoros archipelago and the Grande Comore (Ngazidja) Island within 825 the Mozambique Channel. (b) SRTM-derived slope map of the Grande Comore (Ngazidja) Island 826 (modified from Bachèlery et al., 2016). The black square shows the location of the 1977 eccentric eruption and its associated sampling location (labelled 1977). Black stars show the capital city of 827 Moroni and the adjacent villages of Singani and Hetsa. (c) Google Earth satellite image (CNES/Airbus, 828 829 July 31, 2017) of the summit caldera complex of Karthala volcano. April 2005, November-December 830 2005 and May-June 2006 eruptive vents opened in the floor of the Choungou-Chahalé crater. The 831 January 2007 eruption occurred in the Choungou-Chagnoumeni pit-crater. Numbered squares show 832 the studied or sampling sites of both 2005 paroxysmal deposits (labelled 5, 9, 10, 15, 17, 18, 2005a and 2005b), as well as May-June 2006 (labelled 2006) and January 2007 (labelled 2007) eruptive 833 products. Detailed location and description of each sample are shown in Table S1. 834

- 835
- 836
- 837



838

Figure 2 – Ground-, airplane- and satellite-based photographs showing the morphological evolution
and eruptive activities that occurred within the Choungou-Chahalé crater, between 1991 and 2018.
Dashed white lines show the Choungou-Chahalé crater rim and dashed black lines represent the

842 ground level of the Choungou-Chahalé crater floor after the May 2006 eruption. (a) Morphology of 843 the Choungou-Chahalé crater and evolution of the water lake before the April 2005 eruption. 844 Pictures taken by Patrick Bachèlery (modified from Bachèlery et al., 2016). (b) Chronology and 845 impacts of the April 2005 eruption. From top to bottom, pictures taken by (i) Daniel Hoffschir, (ii) and 846 (iii) Hamidi Soulé (modified from Bachèlery et al., 2016) and (iv) Nicolas Villeneuve. (c) Chronology 847 and impacts of the November 2005 eruption. From top to bottom, (i) satellite image from NASA 848 (Terra MODIS) white star representing the eruptive vent, (ii) pictures taken by Hamidi Soulé, (iii) Julie 849 Morin (modified from Bachèlery et al., 2016) and (iv) François Sauvestre. (d) May-June 2006 850 eruption. Picture taken by Julie Morin (modified from Bachèlery et al., 2016). (e) Morphology of the 851 Choungou-Chahalé crater after the May-June 2006 eruption. Pictures taken by Simon Thivet.

- 852
- 853
- 854
- 855

857 Figure 3 – (a) Picture of the KAR_10 stratigraphic log (cf. Fig. 1 for location), representative of the ash 858 fallout deposits of both April and November 2005 paroxysmal phases. The thick dashed black line 859 delimits the deposits from the two paroxysms. (b) Schematic of the same stratigraphic log with the different identified and sampled layers. Note that the very last products emitted by the November 860 861 2005 paroxysm are represented at the top of the log (KAR_2005b sample, cf. Fig. 1 for location). 862 Layer names (from KAR_10_a to u, as well as KAR_2005b) are labelled in dark (April 2005) and light 863 (November 2005) green. (c) Grain size mean, mode and sorting values of the sampled layers. Thin 864 dashed lines represent the total grain size range of each sample and thick dashed lines only include

865 grain size fractions with > 1 wt% of the total mass of each sample. Detailed grain size analyses are 866 shown in Table S2.

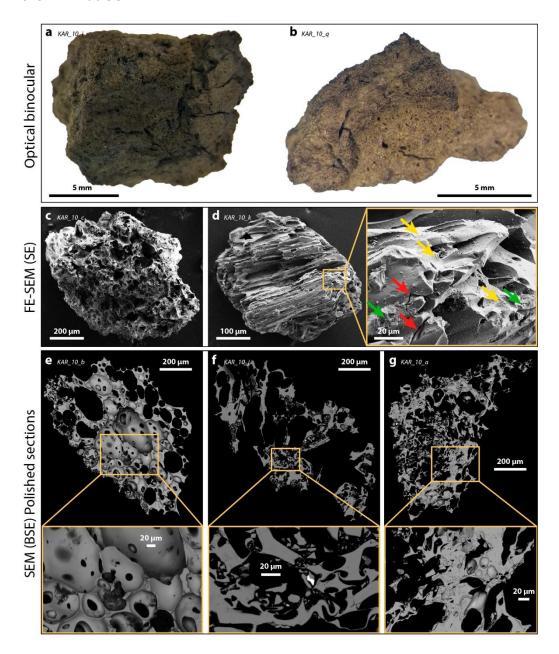


Figure 4 – Juvenile pumice clasts from both April and November 2005 paroxysmal fallout deposits. (a)
and (b) Optical images of light brown lapilli fragments showing non-fluidal shapes and bread-crusted
cracks on their surfaces. (c) and (d) 3D images of coarse ash (710-1000 µm) particles. Vesicles are
either (c) rounded or (d) elongated. (d) Micron-scaled hackle lines (yellow arrows), stepped features
(green arrows) and branching quench cracks (red arrows) are visible on the particle broken surfaces.
(e), (f) and (g) Cross-section images of coarse ash (710-1000 µm) particles showing different
deformation features from (e) rounded to (f) highly deformed and (g) broken vesicle walls.

875

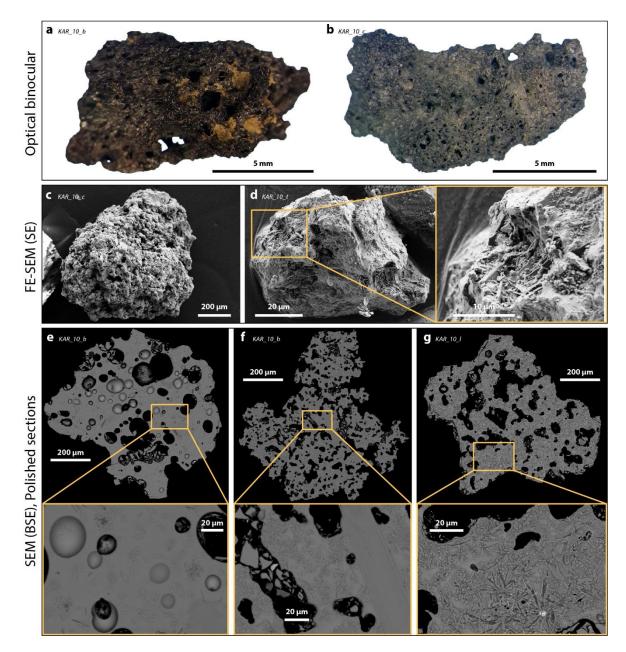
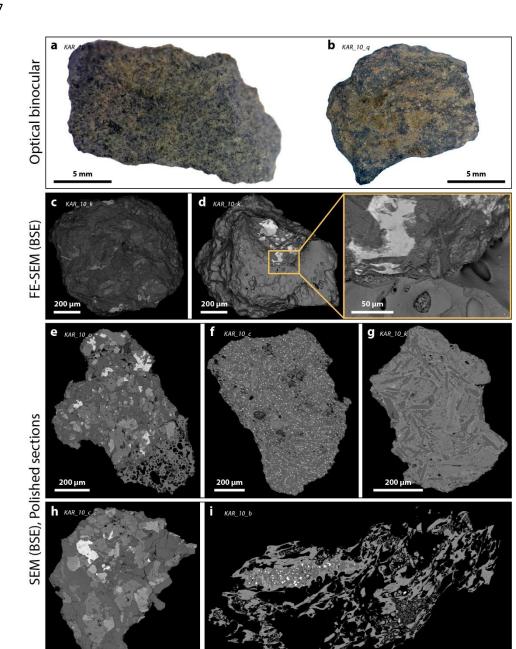



