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Abstract. Reconstructing high-quality magnetic resonance images (MRI) from
undersampled raw data is of great interest from both technical and clinical point
of views. To this date, however, it is still a mathematically and computationally
challenging problem due to its severe ill-posedness, resulting from the highly
undersampled data. Whilst a number of techniques have been presented to improve
image reconstruction, they only account for spatio-temporal regularisation, which
shows its limitations in several relevant scenarios including dynamic data. In this work,
we propose a new mathematical model for the reconstruction of high-quality medical
MRI from few measurements. Our proposed approach combines - in a multi-task and
hybrid model - the traditional compressed sensing formulation for the reconstruction
of dynamic MRI with motion compensation by learning an optical flow approximation.
More precisely, we propose to encode the dynamics in the form of an optical flow model
that is sparsely represented over a learned dictionary. This has the advantage that
ground truth data is not required in the training of the optical flow term. Furthermore,
we present an efficient optimisation scheme to tackle the non-convex problem based
on an alternating splitting method. We demonstrate the potentials of our approach
through an extensive set of numerical results using different datasets and acceleration
factors. Our combined approach reaches and outperforms several state-of-the-art
techniques for multi-tasking reconstruction and other classic variational reconstruction
schemes. Finally, we show the ability of our technique to transfer phantom based
knowledge to real datasets.

Keywords: MRI Reconstruction, Optical Flow, Dictionary Learning, Multi-Task Model
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1. Introduction

The problem of reconstructing high quality images, from dynamic Magnetic Resonance
(MR) measurements, whilst reducing the inherent involuntary motion during the
acquisition is a central topic in the community. Although it has been widely explored,
it is still considered an open problem that we address in this work. This central topic
in MRI comes as a consequence of the long acquisition time, which makes the image
formation highly sensitive to motion leading to image degradation and compromising
the expert interpretation [67, 88].

There are several attempts in the body of literature, to improve the reconstruction
under inherent motion. A set of solutions to reduce motion artefacts includes breath-
holding techniques [59, 88, 23] and gating strategies [70, 60, 35, 25, 33, 88]. The former
rely on the patients’ ability to hold their breath. However, the time needed to form
an image is much longer than the average time a human being is capable of holding
its breath [59]. The latter aim at tracking either the breathing or the cardiac cycles
via external sensors. However, the co-registration of these signals to the image ones is
still challenging [29, 88] and these techniques are effective only for perpetual motions
disregarding any other involuntary motion or arrhythmia [88] and thus are only partially
accurate.

The idea of accelerating the MRI acquisition by using under-sampling strategies
comes as a complement or alternative to the aforementioned techniques. This option
has gained great interest since the seminal paper [43] in which Compressed Sensing
techniques [15, 11] were successfully adapted to the MRI reconstruction problem and
adopted in clinical practice. CS relies on the property of MR images to be sparse in
a transformed domain. Examples are [45, 55, 44, 40, 37, 21, 34, 39], in which authors
applied several known or learnt transformations alone or in combination with parallel
imaging.

Extending the idea of CS, another set of works has been devoted to low-rank
matrix completion by taking advantage of the highly redundant information present in
dynamic MRI sequences. For example, the work of Liang [37], in which a singular value
decomposition (SVD) is used to compute the temporal basis functions, has paved the
way to techniques relying on Principal Component Analysis (PCA) to reconstruct from
under-sampled measurements [57, 18, 80, 1]. Other works have proposed to incorporate
local low rank constraints in small regions to reduce the computational load [77, 90, 49],
or a combination of sparse and low-rank constraints e.g. [39, 48, 91] However they come
at the expense of block artefacts [68].

Previous techniques were devoted to address a single task to improve MRI
reconstruction. Another set of techniques were devoted to design models that seek
to take advantages of the shared information among several tasks. Following this
perspective, different works have been reported using so-called joint models, in which
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the main idea is to intertwine several related tasks into a single unified functional. The
potential in terms of image quality improvement whilst reducing error propagation has
been demonstrated in [3, 42, 12, 92]. There are several works that follow this idea
either for reconstructing a single image e.g.[52, 14, 83, 61, 28] or a full image sequence
e.g. [38, 50, 51, 9, 89, 92]. Some of them rely on prior and external knowledge to
generate motion models from sensors, navigators, etc. [50] or driven by previously
computed eigenmodes of cardiac and respiratory motions [51]. Iterative schemes, with
two coupled inverse problems but not derived from the same original optimisation
problem, also aim at computing simultaneously the motion map and the reconstructed
images e.g. [65, 66, 19, 2, 63]. These models alternate between the resolution of
an independent motion estimation problem, and the resolution of a motion informed
reconstruction of MR sequences.

