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Abstract: The use of unmanned aircraft vehicles (UAVs) in volcanological contexts is a key challenge
in studying volcanoes and improving efficiency in the monitoring of volcanic activity. The coupling
of ground and satellite measurements has been reinforced at an intermediate scale thanks to UAV
measurements. Along with carrying out visible and infrared measurements, UAVs can conduct
geophysical measurements for more in-depth studies. Magnetic field measurements are a powerful
tool in volcanic contexts for (i) mapping structural contacts between formations of different ages or
type, and (ii) imaging deep thermal anomalies and intrusive systems. Here, we focus on magnetic
sensors, which are becoming operational, and in particular on a scalar system recently implemented
on a light drone that can be deployed quickly and efficiently in the field. This paper presents several
flight test results in order to discuss any artifacts of the UAV or environmental conditions in the
magnetic measurements. The results of the comparison between simultaneous UAV and ground
surveys are presented. We demonstrate that low altitude measurements are particularly relevant
to well-imaged magnetic anomalies and their variation through time in a volcanic context. Some
potential uses for this technology and associated applications are also discussed in the fields of
exploring and monitoring active volcanoes, for the 4D imaging of volcanoes.

Keywords: UAV magnetic measurements; near real time interpretation; volcano imaging and moni-
toring

1. Introduction

Aeromagnetic surveying techniques using UAV have been the focus of intense interest
over the last few years. Airborne geophysical measurements can be carried out using
this technology and can perform fast and safer prospecting in sensitive and dangerous
contexts prone to volcanic activity. A review of UAVs used for geohazard response is
provided by [1] and more specifically for volcanological applications by [2]. Among the
issues addressed by the UAVs is the fundamental need to image the structure of a volcano
in detail by mapping pre-existing structures, as well as characterizing the active ones and
their manifestations at various scales (e.g., intrusions at depth, lava flows, fissures and
domes, collapse structures, and associated deformation; see [2] and references therein).
Another important issue for volcano monitoring is mapping the spatial distribution of
thermal expressions in order to quantify heat flux associated with volcanic activity at the
surface [3]. The common goal for all these applications is to quantify the spatio-temporal
evolution of the volcano-related structures, especially through repeated surveys to monitor
volcanoes. In this context, great benefits can be derived from combining the low payload
of miniaturized geophysical instruments with the small programmable capacity of UAVs.
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In this study, we focus on UAV magnetic field measurements that can span both issues.
Firstly, magnetic field measurements are particularly relevant in volcanic contexts to map
structural contacts between formations of different ages or type [4]. Secondly, the strong
influence of temperature on the magnetic field measurements and associated local magnetic
anomalies provide more in-depth information on fluid transfer, and hydrothermal and
magma dynamics [5]. Lastly, the recent miniaturization of magnetic sensors now opens the
door to consistent and repeated magnetic surveys using UAVs in order to efficiently detect
any temporal changes in magnetic signals due to volcanic activity [6].

Here, we have selected one total field magnetometer, the QuSpin Total Field (QTFM),
which is particularly relevant for highly magnetized volcanic environments, being highly
compact and sensitive, as well as easy and fast to deploy in the field. We present a series of
validation tests as well as comparisons with ground measurements whose purpose were to
highlight the effects of the drone and environmental conditions on the UAV measurements,
and to quantify the sensitivity and resolution of the selected sensor in a volcanic context.