Figure 5 – Juvenile scoria clasts from both April and November 2005 paroxysmal fallout deposits. (a)
and (b) Optical images of black lapilli fragments showing non-fluidal shapes. (c) and (d) 3D images of
coarse ash (710-1000 μm) particles, characterized by rough or blocky surfaces. (d) Microlites are
sometimes visible on their surface reflecting matrices with a high microlite contents. (e), (f) and (g)
Cross-section images of coarse ash (710-1000 μm) particles showing a high range of crystallinity and
porosity.

200 µm

888

Figure 6 – Non-juvenile clasts from both April and November 2005 paroxysmal fallout deposits. (a) and (b) Optical images of dense lapilli fragments, with visible phenocrysts of plagioclase, pyroxene, olivine and oxides. (c) and (d) 3D images of coarse (710-1000 μm) and dense micro-gabbroic ash particles, characterized by blocky surfaces. (d) and (e) These non-juvenile fragments are sometimes coated by the juvenile magma. (e), (f), (g) and (h) Cross-section images of coarse (710-1000 μm) ash particles showing different textures in term of crystal size distribution, from tachylite-like to micro-gabbro textures. Note the total absence of interstitial melts in these lithic fragments. (i) Cross-section

200 µm

886

image of a micro-gabbroic fragment included within a juvenile pumice ash particle. In this case, this
 micro-gabbroic fragment is considered as juvenile as it is part of the erupted magma, and it also
 contains interstitial melt.

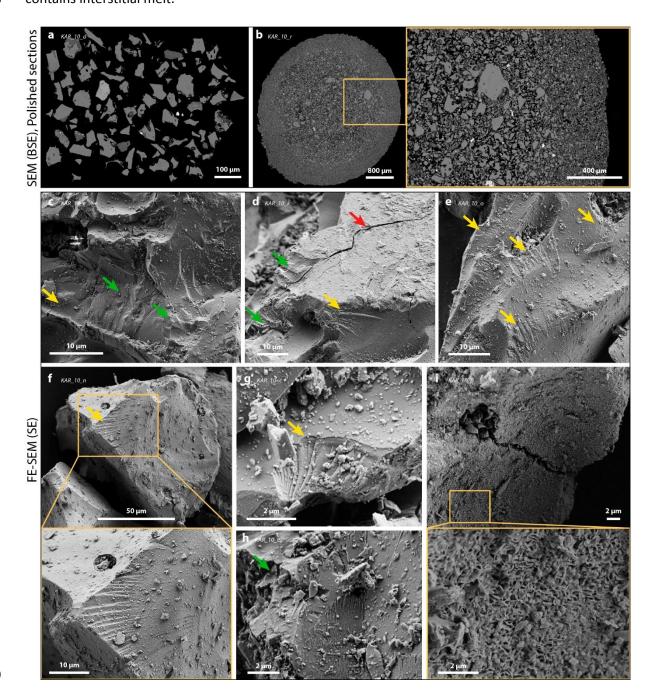


Figure 7 – Fine ash particles from both April and November 2005 paroxysmal fallout deposits. (a)
Cross-section image of a sample showing the internal textures of the fine ash (< 63µm) particles. (b)
Cross-section image of an accretionary lapilli. (c), (d), (e), (f), (g), (h) and (i) 3D images of fine ash (<
63 µm) particles. The fine-grained dense glassy particles show micron-scaled hackle lines (yellow arrows), stepped features (green arrows) and branching quench cracks (red arrows) on their surfaces. (h) and (i) Secondary deposition phases are also observed on some of the particle surfaces.

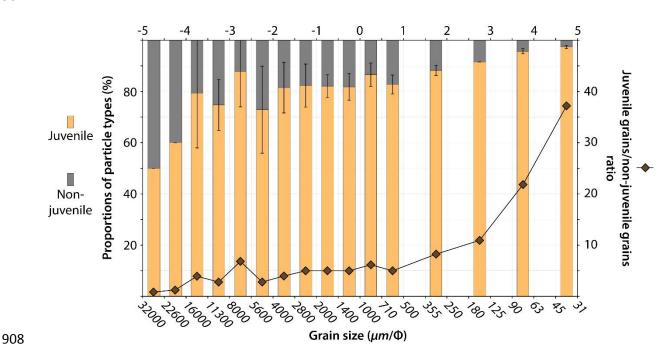


Figure 8 – Particle componentry analysis (juvenile vs. non-juvenile) of both April and November 2005
paroxysmal fallout deposits, in function of particle grain size. Each bar represents the average value
(number %) for all the analyzed samples. Error bars represent the standard deviation to this averaged
value, hence are representative of some local variations for some tephra layers. Detailed
componentry analyses are shown in Table S3.

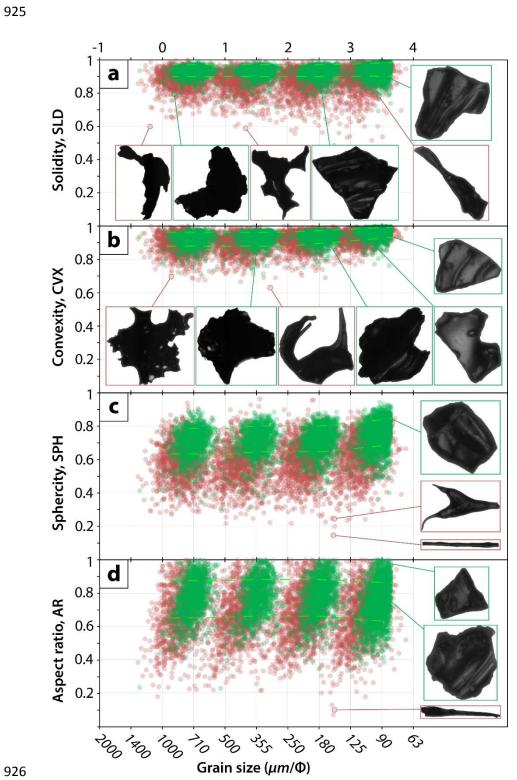
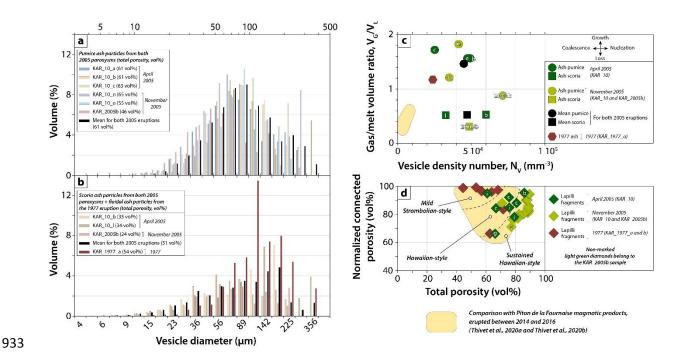