Motivated by the success of joint models, in this work, our proposed approach
follows the same perspective as the works of [3, 92, 9], in which Compressed Sensing
and Optical Flow (OF) principles are combined. We emphasise that the main difference
stands in the optical flow formulation. That is – we propose a new optimisation
model, in which the flow estimation is encoded in a sparse representation over a learnt
dictionary. More precisely, we propose a new multi-task framework for reconstructing
high quality MR images from reduced measurements. Our approach seeks to improve
the reconstruction quality through a better optical flow estimation using a learning-
based approach. More precisely, we plug-in to the reconstruction energy a learnt sparse
optical flow loss. Our optical flow model is computed as a sparse linear combination of
basis functions from a learnt dictionary. Whilst these are important part of our work,
our contributions are as follows:

• We introduce a unified joint and hybrid (i.e. a model that combines variational
and learning strategies) model for fast MRI reconstruction, which we called MRI
Reconstruction with Dictionary Learnt Motion Compensation (MRIR-DLMC), in
which we highlight:

– We propose a mathematical model that simultaneously performs the MRI
reconstruction using Compressed Sensing principles and motion estimation via
a TV-L1-based dictionary learning approach for Optical Flow estimation.

– We propose a tractable and efficient numerical scheme to solve the initial
optimisation problem.

– We show that our proposed technique is able to do transfer knowledge from
phantom to realistic data.

• We extensively evaluate our approach using several datasets and acceleration
factors. From the results,

– We show that integrating motion information in the Compressed Sensing MRI
reconstruction model improves the overall quality of the reconstructed sequence
in comparison to mathematical variational state of the art MRI reconstruction
techniques.
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– We demonstrate that the quality of the motion model is linked to the quality of
the reconstruction, and that learned parametrisation for the motion as the one
proposed in this paper outperforms simple motion models with handcrafted
regularisation on the velocity field.

– We demonstrate generalisation properties by showing improved performance
over four datasets and using several undersampling factors.

2. Related Work

The body of literature has reported several techniques for Fast MRI reconstruction using
either single or joint models. In particular, the focus of our technique is joint models
along with learning optical flow techniques. In this section, we review the literature in
turn.

Joint Models for Fast MRI reconstruction. The literature has reported
promising techniques for fast MRI reconstruction, which mainly focuses on exploiting
solely compressed sensing principles e.g. [45, 55, 44, 40, 37, 21, 34, 39]. Another set of
researchers have explored different alternatives the so-called joint models. The core idea
of this perspective is to share knowledge from different tasks to improve performance.
A challenging part when designing joint models is to select which tasks and how they
will be sharing information. In this work, we are particularly interested in the setting
where one has dynamic MRI sequences. To this purpose, we include motion estimation
as proxy for improving MRI reconstruction. Following this perspective, different works
have been reported using so-called joint models, in which the main idea is to intertwine
several related tasks into a single unified functional. The potential in terms of image
quality improvement whilst reducing error propagation has been shown in [3, 42, 12, 92].
There are several works that follow this idea either for reconstructing a single image
e.g. [52, 14, 83, 61, 28] or a full image sequence e.g. [6, 79, 10, 51].

Authors of that [38] proposed the self-contained Deformation Corrected-
Compressed Sensing (DC-CS) model relying on CS principles along with a Demons
algorithm to estimate the motion. More recently, Zhang et al. in [89] extended this
model to the concept of Blind Compressed Sensing, in which the transformation leading
to sparsity is also estimated. In particular, our proposed approach follows the same
perspective as the works of [3, 92, 9], in which CS and OF principles are combined. We
emphasise that the main difference stands in the optical flow formulation. That is- we
propose a new optimisation model, in which the flow estimation is encoded in a sparse
representation over a learnt dictionary.

Motion Estimation. There are two popular strategies for motion estimation
based either on registration [72] or optical flow [20]. In this work, we focus on the latter.
Optical flow relies on the brightness constancy assumption, and consists in estimating
the velocities of movement of brightness patterns in an image. Optical flow is a very
ill-posed problem due to the aperture problem. In the body of literature, there are two
main categories of techniques when designing optical flow: sparse and dense optical flow
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techniques e.g. [86, 26, 73, 87, 41]. Whilst sparse optical flow seeks to estimate the
relative motion of some selected features of interest, dense optical flow outputs perpixel
estimation of the motion in the scene. In this work, we focus on dense estimation - that
is, we seek to compute a pixelwise flow estimation.