2. Geological Background and Choice of Field Sites

Due to its accessibility, the monogenetic volcanic field of the Chaîne des Puys (French
Massif Central) is an excellent experimental site to test and develop emerging approaches
such as UAV geophysical equipment. For our purposes, two test sites were selected
based on their strong but highly stable magnetization signatures (Figure 1). The first one
(Figure 1a) is well known for its magnetic signature since it is where the Laschamps
terrestrial magnetic field excursion was discovered [7]. This is particularly interesting
because of the high amplitude reverse magnetizations found within basaltic flows emplaced
during the normal Brunhes period. The second one, the Petit Puy de Dôme volcano
(Figure 1c) has been selected in order to address longer-term scientific issues relating to
active volcanoes. This Strombolian trachy-andesitic edifice is located on the northeastern
flank of the Puy de Dôme volcano (Figure 1a). Although its age is not known precisely [8],
lava flows were emplaced during the normal Brunhes period, between 42,000 and 35,000
years ago [9,10]. The summit of the volcanic complex Creux de la Berte-Petit Puy de Dôme-
Nid de la Poule, has been clearly affected by post-eruptive tectonics, forming a graben
zone oriented N10◦-N20◦ (e.g., [11]), as shown by the high-resolution LiDAR (Figure 1b).
This site is particularly interesting since high amplitude and long wavelength magnetic
anomalies are observed along these zones of deformation [12].
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3. Datasets: Ground versus UAV Magnetometer

Volcanic fields are commonly associated with very high amplitude and long wave-
length magnetic field values usually reaching several thousands of nanoTeslas (nT) in
magnitude. For volcano monitoring, repeated measurements with even higher resolution
measurements are required. This is now possible thanks to various technical developments
involving UAV magnetic sensors that enable more consistent and rapid surveys compared
with normal ground surveys [6].

3.1. UAV Magnetic Measurements

UAV magnetic surveys are progressively becoming common practice for two types
of sensors measuring either the total magnetic intensity (scalar magnetometers, optically
pumped alkali vapor, proton precession) or the three components of the magnetic field
(fluxgate magnetometers). Numerous studies have been carried out to compare the two,
with a focus on how to achieve high precision data at low altitude (e.g., [14–16]). Briefly,
fluxgate magnetometers need a scalar calibration to accurately compute the sensitivity, non-
orthogonality, and offset errors of the three components of the magnetic field in order to
compensate for the remanent and induced magnetization of the UAV after the flight. Con-
versely, absolute scalar magnetometers need to integrate an active compensation system or
simultaneous measurements of the total magnetic intensity using vector magnetometers
in order to correct the disturbances generated by the UAVs carrier [14]. However, recent
UAVs are mostly constructed from plastic and/or carbon, which have very low magnetic
signatures [2].

Here, we present a detailed analysis of a high-sensitivity and high-performance
scalar magnetometer, the QuSpin Total-Field Magnetometer (QTFM). The technology is
based on an optically pumped rubidium sensor that gives high-accuracy magnetic field
measurements with low intrinsic noise. The well-defined resonance frequency of the atoms
is directly proportional to the magnitude of the measured field, which is therefore obtained
directly by multiplying this frequency by a known scaling factor. An index of quality is also
provided for each magnetic measurement, corresponding to the signal strength that makes
it possible to check the quality of the measurements. Data with an index higher than 20 are
considered to be reliable. More specifically, it is designed to measure the total magnetic
field of the Earth, with a dynamic range from 103 to 105 nT, a field sensitivity lower than
1 pT/

√
Hz in the 0.1–100 Hz band, and a magnetic effect due to the heading error of less

than 3 nT without any calibration required. In terms of temporal resolution, it can therefore
resolve very minute field changes. The final assembly (Figure 2a) is composed of the sensor
head, the Electronic Control Unit (ECU), an Advanced Communication Board (ACB) and
we have added a GPS receiver (1s acquisition), leading to an overall weight of less than
200 g. It enables us to embed the whole system on a light, compact UAV, such as the DJI®

Mavic Pro2 we used, which can be quickly and efficiently deployed in the field (Figure 2a).
In addition, the low power supply needed for the sensor enables it to draw directly on the
UAV’s battery without adversely affecting the flight time.

Due to the very small size of the Mavic Pro2, the carrier should generate even less
magnetic noise compared to higher payload drones. Accordingly, we have chosen to install
the sensor on top of the drone, where the electromagnetic effects due to the rotors do not
significantly affect the field of measurements, as we demonstrate below.