Figure 9 – Ash particle morphological analysis. (a) Solidity, (b) convexity, (c) sphericity and (d) aspect ratio values in function of particle grain size. Green dots represent the KAR_10_a sample from the April 2005 paroxysm, whereas the red dots represent the KAR_1977_a sample from the 1977

magmatic eruption that produced lava fountains. Green dashed lines represent the 2005 ashpopulation within the standard deviation. Morphological raw data is presented in Table S3.

Figure 10 – (a), (b) and (c) Micro-texture and (d) bulk-texture analyses of both April and November fallout deposits as well as 1977 products. Vesicle size distributions of (a) pumice and (b) scoria (and 1977 lava fountains) ash particles. (c) Gas to melt ratios in function of vesicle density numbers for the same samples presented in (a) and (b). (d) Normalized connected porosity in function of total porosity for a selection of lapilli fragments from the 1977 eruption, as well as both April 2005 and November 2005 paroxysms. Detailed textural analyses are reported in Table S4.

- 940
- 941
- 942
- 943
- 944
- 945
- 946
- 947

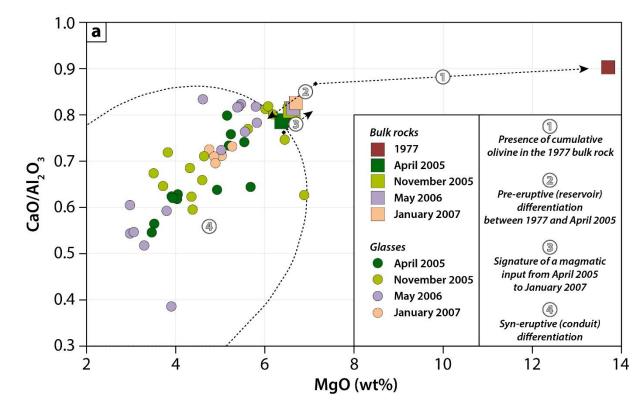
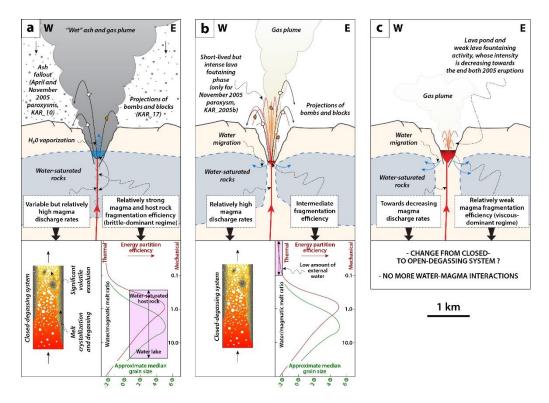



Figure 11 – (a) Bulk rock and glass compositions (CaO to Al₂O₃ ratio in function of MgO) of the
magmas emitted between 1977 and 2007 at Karthala volcano, showing a complex magmatic
evolution represented by the numbered steps. Error bars are included in the symbols.. Detailed bulk
rock, glass and mineral analyses are reported in Table S5.

964

966

965

967

Figure 12 – Schematic sections of the shallow magmatic system of Karthala volcano, (a) during both
2005's paroxysms, (b) during the last phase of the November 2005 paroxysm and (c) during both
2005's lava pond activities. Shallow magmatic processes are represented on the bottom left hand
side diagrams and water-magma interactions are illustrated in the bottom right hand side diagrams
adapted from Wohletz et al. (2013).

973

974 Acknowledgments

We thank J-L. Devidal and E. Voyer for their invaluable help with the EPMA and SEM at the 975 LMV and we thank A. Dalle for its help with the FE-SEM performed at 2MAtech. We are grateful to all 976 977 members of the Observatoire Volcanologique du Karthala (OVK) for their support during the 2018 978 field work. We also thank the two reviewers for their highly constructive reviews. We acknowledge 979 the support of the Interreg Hatari project. This research was funded by ClerVolc, the French 980 Government Laboratory of Excellence initiative n°XXXX, the French government IDEX-ISITE initiative 981 16-IDEX-XXXX (CAP20-25), the Action Incitative of the Observatoire de Physique du Globe de 982 Clermont-Ferrand (OPGC) and the Alexander Von Humboldt foundation.

983

984 <u>References</u>

Aiuppa, A., Burton, M., Caltabiano, T., Giudice, G., Guerrieri, S., Liuzzo, M., ... & Salerno, G. (2010).

986 Unusually large magmatic CO2 gas emissions prior to a basaltic paroxysm. Geophysical Research 987 Letters, 37(17). doi:10.1029/2010GL043837

Andronico, D., & Corsaro, R. A. (2011). Lava fountains during the episodic eruption of South–East
Crater (Mt. Etna), 2000: insights into magma-gas dynamics within the shallow volcano plumbing
system. Bulletin of volcanology, 73(9), 1165-1178. doi:10.1007/s00445-011-0467-y

Applegarth, L. J., Tuffen, H., James, M. R., & Pinkerton, H. (2013). Degassing-driven crystallisation in
basalts. Earth-Science Reviews, 116, 1-16. doi:10.1016/j.earscirev.2012.10.007

Austin-Erickson, A., Büttner, R., Dellino, P., Ort, M. H., Zimanowski, B. (2008). Phreatomagmatic
explosions of rhyolitic magma: Experimental and field evidence. Journal of Geophysical Research,
113(B11), B11201. doi:10.1029/2008jb005731

Bachèlery, P., Morin, J., Villeneuve, N., Soulé, H., Nassor, H., & Ali, A. R. (2016). Structure and
Eruptive History of Karthala Volcano. Active Volcanoes of the Southwest Indian Ocean. Active
Volcanoes of the World. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-31395-0_22

Bachèlery, P., Hémond C. (2016). Geochemical and Petrological Aspects of Karthala Volcano. Active
Volcanoes of the Southwest Indian Ocean. Active Volcanoes of the World. Springer, Berlin,
Heidelberg. doi:10.1007/978-3-642-31395-0_23

1002 Bachèlery, P., Ali, D. B., Desgrolard, F., Toutain, J. P., & Coudray, J. (1995). L'éruption phréatique du

1003 Karthala (Grande Comore) en Juillet 1991. Comptes rendus de l'Académie des sciences. Série 2.
1004 Sciences de la terre et des planètes, 320(8), 691-698.