Variational approaches were first introduced to solve the OF problem, starting with
the seminal work of Horn and Schunck [30]. In that work, authors introduced an L2

fidelity term coming from the linearised brightness constancy assumption and an L2

regularity term on the flow fields to ensure smoothness and make the problem well-
posed. Since then, there has been a large body of works trying to improve the quality
and the accuracy of the obtained flows in a variational setting [20, 58].

More recently, several authors have explored the optical flow problem using tools
drawn from machine learning. Astonishing results have been reported using deep
learning either for normal scene conditions e.g.[75, 16, 31] or extreme scenarios e.g.[36].
We remark that our purpose in this work is different from those works. Whilst they aim
to improve the optical flow estimation itself, our goal is instead to use OF as proxy to
improve the MRI reconstruction. In particular, we are interested in learning the optical
flow using sparse coding. Our motivation to follow this philosophy, is given by the
promising results reported in image restoration e.g [17, 46]. The central idea of sparse
coding is to find a dictionary such that each measurement can be well-approximated by
a sparse linear combination of atoms (i.e. elements of a dictionary).

There have been several attempts to learn a sparse optical flow. The works of
that [76, 71] used known basis functions whilst authors in [32] learned an overcomplete
dictionary coming either from ground truth set or from classic variational estimation
[27, 86]. The major drawback of these techniques is the lack of convergence guarantee
but this has been overcome by the work of Bao [5]. In that work, authors introduced
a globally convergent algorithm to solve generic dictionary learning and sparse coding
problems. Whilst sparse coding has been widely explored for natural images, sparse
optical flow models have yet to be tackled in the medical domain and only few works
have been reported e.g. [56].

3. MRIR-DLMC for Fast MRI: Proposed Model

This section is devoted to the depiction of our joint and hybrid model for simultaneous
MRI reconstruction and motion estimation calledMRI Reconstruction withDictionary
Learnt Motion Compensation MRIR-DLMC. The section is organised in three key
parts: i) the CS MRI reconstruction scheme ii) our proposed approach for learning
optical flow; and iii) our combined MRI reconstruction and motion estimation model.

3.1. Compressed Sensing MRI Reconstruction

We consider a dynamic MRI setting, where we denote by f the time sequence of raw
data collected in a spatial-frequency space (k, t-space). The associated forward model –
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relating the MR measurements f with m the magnetisation image showing the anatomy
of the patient in the image domain Ω, being a connected bounded open subset of R2 –
reads:

f(k, t) =

∫
Ω

m(x, t) exp(−jkT · x) dx + η(k, t), (1)

where x is the spatial coordinate and k the frequency variable. Moreover, t is the
temporal coordinate varying from 0 (initial acquisition time) to T (final acquisition
time), η is the inherent acquisition noise which can be modelled as Gaussian noise for
the MRI application and m is the image sequence of a moving part of the body.

For fast MRI reconstruction, one seeks to reconstruct the images from a highly
reduced number of acquired measurements, which translates into f(k, t) being available
only for a small amount of k ∈ R2. To do this, we denote by K the undersampled
Fourier operator, that is to say the composition of a sampling mask also encoding coil
sensitivities (i.e. sensitivity profile of a phased array coil element) with the Fourier
transform. Nevertheless, the resulting inverse reconstruction problem becomes highly
ill-posed and can only be solved by introducing a prior knowledge on the nature of the
reconstructed images.

The MRI reconstruction from highly undersampled data, using compressed sensing
principles, was first investigated in the seminal paper of Lustig [43]. The main idea of
CS in MRI is to take advantage of the natural sparsity of images in some transform
domains, and especially the sparsity of MRI in the Wavelet domain. One can use the L1

norm as a sparsity measure for which the unconstrained CS reconstruction minimisation
problem reads:

inf
m
E(m) =

∫ T

0

1

2
‖Km− f‖2

L2(R2) + λ1TV (m) + λ2 ‖Ψm‖L1(R4) dt, (2)

where TV (m) denotes the spatial total variation to enforce sparse edges and Ψ indicates
the Wavelet transform. Moreover, λ1 and λ2 are non-negative tuning parameters. The
first term is a matching criterion to enforce closeness between the reconstructed images
m and the MR measurements f , while the remaining terms regularise the images by
adding prior knowledge and making the problem well-posed. In this work, we focus on
the total variation combined with the Wavelet transform favouring better medical image
reconstruction with sharp edges, but this can be replaced by any other transformation
easily such as the Fourier transform or the discrete cosine transform.