3.2. Ground Magnetic Measurements

The UAV measurements were compared with high resolution ground magnetic ones,
carried out using the same portable Overhauser proton-precession magnetometer (GSM19,
GEM System) with an instrumental accuracy on the magnetic measurements of 0.2 nT.
Measurements were performed at a base station and in walking mode (0.5 s sampling
interval), depending on the field site and the tests involved. Here, too, the GPS position
was recorded simultaneously while surveying. We used part of the extensive magnetic
ground survey performed in 2014 at the scale of the Chaîne des Puys [12,17] with a sensor
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mounted on a 2.5 m surveying pole. Additional measurements were also performed in
2020, with a sensor mounted on a 1.8 m surveying pole, simultaneously with the UAV
surveys. This was to help quantify the resolution of the UAV measurements specifically in
a volcanic environment (signal/noise ratio, influence of the flight altitude, and directional
and environmental effects).
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Figure 2. (a) QuSpin Total Field (QTFM) magnetic sensor (mounted on a DJI Mavic Pro2) and (b) GSM 19 (GEM system)
ground magnetometer, both deployed in the field (petit Puy de Dôme volcano). Simplified diagrams of the Optically
Pumped Magnetometer (OPM, © QUSPIN) and the Overhauser technology are shown above and below the photos.

4. Results of the Magnetic Surveys and Tests

As described above, two sites were selected with two ancillary goals: 1) the site of
Laschamps to quantify the resolution and sensitivity of the sensor, and 2) the petit Puy
de Dôme volcano to provide a direct comparison between UAV and ground measure-
ments on map. In the following, we use ‘QTFM’ and ‘GSM19′ for the UAV and ground
sensors, respectively.

4.1. QTFM Resolution and Sensitivity (Laschamps Site)

A comparison between various sensors was carried out by [18] and we present here
some additional tests using the QTFM for volcano issues. Different tests were performed,
as shown in Figure 3a. The first test was designed to quantify the carrier, electronic, and
rotor effects on the magnetic measurements. The initialization of the QTFM before the UAV
started is marked by a quite constant value of around 40,000 nT ± 4 nT (Figure 3b). This
averaged value is the same for all flights before take-off (Figure 3c). When the rotors start
up, they create a spike and a signal depletion for a few tens of seconds before returning
to the initial mean value of about 40,000 nT. This confirms that the sensor has a highly
stable background value on the ground and that the rotors have a small one-off effect that
stabilizes in a couple of seconds. Additional tests were carried out by accelerating the speed
of the motors progressively while the drone was grounded. Measurement disturbances
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due to electromagnetism effects are related to variations in the power transmitted to the
rotors. Before stabilization, these measurements are associated with an index quality of less
than 30 and can therefore easily be ignored and removed from the final dataset. We show
below that such effects are reduced to such a degree in flight that they are not noticeable.
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Secondly, we compared the measurements recorded simultaneously by the QTFM
and the GSM19 in static mode at the same altitude, i.e., at 1.40 m above the ground. An
averaged difference of less than 300 nT is found between the two sensors (QTFM mean
value = 43,729 nT - GSM19 ground mean value = 43,445 nT, STD of the residuals ~ 150 nT).
This difference is correlated with a high STD for the QTFM value, and this feature is
probably related to the manual control of the altitude.

Several flights were performed in various modes (manual and automatic) and at
various altitudes in order to test the effects of speed and altitude on the magnetic mea-
surements (Figure 3c). Manual flights were performed at an altitude of about 5 m above
the ground and the automatic ones at 10 above the ground (the lowest at which to fly
automatically). Since it is very difficult to maintain a steady altitude manually, manual
flights are considered to fluctuate between 5 and 7 m in altitude. We noted a marked effect
during large and rapid variations in altitude (take-off, landing; Figure 3c and d). The effects
of altitude can also be tested by comparing the field values measured on the ground with
the measurements before take-off, when the drone has reached various altitudes above
a same point, and on landing after the flight. The magnetic field measurements increase
consistently but not linearly with increasing altitude (1.4, 5–7, and 10 m; Figure 3e) and
become very stable once the target altitude is reached. We also note that the signal quality
remains relatively high during the overall flight. It is slightly altered by sudden variations
in altitude due to manual handling of the altitude for manual flights, and to gusts of wind.
However, the measurements restabilize very quickly after each perturbation.