Bachèlery P., Coudray J. (1993). Carte volcano-tectonique (1/50000e) de la Grande Comore et notice
explicative. Edited by the French Embassy in Moroni, Comores, and The University of La Réunion, St.
Denis de La Réunion

Belousov, A., & Belousova, M. (2001). Eruptive Process, Effects and Deposits of the 1996 and the
Ancient Basaltic Phreatomagmatic Eruptions in Karymskoye Lake, Kamchatka, Russia. Volcaniclastic
Sedimentation in Lacustrine Settings, 35–60. doi:10.1002/9781444304251.ch3

Bernabeu, N., Finizola, A., Smutek, C., Saramito, P., & Delcher, E. (2018). Spatio-temporal evolution of
temperature and fluid flow through a new "thermo-lithological" boundary; the case of a pit crater of

- 1013 Karthala volcano (Comoros archipelago) refilled on January 13th 2007 by a lava flow. Journal of 1014 Volcanology and Geothermal Research. doi:10.1016/j.jvolgeores.2018.10.013
- 1015 Bonny, E., Thordarson, T., Wright, R., Höskuldsson, A. & Jónsdóttir, I. (2018). The Volume of Lava 1016 Erupted during the 2014 to 2015 Eruption at Holuhraun, Iceland: a Comparison between Satellite-1017 and Ground-Based Measurements. Journal of Geophysical Research: Solid Earth, 1018 doi:10.1029/2017JB015008
- 1019 Büttner, R., Zimanowski, B., Mohrholz, C.-O., & Kümmel, R. (2005). Analysis of thermohydraulic 1020 explosion energetics. Journal of Applied Physics, 98(4), 043524. doi:10.1063/1.2033149
- 1021 Büttner, R., Dellino, P., La Volpe, L., Lorenz, V., & Zimanowski, B. (2002). Thermohydraulic explosions
- 1022 in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products
- 1023 from Molten Fuel Coolant Interaction experiments. Journal of Geophysical Research: Solid Earth,
- 1024 107(B11), ECV-5. doi:10.1029/2001JB000511
- 1025 Büttner, R., Dellino, P., & Zimanowski, B. (1999). Identifying magma–water interaction from the 1026 surface features of ash particles. Nature, 401(6754), 688–690. doi:10.1038/44364
- 1027 Calvari, S., Spampinato, L., & Lodato, L. (2006). The 5 April 2003 vulcanian paroxysmal explosion at 1028 Stromboli volcano (Italy) from field observations and thermal data. Journal of Volcanology and 1029 Geothermal Research, 149(1-2), 160–175. doi:10.1016/j.jvolgeores.2005.06.006
- 1030 Cannata, C. B., De Rosa, R., Donato, P., Donato, S., Lanzafame, G., Mancini, L., & Houghton, B. F.
 1031 (2019). First 3D imaging characterization of Pele's hair from Kilauea volcano (Hawaii). Scientific
 1032 Reports, 9(1). doi:10.1038/s41598-018-37983-9
- Carlier, J. (2019). Insight into conduit dynamics and eruptive mechanisms of ash-forming basaltic
 eruptions: the case study of the 2005 eruptions at Karthala volcano (Grande Comore). MSc report,
- 1035 Université Clermont Auvergne, France, 88
- 1036 Cashman, K. V., & Scheu, B. (2015). Magmatic fragmentation. In The encyclopedia of volcanoes (pp.
 1037 459-471). Academic Press. doi:10.1016/B978-0-12-385938-9.00025-0
- 1038 Cesca, S., Letort, J., Razafindrakoto, H. N., Heimann, S., Rivalta, E., Isken, M. P., ... & Dahm, T. (2020).
- 1039 Drainage of a deep magma reservoir near Mayotte inferred from seismicity and deformation. Nature
- 1040 geoscience, 13(1), 87-93. doi:10.1038/s41561-019-0505-5
- 1041 Coffin, M. F., & Rabinowitz, P. D. (1987). Reconstruction of Madagascar and Africa: evidence from the
- 1042 Davie fracture zone and western Somali basin. Journal of Geophysical Research: Solid Earth, 92(B9),
- 1043 9385-9406. doi:10.1029/JB092iB09p09385

- 1044 Colombier, M., Scheu, B., Kueppers, U., Cronin, S., Mueller, S., Hess, K.-U., Dingwell, D. B. (2019a). In
 1045 situ granulation by thermal stress during subaqueous volcanic eruptions. Geology, 47(2), 179–182.
 1046 doi:10.1130/g45503.1
- 1047 Colombier, M., Mueller, S. B., Kueppers, U., Scheu, B., Delmelle, P., Cimarelli, C., ... & Dingwell, D. B.
- 1048 (2019b). Diversity of soluble salt concentrations on volcanic ash aggregates from a variety of eruption
- 1049 types and deposits. Bulletin of Volcanology, 81(7), 1-13. doi:10.1007/s00445-019-1302-0
- Costantini, L., Houghton, B. F., & Bonadonna, C. (2010). Constraints on eruption dynamics of basaltic
 explosive activity derived from chemical and microtextural study: the example of the Fontana Lapilli
 Plinian eruption, Nicaragua. Journal of Volcanology and Geothermal Research, 189(3-4), 207-224.
 doi:10.1016/j.jvolgeores.2009.11.008
- 1054 Dellino, P., Gudmundsson, M. T., Larsen, G., Mele, D., Stevenson, J. A., Thordarson, T., & Zimanowski,
- 1055 B. (2012). Ash from the Eyjafjallajökull eruption (Iceland): Fragmentation processes and aerodynamic
- 1056 behavior. Journal of Geophysical Research: Solid Earth, 117(B9). doi:10.1029/2011JB008726
- 1057 Desgrolard, F. (1996). Pétrologie des laves d'un volcan intraplaque océanique : le Karthala, lle de la
 1058 Grande Comore (R.F.I. des Comores). PhD Thesis, University Joseph Fourier, Grenoble 1, 176 p. +
 1059 annexes
- 1060 Dingwell, D. B. (1996). Volcanic Dilemma--Flow or Blow? Science, 273(5278), 1054–1055.
 1061 doi:10.1126/science.273.5278.1054
- Dille, A., Poppe, S., Mossoux, S., Soulé, H., & Kervyn, M. (2020). Modeling Lahars on a Poorly Eroded
 Basaltic Shield: Karthala Volcano, Grande Comore Island. Frontiers in Earth Science, 8.
 doi:10.3389/feart.2020.00369
- Doubik, P., & Hill, B. E. (1999). Magmatic and hydromagmatic conduit development during the 1975
 Tolbachik Eruption, Kamchatka, with implications for hazards assessment at Yucca Mountain, NV.
 Journal of Volcanology and Geothermal Research, 91(1), 43–64. doi:10.1016/s0377-0273(99)00052-9
- Dürig, T., Mele, D., Dellino, P., & Zimanowski, B. (2012a). Comparative analyses of glass fragments
 from brittle fracture experiments and volcanic ash particles. Bulletin of volcanology, 74(3), 691-704.
 doi:10.1007/s00445-011-0562-0
- Dürig, T., Sonder, I., Zimanowski, B., Beyrichen, H., & Büttner, R. (2012b). Generation of volcanic ash
 by basaltic volcanism. Journal of Geophysical Research: Solid Earth, 117(B1).
 doi:10.1029/2011JB008628