Although the body of literature has shown the potentials of using the model
described in (2), it is not time dependent and therefore is not performing well enough
in dynamic settings, where motion and temporal redundancy are involved. With the
purpose to improve the reconstruction quality, one can account for the inherent motion
in the scene via motion estimation that can be computed using Optical Flow (OF). In
what follows, we describe our new approach to improve OF approximation via a sparse
representation in a learnt dictionary, and show its connection with MRI reconstruction.
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3.2. Motion Estimation: Learning Optical Flow

Optical flow (OF) consists in estimating the vector field of apparent velocities of
brightness patterns between consecutive frames. Assuming small displacements, the
essential brightness constancy assumption can be linearised and reads:

∂m

∂t
+ u · ∇m = 0, (3)

where m = m(x, t) denotes the dynamic sequence of images with ∂m
∂t

being the temporal
derivative of the image sequence, ∇m the spatial gradient, and u = [ux, uy]

T the
unknown motion field. To deal with the aperture problem, one can embed (3) in a
variational formulation which reads, in its generic form:

inf
u
E(u) =

∫ T

0

Ed(u) + λEr(u) dt, (4)

where Ed is a fidelity term of the form Ed(u) = φ(∂m
∂t

+u·∇m), and Er is a regularisation
of the flow field to make the problem well-posed. In their seminal paper [30], Horn and
Schunck set φ(·) = ‖ · ‖2

L2(Ω) and Er(·) = ‖∇ · ‖2
L2(Ω). Moreover, in the work of [58]

authors proposed φ(·) = ‖ · ‖L1(Ω) and Er(·) = TV (·), which is known as the TV − L1

formulation. They show that this formulation leads to better and more accurate results
than the ones in [30]. In the remainder of the paper, we build upon the TV −L1 model.

Remark. The brightness constancy assumption usually is not perfectly fulfilled for real-
world problems, e.g. [74, 84], and in particular, with medical data due to the rapid
changes in the scene (organs). However, we show that this assumption still enables us
to get a good approximation of the observed motion, for our application at hand, to
improve the MRI reconstructions. A relaxation of this assumption [24, 7], for further
correcting the motion estimation, to obtain a better reconstruction quality will be the
object of future work. Some examples include extending the brightness constancy to high-
order constancy [7], integrating local neighbourhood information [8] and using high-order
random field [64].

Whilst the variational formulations for the OF estimation is limited by its own
design, one can further improve the approximation of the motion scene by expressing
the flow field as a sparse linear combination of basis functions in either off-the-shelf
dictionaries [76, 71] or learnt ones [32, 86, 27]. Inspired by these works, we seek to
increase the accuracy of the OF estimation by encoding it in a sparse representation
over a learnt over-complete dictionary. From now on, to comply with the dictionary
learning and sparse representation philosophies, we consider a discrete spatial setting.
The overcomplete flow dictionary D is thus learnt from a partition P of an initial flow
estimation decomposed into small overlapping patches. In here, we define the patch
extracting operator as Rp at pixel p. We follow the strategy from [32], in which the
flow dictionary D is simplified by decoupling the horizontal and vertical motions as
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D =

[
Dx 0

0 Dy

]
, where both Dx and Dy are composed of Nd elements such that Nd×|P|

is larger than the image dimension. Formally, this sparse representation over a learnt
dictionary is incorporated in the variational setting through this additional term:

Esparse(u, D, a) =
∑
p∈P

‖Rpu−Dap‖2
F + τ‖ap‖1 (5)

s.t. ‖Dx,i‖2 ≤ 1, ‖Dy,i‖2 ≤ 1, 1 ≤ i ≤ Nd,

where ‖ · ‖F is the Frobenius norm and ‖ · ‖1 is the l1 norm. The new variable
ap = ((ax, ay)p)T represents the sparse coefficients of the patch Rpu in D. In the
model (5), the first term ensures the flow field is given by a linear combination of basis
functions in the dictionary whilst the second one enforces sparsity of the coefficients. At
the learning level, the model (5) can be solved using either ground truth when available
[32], or from an initial approximation of the flows using a variational model [86, 27]. The
assumption of having ground truth is not realistic in the medical domain, and therefore
we follow the second strategy. Motivated by the results in [86, 27] showing better results
with a dictionary learnt from a classic variational formulation than the initial ones, we
propose to build our dictionary upon the TV −L1 model, and thus consider the following
discrete optical flow formulation:

EOF (u, D, a) =

∫ T

0

λ3

∥∥∥∥∂m∂t +∇m · u
∥∥∥∥

1

+ λ4TV (u) +
∑
p∈P

λ5‖Rpu−Dap‖2
F + λ6‖ap‖1

(6)

s.t. ‖Dx,i‖2 ≤ 1, ‖Dy,i‖2 ≤ 1, 1 ≤ i ≤ nd,

where λ3, λ4, λ5 and λ6 > 0 are weighting parameters to balance the influence of each
term. The constraints on D ensure uniqueness of the solution. Given a reference optical
flow uref , the dictionary is learnt as the result of the following minimisation problem
under constraints:

E(D, a) =

∫ T

0

‖Rpu
ref
p −Dap‖2

F dt, (7)

‖Dx,j‖2 ≤ 1, ‖Dy,j‖2 ≤ 1, 1 ≤ j ≤ Nd,

‖ap‖0 ≤ k0 ∀p ∈ P ,

where the pseudo norm l0 counts the non-zero elements of ap. The model in (7) uses a
constraint on a rather than the l1 relaxation of the l0 pseudo-norm as it shows better
numerical performances.

3.3. Joint Model: Learning Optical Flow for MRI Reconstruction

The potentials of CS MRI reconstruction and optical flow for motion estimation have
been demonstrated separately in the previous subsections. We now demonstrate
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the strong correlation between both tasks – as motion estimation depends on the
reconstruction quality, and the reconstruction accuracy can be substantially improved
by a good approximation of the motion scene – and show their mutual benefit by
intertwining them. This statement has been shown in recent works such as [3, 4, 9]
that have inspired our work, in which one seeks to solve a single optimisation model
unifying both tasks in a pure variational setting. More precisely, the two formulations
for CS MRI reconstruction and TV-L1 Optical Flow estimation can be cast in a unified
optimisation problem as:

inf
m,u

∫ T

0

1

2
‖Km− f‖2

L2(R2) + λ1TV (m)p + λ2‖ψm‖pL1(R4) + λ3

∥∥∥∥∂m∂t + u · ∇m
∥∥∥∥
L1(Ω)

(8)

+ λ4TV (u)q dt,

with p > 1 and q ≥ 1. For now, we have just added the sparsity constraint on the
Wavelet domain of the reconstruction sequence in a purely variational setting compared
to [9, 3, 4]. The existence theorem given in [9] still holds.

Theorem 1 (Existence of minimisers). Let the assumptions of [9, Theorem 3.1] be
satisfied (the MRI reconstruction operator fulfilling the required properties). Then there
exists a minimiser of the full continuous model (8) in the space

{
(m,u) : m ∈ Lp(0, T ;BV (Ω)), u ∈ Lq(0, T ;BV (Ω))2, ∇ · u ∈ Θ

}
,

Θ being a Lebesgue space including an upper bound constraint.

Proof. The proof is adapted from the one of [9, Theorem 3.1] and we just have to prove
the weak-∗ lower semi-continuity property of the additional term ‖ψm‖Lp(0,T ;L1(R4)).
Since the Wavelet transform is a linear operator in each direction defined by a
convolution, then it is a strongly continuous operator from L2(R2) to L2(R4). Also,
since the spatial dimension is two, we have the compact embedding of BV (Ω) into
L2(Ω) and using the continuous embedding of L2(R4) in L1(R4), one can prove the
weak-∗ lower semi-continuity of the additional term ‖ψm‖Lp(0,T ;L1(R4)).

We remark that unlike the models where authors applied directly the TV − L1

optical flow model, we seek to further improve that formulation via a learnt dictionary.
To do this, we propose to encode the flow estimation in a sparse representation over a
learnt dictionary. We therefore consider this new hybrid model mixing continuous and
discrete variables and terms:

inf
m,u,D,a

E(m,u, D, a) =

∫ T

0

1

2
‖Km− f‖2

F + λ1TV (m)p + λ2‖ψm‖p1 (9)

+ λ3‖
∂m

∂t
+∇m.u‖1 + λ4TV (u)q dt

+
Nt−1∑
k=1

∑
p∈P

λ5‖Rp,ku−Dap,k‖2
F + λ6‖ap,k‖1,
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where Nt is the discrete total number of frames. We still have the existence of minimisers
theorem.