A clover leaf pattern flight was also performed to test the yaw, roll and pitch effects
on the measurements at various altitudes (Figure 3d). No significant effects were found
using these quadcopters. We did find very small directional effects of less than a few tens
of nT, as shown along the second part of the automatic flight performed at 10 m in altitude
(Figure 3f).

Lastly, in order to quantify the stability of the QTFM and the directional effects, we
estimated the difference in values at all crossing points for each flight. The statistics are
presented in Table 1 and show a higher shift in values at crossing points for manual flights.
This is not surprising since the altitude is manually controlled and varies between 5 and
7 m. An important point is the highly consistent overlap between the two automatic flights,
from the end of the first part to the beginning of the second one (3.6 nT).

Table 1. Statistics at crossing points for each flight.

Flight Altitude Items Min nT Max nT Mean nT STD

Manual 5–7 m 15 −351.25 433.53 5.2 255.5
Automatic part 1 10 m 11 −11.66 30.36 7.7 12
Automatic part 2 10 m 7 −148.33 175.5 31.3 111.1

Automatic parts 1 & 2 10 m 8 −92.23 59 0.52 51.9

4.2. Mapping Comparison (Petit Puy de Dôme Site)

Looking in greater detail, we now focus on the petit Puy de Dôme volcano (Figure 1),
which is already covered by a high-resolution ground magnetic survey [12]. Additional
ground measurements were performed simultaneously with the UAV surveys, all of them
using the GSM19 sensor. The main goal in this study was to compare the UAV and ground
measurements at the scale of a complex volcanic area. For this validation step, the flights
covered three main areas (Figure 4a) where major magnetic anomalies had been revealed
by Portal et al. (2016): in the continuation of the northeastern flank of the Puy de Dôme,
the petit Puy de Dôme summit, and along the main area of deformation close to the
Nid de la Poule crater. Due to flight time limitations, several flights were performed at
different points of take-off in automatic mode at an altitude of 10 m above the ground
(Figure 4a). After removing all data with a quality index lower than 20, the flights were
manually filtered to remove spikes, take-off and landing data. All flights were separately
leveled at crossing points. Lastly a spline filter was applied to remove high frequency noise
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in the data. A similar treatment was applied to the ground measurements by filtering the
data based on their signal quality index (SQ) linked to each measurement. As detailed in
Portal et al. (2016), the SQ factor limit was fixed to 7. All data were also filtered for spikes
and then spline filtered. The “large scale” dataset was acquired at 2.5 m above the ground
in 2014, and more locally at 1.80 m above the ground in 2020. Accordingly, the final dataset
was compiled at an altitude of 2.5 m above the ground for consistency, and to reduce
the effect of shallow noises that appears when measurements are performed closer to the
surface. For each dataset, QTFM and GSM19, due to the commonly observed very large
amplitude of the magnetic signal in this type of volcanic context (up to several thousands of
nT, e.g., Piton de la Fournaise volcano [4]; Kilauea volcano [19]), no corrections were made
for the diurnal variation (a few tens of nT; [19]). An overall comparison was performed on
the map (Figure 4b). Due to the QTFM acquisition at different altitudes, all datasets were
merged using the Oasis Montaj stitching subroutine (Grid Knitting, Geosoft 2013) which is
particularly suitable for joining grids that overlap at different altitudes. The suture method
was selected for the grid stitching process which also estimates the appropriate static shift
to apply to the stitched grid. This method is used to define a line to determine where
the grids will be joined using a multi-frequency approach. In more detail, an FFT-based
approach is applied to the different grids to automatically remove trends between one
grid and another. Secondly, suture paths are defined automatically between each grid
since we merge several grids together with multiple suture lines. The differences along
these paths are extracted and split using a Fourier transform function into one curve per
frequency. For each frequency, a grid is computed on both sides of the suture line to
define a proportional correction for each frequency. These corrections are then added up to
compute a correction grid which is applied to the initial dataset according to a user-defined
weighting [18]. Since the quality of the grids is similar, we use the default weighting that is
equal between the grids. The final map (Figure 4b) is then compared to the ground one
computed at an altitude of 2.50 m above the ground. At the first order there is very good
consistency between the two measurements. The high amplitude and long wavelength
positive anomalies observed in the northeastern continuation of the Puy de Dôme volcano
(anomaly M2 in Portal et al., 2016) and in the area of Nid de la Poule (anomaly M3 in [12])
are well imaged by the QTFM measurements. These two observations were interpreted as
the effect of a large intrusion of a viscous trachytic magma in depth overlain by more mafic
bodies. Lower amplitude small wavelength anomalies are also identified in both datasets
(anomalies M4a to c).