- 1074 Dvorak, J. J. (1992). Mechanism of explosive eruptions of Kilauea Volcano, Hawaii. Bulletin of 1075 volcanology, 54(8), 638-645. doi:10.1007/BF00430777
- Dzurisin, D., Lockwood, J. P., Casadevall, T. J., & Rubin, M. (1995). The Uwekahuna Ash Member of
 the Puna Basalt: product of violent phreatomagmatic eruptions at Kilauea volcano, Hawaii, between
 2800 and 210014C years ago. Journal of Volcanology and Geothermal Research, 66(1-4), 163-184.
 doi:10.1016/0377-0273(94)00062-L
- Edwards, M. J., Pioli, L., Harris, A. J., Gurioli, L., & Thivet, S. (2020). Magma fragmentation and particle
 size distributions in low intensity mafic explosions: the July/August 2015 Piton de la Fournaise
 eruption. Scientific reports, 10(1), 1-14. doi:10.1038/s41598-020-69976-y
- Emerick, C. M., & Duncan, R. A. (1982). Age progressive volcanism in the Comores Archipelago,
 western Indian Ocean and implications for Somali plate tectonics. Earth and Planetary Science
 Letters, 60(3), 415–428. doi:10.1016/0012-821x(82)90077-2
- Eychenne, J., Le Pennec, J. L., Troncoso, L., Gouhier, M., & Nedelec, J. M. (2012). Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador). Bulletin of Volcanology, 74(1), 187-205. doi:10.1007/s00445-011-089 0517-5
- Famin, V., Michon, L., & Bourhane, A. (2020). The Comoros archipelago: a right-lateral transform
 boundary between the Somalia and Lwandle plates. Tectonophysics, 789, 228539.
 doi:10.1016/j.tecto.2020.228539
- Feuillet, N., Jorry, S., Crawford, W.C., Deplus, C., Thinon, I., Jacques, ... & Van der Woerd, J. (2021).
 Birth of a large volcanic edifice offshore Mayotte via lithosphere-scale dyke intrusion. Nature. Geosci.
 https://doi.org/10.1038/s41561-021-00809-x.
- Fitch, E. P., & Fagents, S. A. (2020). Characteristics of rootless cone tephra emplaced by high-energy
 lava–water explosions. Bulletin of Volcanology, 82(8), 1-16. doi:10.1007/s00445-020-01393-5
- Flower, M. F. J., & Strong, D. F. (1969). The significance of sandstone inclusions in lavas of the
 comores archipelago. Earth and Planetary Science Letters, 7(1), 47–50. doi:10.1016/0012821x(69)90010-7
- Frazzetta, G., La Volpe, L., & Sheridan, M. F. (1983). Evolution of the Fossa cone, Vulcano. Journal of
 Volcanology and Geothermal Research, 17(1-4), 329-360. doi:10.1016/0377-0273(83)90075-6

- Gaudin, D., Taddeucci, J., Scarlato, P., Harris, A., Bombrun, M., Del Bello, E., & Ricci, T. (2017).
 Characteristics of puffing activity revealed by ground-based, thermal infrared imaging: the example
 of Stromboli Volcano (Italy). Bulletin of Volcanology, 79(3), 24. doi:10.1007/s00445-017-1108-x
- Giordano, D., Russell, J. K., & Dingwell, D. B. (2008). Viscosity of magmatic liquids: a model. Earth and
 Planetary Science Letters, 271(1-4), 123-134. doi:10.1016/j.epsl.2008.03.038
- Giordano, D., & Dingwell, D. (2003). Viscosity of hydrous Etna basalt: implications for Plinian-style
 basaltic eruptions. Bulletin of Volcanology, 65(1), 8-14. doi:10.1007/s00445-002-0233-2
- Gonnermann, Helge M., and Michael Manga. "Dynamics of magma ascent." Modeling volcanic
 processes: The physics and mathematics of volcanism (2013): 55-84.
 doi:10.1017/CBO9781139021562.004
- 1113 Graettinger, A. H., Skilling, I., McGarvie, D., Höskuldsson, A. (2013). Subaqueous basaltic magmatic 1114 explosions trigger phreatomagmatism: A case study from Askja, Iceland. Journal of Volcanology and
- 1115 Geothermal Research, 264, 17–35. doi:10.1016/j.jvolgeores.2013.08.001
- Gudmundsson, M. T., Thordarson, T., Höskuldsson, Á., Larsen, G., Björnsson, H., Prata, F. J., ... &
 Jónsdóttir, I. (2012). Ash generation and distribution from the April-May 2010 eruption of
 Eyjafjallajökull, Iceland. Scientific reports, 2(1), 1-12. doi:10.1038/srep00572
- Gurioli, L., Muro, A. D., Vlastélic, I., Moune, S., Thivet, S., Valer, M., ... & Hénot, J. M. (2018).
 Integrating field, textural, and geochemical monitoring to track eruption triggers and dynamics: a
 case study from Piton de la Fournaise. Solid Earth, 9(2), 431-455. doi:10.5194/se-9-431-2018, 2018.
- Gurioli, L., Colo', L., Bollasina, A. J., Harris, A. J., Whittington, A., & Ripepe, M. (2014). Dynamics of
 Strombolian explosions: inferences from field and laboratory studies of erupted bombs from
 Stromboli volcano. Journal of Geophysical Research: Solid Earth, 119(1), 319-345.
 doi:10.1002/2013JB010355
- Head, J. W., & Wilson, L. (1987). Lava fountain heights at Pu'u'O'o, Kilauea, Hawaii: Indicators of
 amount and variations of exsolved magma volatiles. Journal of Geophysical Research: Solid Earth,
 92(B13), 13715-13719. doi:10.1029/JB092iB13p13715
- Heiken, G., Wohletz, K. (1987). Tephra deposits associated with silicic domes and lava flows. The
 Emplacement of Silicic Domes and Lava Flows. doi:10.1130/SPE212-p55
- Houghton, B., White, J. D., & Van Eaton, A. R. (2015). Phreatomagmatic and related eruption styles.
 In The encyclopedia of volcanoes (pp. 537-552). Academic Press. doi:10.1016/B978-0-12-3859389.00030-4

Houghton, B. F., Wilson, C. J. N., Rosenberg, M. D., Smith, I. E. M., & Parker, R. J. (1996). Mixed
deposits of complex magmatic and phreatomagmatic volcanism: an example from Crater Hill,
Auckland, New Zealand. Bulletin of Volcanology, 58(1), 59–66. doi:10.1007/s004450050126

1137 Jenkins, S. F., Wilson, T. M., Magill, C., Miller, V., Stewart, C., Blong, R., ... & Costa, A. (2015). Volcanic 1138 ash fall hazard and Global and risk, 173-222. risk. volcanic hazards 1139 doi:10.1017/CBO9781316276273.005

- Jordan, S. C., Le Pennec, J. L., Gurioli, L., Roche, O., & Boivin, P. (2016). Highly explosive eruption of
 the monogenetic 8.6 ka BP La Vache et Lassolas scoria cone complex (Chaîne des Puys, France).
 Journal of Volcanology and Geothermal Research, 313, 15-28. doi:10.1016/j.jvolgeores.2015.12.006
- 1143 Krafft, M. (1982). L'éruption volcanique du Kartala : avril 1977 (Grande Comore, Ocean Indien),
 1144 Compte rendu Académie des Sciences de Paris v294, n2: 753-758
- Lange, R. A., Frey, H. M., & Hector, J. (2009). A thermodynamic model for the plagioclase-liquid
 hygrometer/thermometer. American Mineralogist, 94(4), 494-506. doi:10.2138/am.2009.3011
- Latutrie, B., & Ross, P.-S. (2020). Phreatomagmatic vs magmatic eruptive styles in maar-diatremes: a
 case study at Twin Peaks, Hopi Buttes volcanic field, Navajo Nation, Arizona. Bulletin of Volcanology,
 82(3). doi:10.1007/s00445-020-1365-y
- Leibrandt, S., & Le Pennec, J. L. (2015). Towards fast and routine analyses of volcanic ash morphometry for eruption surveillance applications. Journal of Volcanology and Geothermal Research, 297, 11-27. doi:10.1016/j.jvolgeores.2015.03.014
- Lemoine, A., Briole, P., Bertil, D., Roullé, A., Foumelis, M., Thinon, I., ... & Hoste Colomer, R. (2020).
 The 2018–2019 seismo-volcanic crisis east of Mayotte, Comoros islands: seismicity and ground
 deformation markers of an exceptional submarine eruption. Geophysical Journal International,
 223(1), 22-44. doi:10.1093/gji/ggaa273
- 1157 Lénat, J.-F., Robineau, B., Durand, S., & Bachèlery, P. (1998). Étude de la zone sommitale du volcan
- 1158 Karthala (Grande Comore) par polarisation spontanée. Comptes Rendus de l'Académie Des Sciences -
- 1159 Series IIA Earth and Planetary Science, 327(12), 781–788. doi:10.1016/s1251-8050(99)80051-2
- Lipman, P. W., Banks, N. G., & Rhodes, J. M. (1985). Degassing-induced crystallization of basaltic
 magma and effects on lava rheology. Nature, 317(6038), 604-607. doi:10.1038/317604a0
- Liu, E. J., Cashman, K. V., Rust, A. C. & Gislason, S. R. (2015). The role of bubbles in generating fine ash
 during hydromagmatic eruptions. Geology, 43(3), 239–242. doi:10.1130/G36336.1

- Liuzzo, M., Di Muro, A., Rizzo, A. L., Caracausi, A., Grassa, F., Fournier, N., Shafik, B., Boudoire, G., Coltorti, M., Moreira, M., & Italiano, F. (2021). Gas geochemistry at Grande Comore and Mayotte volcanic islands (Comoros archipelago), Indian ocean. Earth and Space Science Open Archive, Journal article DP. doi:10.1002/essoar.10506929.1
- Llewellin, E. W., & Manga, M. (2005). Bubble suspension rheology and implications for conduit flow.
 Journal of Volcanology and Geothermal Research, 143(1-3), 205-217.
 doi:10.1016/j.jvolgeores.2004.09.018
- Mader, H. M., Llewellin, E. W., & Mueller, S. P. (2013). The rheology of two-phase magmas: A review
 and analysis. Journal of Volcanology and Geothermal Research, 257, 135-158.
 doi:10.1016/j.jvolgeores.2013.02.014
- 1174 Magnússon, E., Gudmundsson, M. T., Roberts, M. J., Sigurðsson, G., Höskuldsson, F., & Oddsson, B.
- 1175 (2012). Ice-volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne
- imaging radar. Journal of Geophysical Research: Solid Earth, 117(B7). doi:10.1029/2012JB009250
- Maron, S. H., & Pierce, P. E. (1956). Application of Ree-Eyring generalized flow theory to suspensions
 of spherical particles. Journal of colloid science, 11(1), 80-95. doi:10.1016/0095-8522(56)90023-X
- 1179 Mastin, L. G. (2007). Generation of fine hydromagmatic ash by growth and disintegration of glassy
- rinds. Journal of Geophysical Research, 112(B2). doi:10.1029/2005jb003883
- 1181 Mastin, L. G., & Witter, J. B. (2000). The hazards of eruptions through lakes and seawater. Journal of 1182 Volcanology and Geothermal Research, 97(1-4), 195–214. doi:10.1016/s0377-0273(99)00174-2
- 1183 McPhie, J., Walker, G. P., & Christiansen, R. L. (1990). Phreatomagmatic and phreatic fall and surge
- 1184 deposits from explosions at Kilauea volcano, Hawaii, 1790 AD: Keanakakoi Ash Member. Bulletin of
- 1185 Volcanology, 52(5), 334-354. doi:10.1007/BF00302047
- 1186 Métrich, N., Bertagnini, A., & Di Muro, A. (2010). Conditions of Magma Storage, Degassing and
- 1187 Ascent at Stromboli: New Insights into the Volcano Plumbing System with Inferences on the Eruptive
- 1188 Dynamics. Journal of Petrology, 51(3), 603–626. doi:10.1093/petrology/egp083
- 1189 Métrich, N., Bertagnini, A., Landi, P., Rosi, M., & Belhadj, O. (2005). Triggering mechanism at the
- 1190 origin of paroxysms at Stromboli (Aeolian Archipelago, Italy): the 5 April 2003 eruption. Geophysical
- 1191 Research Letters, 32(10). doi:10.1029/2004GL022257
- Michon L. (2016). The Volcanism of the Comoros Archipelago Integrated at a Regional Scale. Active
 Volcanoes of the Southwest Indian Ocean. Active Volcanoes of the World. Springer, Berlin,
- 1194 Heidelberg. doi:10.1007/978-3-642-31395-0_21