A more detailed comparison between the QTFM and GSM19 measurements is pro-
vided along a south to north profile crossing the maxima of anomalies M2 and M3
(Figure 5). The shift between both datasets is related to the difference in altitude of
the surveys, as already inferred from the tests on the scale of the Laschamps site. Since
magnetic data are difficult to extend downwards and drape on the topography at a lower
altitude, the ground measurements were extended upwards at different altitudes depend-
ing on the elevation of the area. Therefore, the averaged altitude at which the QTFM
measurements are taken are considered to be gridded. For the southern part of the profile,
in the continuation of the northeastern flank of the Puy de Dôme volcano (anomaly M2),
QTFM measurements are thought to be knitted at an averaged altitude of around 1320 m.
In the area of Nid de la Poule (anomaly M3), a lower altitude is expected, of around 1250 m.
A high consistency is demonstrated between the two datasets in terms of both amplitude
and wavelength of the considered anomalies.
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5. Discussion and Conclusions for Potential Applications

The tests carried out to validate the QTFM sensor onboard a light drone led us to
several conclusions:

1. UAV carrier has a small but constant electromagnetic effect on the measurements.
2. Environmental effects, such as wind, does not seem to clearly affect the measurements.

Gusts of wind (which generate variations in the rotor speed) can create noise and
high amplitudes, but they are not critical in terms of the data homogeneity. According
to the tests carried out, it mainly affects the quality index, as shown by spikes on
the recording.

The directional effects are very low compared with the amplitude of the measured
signal, but automatic flights should be favored in order to limit the effects of altitude varia-
tions.

The maps comparison shows a very good level of consistency between the ground
and drone measurements, with a maximum difference of the total magnetic field of 300 nT
between the ground and UAV surveys. This is very low compared to the large amplitudes
of the field variations.

Accordingly, this study confirms the high sensitivity of the QTFM sensor, in particular
for achieving the high amplitudes of the magnetic signal commonly recorded in volcanic
contexts, without any calibration procedure before or after the flight. The main advantage
is therefore to provide near real time interpretation of the data.

Since merging several surveys performed at different altitudes remains due to small
variations in altitude during the flights, it is necessary to use a terrain follow up algorithm.
The main goals are now to remain at a constant distance from surveyed structures and to
provide higher resolution detection and imaging without any detrimental loss of informa-
tion. This will make it possible to compare ground measurements that have been extended
directly upwards with UAV ones at a similar altitude above the topography.

Thanks to the easy, practical and rapid response of the sensor, there are numerous
promising applications. Because magnetization is very sensitive to alteration (e.g., [20]) and
temperature (e.g., [21]), repeated UAV magnetic surveys will be powerful for imaging and
monitoring the thermal state of the volcanic edifice at depth [5]. It will also be suitable for
mapping buried hydrothermal alteration (e.g., [22]) and associated faulting. One interesting
feature is therefore to envision loading the QTFM with an IR sensor in order to record
magnetic and temperature measurements simultaneously at the surface. For instance, this
could be very useful for following the evolution of the hydrothermal system of the Kilauea
summit caldera since its collapse in 2018 [23], a highly unstable area that is now inaccessible
except via UAV measurements.
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