- 1195 Michon, L., Di Muro, A., Villeneuve, N., Saint-Marc, C., Fadda, P., & Manta, F. (2013). Explosive 1196 activity of the summit cone of Piton de la Fournaise volcano (La Réunion island): a historical and 1197 geological review. Journal of Volcanology and Geothermal Research, 264, 117-133. 1198 doi:10.1016/j.jvolgeores.2013.06.012
- Morin J., Bachèlery P., Soulé H., Nassor H. (2016). Volcanic Risk and Crisis Management on Grande
 Comore Island. Active Volcanoes of the Southwest Indian Ocean. Active Volcanoes of the World.
 Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-31395-0_25
- Morin, J., Lavigne, F., Bachelery, P., Finizola, A., & Villeneuve, N. (2009). Institutional and social responses to hazards related to Karthala volcano, Comoros. Shima: The international journal of research into Island cultures, 3(1), 55-71
- Montanaro, C., Cronin, S. J., Scheu, B., Kennedy, B., Scott, B. J., & Dingwell, D. B. (2021). Host Rock
 Variability Powers the Diversity of Steam-Driven Eruptions. Geophysical Research Letters, 48(1),
 e2020GL089025. doi:10.1029/2020GL089025
- Nassor, H. (2001). Contribution à l'étude du risque volcanique sur les grands volcans boucliers
 basaltiques: le Karthala et le Piton de la Fournaise. PhD thesis, University of La Réunion
- 1210 Németh, K., & Kósik, S. (2020). Review of explosive hydrovolcanism. Geosciences, 10(2), 44.
 1211 doi:10.3390/geosciences10020044
- 1212 Nougier, J., Cantagrel, J. M., & Karche, J. P. (1986). The Comores archipelago in the western Indian
- 1213 Ocean: volcanology, geochronology and geodynamic setting. Journal of African Earth Sciences (1983),
- 1214 5(2), 135–145. doi:10.1016/0899-5362(86)90003-5
- Ort, M. H., & Carrasco-Núñez, G. (2009). Lateral vent migration during phreatomagmatic and
 magmatic eruptions at Tecuitlapa Maar, east-central Mexico. Journal of Volcanology and Geothermal
 Research, 181(1-2), 67-77. doi:10.1016/j.jvolgeores.2009.01.003
- Papale, P. (1999). Strain-induced magma fragmentation in explosive eruptions. Nature, 397(6718),
 425–428. doi:10.1038/17109
- 1220 Parcheta, C. E., Houghton, B. F., & Swanson, D. A. (2013). Contrasting patterns of vesiculation in low,
- 1221 intermediate, and high Hawaiian fountains: a case study of the 1969 Mauna Ulu eruption. Journal of
- 1222 Volcanology and Geothermal Research, 255, 79-89. doi:10.1016/j.jvolgeores.2013.01.016
- Parfitt, E. A. (1998). A study of clast size distribution, ash deposition and fragmentation in a
 Hawaiian-style volcanic eruption. Journal of Volcanology and Geothermal Research, 84(3-4), 197–
- 1225 208. doi:10.1016/s0377-0273(98)00042-0

- Pedersen, G. B. M., Höskuldsson, A., Dürig, T., Thordarson, T., Jonsdottir, I., Riishuus, M. S., ... &
 Schmith, J. (2017). Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure
 eruption at Holuhraun, Iceland. Journal of Volcanology and Geothermal Research, 340, 155-169.
 doi:10.1016/j.jvolgeores.2017.02.027
- Pioli, L., Erlund, E., Johnson, E., Cashman, K., Wallace, P., Rosi, M., & Granados, H. D. (2008).
 Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin Volcano 1943–1952
 (Mexico). Earth and Planetary Science Letters, 271(1-4), 359-368. doi:10.1016/j.epsl.2008.04.026
- Polacci, M., Corsaro, R. A., & Andronico, D. (2006). Coupled textural and compositional
 characterization of basaltic scoria: Insights into the transition from Strombolian to fire fountain
 activity at Mount Etna, Italy. Geology, 34(3), 201-204. doi:10.1130/G22318.1
- Poppe, S. (2012). Caldera collapse on basaltic shield volcanoes: analogue models compared to theKarthala caldera complex, Grande Comore. MSc report, Ghent University, Belgium
- Prata, A. J., & Kerkmann, J. (2007). Simultaneous retrieval of volcanic ash and SO2 using MSG-SEVIRI
 measurements. Geophysical Research Letters, 34(5). doi:10.1029/2006GL028691
- 1240 Ross, P. S., Dürig, T., Comida, P. P., Lefebvre, N., White, J. D., Andronico, D., ... & Gurioli, L. (2022).
- 1241 Standardized analysis of juvenile pyroclasts in comparative studies of primary magma fragmentation;
- 1242 1. Overview and workflow. Bulletin of Volcanology, 84(1), 1-29. doi:10.1007/s00445-021-01516-6
- Sable, J. E., Houghton, B., Wilson, C. J. N., & Carey, R. J. (2009). Eruption mechanisms during the climax of the Tarawera 1886 basaltic Plinian eruption inferred from microtextural. Studies in volcanology: the legacy of George Walker, (2), 129. doi:10.1144/IAVCEI002.7
- Sable, J. E., Houghton, B. F., Del Carlo, P., & Coltelli, M. (2006). Changing conditions of magma ascent
 and fragmentation during the Etna 122 BC basaltic Plinian eruption: Evidence from clast
 microtextures. Journal of Volcanology and Geothermal Research, 158(3-4), 333-354.
 doi:10.1016/j.jvolgeores.2006.07.006
- Savin, C., Grasso, J.-R., & Bachelery, P. (2005). Seismic signature of a phreatic explosion:
 hydrofracturing damage at Karthala volcano, Grande Comore Island, Indian Ocean. Bulletin of
 Volcanology, 67(8), 717–731. doi:10.1007/s00445-005-0411-0
- Savin, C., Ritz, M., Join, J.-L., & Bachelery, P. (2001). Hydrothermal system mapped by CSAMT on
 Karthala volcano, Grande Comore Island, Indian Ocean. Journal of Applied Geophysics, 48(3), 143–
 152. doi:10.1016/s0926-9851(01)00078-7

- Self, S., Kienle, J., & Huot, J. P. (1980). Ukinrek Maars, Alaska, II. Deposits and formation of the 1977
 craters. Journal of Volcanology and Geothermal Research, 7(1-2), 39-65. doi:10.1016/03770273(80)90019-0
- Shea, T. (2017). Bubble nucleation in magmas: a dominantly heterogeneous process?. Journal of
 Volcanology and Geothermal Research, 343, 155-170. doi:10.1016/j.jvolgeores.2017.06.025
- Shea, T., Houghton, B. F., Gurioli, L., Cashman, K. V., Hammer, J. E., & Hobden, B. J. (2010). Textural
 studies of vesicles in volcanic rocks: an integrated methodology. Journal of Volcanology and
 Geothermal Research, 190(3-4), 271-289. doi:10.1016/j.jvolgeores.2009.12.003
- Sheridan, M. F., & Wohletz, K. H. (1983). Hydrovolcanism: basic considerations and review. Journal of
 Volcanology and Geothermal Research, 17(1-4), 1-29. doi:10.1016/0377-0273(83)90060-4
- Siebert, L., Cottrell, E., Venzke, E., & Andrews, B. (2015). Earth's volcanoes and their eruptions: An
 overview. The encyclopedia of volcanoes, 239-255. doi:10.1016/B978-0-12-385938-9.00012-2
- Small, C., & Naumann, T. (2001). The global distribution of human population and recent volcanism.
 Global Environmental Change Part B: Environmental Hazards, 3(3), 93-109.
 doi:10.3763/ehaz.2001.0309
- 1271 Smietana, M. (2007). Etude pétrologique et volcanologique des dépôts des quatre dernières
 1272 éruptions du Karthala. MSc report, University of La Réunion, France, 51.
- Staudacher, T., Ferrazzini, V., Peltier, A., Kowalski, P., Boissier, P., Catherine, P., ... & Massin, F.
 (2009). The April 2007 eruption and the Dolomieu crater collapse, two major events at Piton de la
 Fournaise (La Réunion Island, Indian Ocean). Journal of Volcanology and Geothermal Research,
 184(1-2), 126-137. doi:10.1016/j.jvolgeores.2008.11.005
- Stovall, W. K., Houghton, B. F., Gonnermann, H., Fagents, S. A., & Swanson, D. A. (2011). Eruption
 dynamics of Hawaiian-style fountains: the case study of episode 1 of the Kīlauea Iki 1959 eruption.
- 1279 Bulletin of Volcanology, 73(5), 511-529. doi:10.1007/s00445-010-0426-z
- Strong, D. F., & Jacquot, C. (1970). The Karthala caldera, Grande Comore. Bulletin Volcanologique,
 34(3), 663–680. doi:10.1007/bf02596697
- 1282 Tanner, W. F. (1969). The particle size scale. Journal of Sedimentary Research, 39(2), 809-812.
- 1283 doi:10.1306/74D71D39-2B21-11D7-8648000102C1865D

- Taddeucci, J., Edmonds, M., Houghton, B., James, M. R., & Vergniolle, S. (2015). Hawaiian and
 Strombolian eruptions. In The encyclopedia of volcanoes (pp. 485-503). Academic Press.
 doi:10.1016/B978-0-12-385938-9.00027-4
- Thiéry, R., & Mercury, L. (2009). Explosive properties of water in volcanic and hydrothermal systems.
 Journal of Geophysical Research, 114(B5). doi:10.1029/2008jb005742
- 1289 Thivet, S., Harris, A. J., Gurioli, L., Bani, P., Barnie, T., Bombrun, M., & Marchetti, E. (2021). Multi-1290 parametric field experiment links explosive activity and persistent degassing at Stromboli. Frontiers 1291 in Earth Science, 9, 431. doi: 10.3389/feart.2021.669661
- Thivet, S., Gurioli, L., Di Muro, A., Derrien, A., Ferrazzini, V., Gouhier, M., ... & Arellano, S. (2020a).
 Evidences of plug pressurization enhancing magma fragmentation during the September 2016
 basaltic eruption at Piton de la Fournaise (La Réunion Island, France). Geochemistry, Geophysics,
 Geosystems, 21(2). doi:10.1029/2019GC008611
- Thivet, S., Gurioli, L., & Di Muro, A. (2020b). Basaltic dyke eruptions at Piton de La Fournaise: characterization of the eruptive products with implications for reservoir conditions, conduit processes and eruptive dynamics. Contributions to Mineralogy and Petrology, 175(3), 1-24. doi:10.1007/s00410-020-1664-5
- Thivet, S., Gurioli, L., Di Muro, A., Eychenne, J., Besson, P., & Nedelec, J. M. (2020c). Variability of ash
 deposits at Piton de la Fournaise (La Reunion Island): insights into fragmentation processes at
 basaltic shield volcanoes. Bulletin of Volcanology, 82(9), 1-20. doi:10.1007/s00445-020-01398-0
- 1303Thordarson, T., Larsen, G. (2007). Volcanism in Iceland in historical time: Volcano types, eruption1304styles and eruptive history. Journal of Geodynamics, 43(1), 0–152. doi:10.1016/j.jog.2006.09.005
- Toramaru, A. (2006). BND (bubble number density) decompression rate meter for explosive volcanic
 eruptions. Journal of Volcanology and Geothermal Research, 154(3-4), 303-316.
 doi:10.1016/j.jvolgeores.2006.03.027
- Truby, J. M., Mueller, S. P., Llewellin, E. W., & Mader, H. M. (2015). The rheology of three-phase
 suspensions at low bubble capillary number. Proceedings of the Royal Society A: Mathematical,
 Physical and Engineering Sciences, 471(2173), 20140557. doi:10.1098/rspa.2014.0557
- Tzevahirtzian, A., Zaragosi, S., Bachèlery, P., Biscara, L., & Marchès, E. (2021). Submarine morphology
 of the Comoros volcanic archipelago. Mar. Geol. 432. doi:10.1016/j.margeo.2020.106383.
- 1313 Van der Plas, L., & Tobi, A. C. (1965). A chart for judging the reliability of point counting results.
 1314 American Journal of Science, 263(1), 87-90. doi:10.2475/ajs.263.1.87

- 1315 Vergniolle, S., & Gaudemer, Y. (2012). Decadal evolution of a degassing magma reservoir unravelled
- 1316 from fire fountains produced at Etna volcano (Italy) between 1989 and 2001. Bulletin of volcanology,
- 1317 74(3), 725-742. doi:10.1007/s00445-011-0563-z
- 1318 White, J. D., & Valentine, G. A. (2016). Magmatic versus phreatomagmatic fragmentation: Absence of
- evidence is not evidence of absence. Geosphere, 12(5), 1478-1488. doi:10.1130/GES01337.1
- White, J. D., Schipper, C. I., & Kano, K. (2015). Submarine explosive eruptions. In The encyclopedia of
 volcanoes (pp. 553-569). Academic Press. doi:10.1016/B978-0-12-385938-9.00031-6
- White, J. D. L., & Houghton, B. F. (2006). Primary volcaniclastic rocks. Geology, 34(8), 677-680.
 doi:10.1130/G22346.1
- Wohletz, K., Zimanowski, B., & Büttner, R. (2013). Magma-water interactions. Modeling volcanic
 processes, 230-256. doi:10.1017/CBO9781139021562.011
- Wohletz, K. H., & McQueen, R. G. (1984). Volcanic and stratospheric dustlike particles produced by
 experimental water-melt interactions. Geology, 12(10), 591-594. doi:10.1130/00917613(1984)12<591:VASDPP>2.0.CO;2
- 1329 Zhang, Y. (1999). A criterion for the fragmentation of bubbly magma based on brittle failure theory.
 1330 Nature 402, 648–650.doi:10.1038/45210
- 1331 Xu, Z., & Zhang, Y. (2002). Quench rates in air, water, and liquid nitrogen, and inference of
 1332 temperature in volcanic eruption columns. Earth and Planetary Science Letters, 200(3-4), 315-330.
 1333 doi: 10.1016/S0012-821X(02)00656-8
- Zimanowski, B., Büttner, R., Dellino, P., White, J. D., & Wohletz, K. H. (2015). Magma–water
 interaction and phreatomagmatic fragmentation. In The encyclopedia of volcanoes (pp. 473-484).
 Academic Press. doi:10.1016/B978-0-12-385938-9.00026-2