Theorem 2 (Existence of minimisers). Let the assumptions of [9, Theorem 3.1] be
satisfied (the MRI reconstruction operator fulfilling the required properties). Then there
exists a minimiser of (9) in the space{

(m,u, D, a) : m ∈ Lp(0, T ;BV (Ω)), u ∈ Lq(0, T ;BV (Ω))2, D ∈ RP 2
s×Nd ,

a ∈ RNd×Pn×(Nt−1), ∀1 ≤ j ≤ Nd, ‖Dj‖ ≤ 1, ∇ · u ∈ Θ
}
,

Θ being a Lebesgue space including an upper bound constraint, Rp,k :

Lq(0, T ;BV (Ω))2 → RP 2
s being the discretisation (L2-mean over the spatio-temporal

pixel domain) patch extractor at pixel p ∈ P with Ps the patch size and at discrete time
k, Ap,k being a vector of size Nd corresponding to the sparse coefficient for the patch
centered at pixel p ∈ P and for the time k.

Proof. The proof follows the same arguments as previously. Indeed, the coercivity as
well as the weak and weak-? lower semi-continuity of the continuous terms remain true
since all the added terms are non-negative. We therefore focus only on the discrete terms
and variables. Let (mn,un, Dn, an) be a minimising sequence in the space described in
the theorem. We thus have that ‖Dn‖ is uniformly bounded with respect to n by
definition of the functional space. We also have this coercivity inequality :

E(mn,un, Dn, an) =

∫ T

0

1

2
‖Kmn − f‖2

F + λ1TV (mn)p + λ2‖ψmn‖p1

+ λ3‖
∂mn

∂t
+∇mn.un‖1 + λ4TV (un)q dt

+
Nt−1∑
k=1

∑
p∈P

λ5‖Rp,kun −Dap,k,n‖2
F + λ6‖ap,k,n‖1,

≥
Nt−1∑
k=1

λ6‖ap,k,n‖1.

E is proper (by taking u = 0,m = 0, D = Id, a = 0), E(u,m, D, a) =
∫ T

0
‖f‖2

L2(Ω) dt),
positive with a finite infimum. Thus for n large enough, we get E(mn,un, Dn, an) ≤
infu,m,D,aE(u,m, D, a)+1 < +∞. Therefore (an) is uniformly bounded according to n.
According to Bolzano-Wierstrass theorem we can thus extract subsequences from (an)

and (Dn) that are convergent. We name D̄ and ā the limits of these subsequences still
denoted (Dn) and (an) for the sake of conciseness.
Thanks to [9] and the previous proof, it only remains to prove the weak-? lower semi-
continuity of λ5‖Rp,kun − Dap,k,n‖2

F with respect to un and its lower semi-continuity
with respect to Dn and an. The continuity of the last term is obvious by continuity of
the L1 norm in the discrete case. By definition of the operator Rp,k, it is based on the
L2 norm which is weak-? lower semi-continuous (see [9] for more details). The matrix
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product and the norm are continuous which leads to the weak-? lower semi-continuity
of λ5‖Rp,kun −Dap,k,n‖2

F with respect to un and its lower semi-continuity with respect
to Dn and an. This concludes the proof.

We then follow the discretise-then-optimise strategy and derive the discrete
formulation of our proposed joint and hybrid model after the learning step of the
dictionary reads:

inf
m,u,D,a

E(m,u, D, a) =
Nt−1∑
k=1

1

2
‖Kmk − fk‖2

F + λ1TV (mk) + λ2‖ψmk‖1 (10)

+ λ3‖
∂mk

∂t
+∇mk.uk‖1 + λ4TV (uk)

+
∑
p∈P

λ5‖Rp,kuk −Dap,k‖2
F + λ6‖ap,k‖1 dt

Since all the norms are equivalent in the discrete setting, we have removed the p
and q coefficients. We now turn to the numerical resolution of this challenging problem.

4. MRIR-DLMC for Fast MRI: Numerical Realisation

Due to the non-convexity of the energy coming from the brightness constancy
assumption, its non-differentiability with the TV and L1 terms, and complex linear
operators applied to the unknowns (K and ψ), the problem eq. (10) is very challenging
to solve numerically. We thus designed an alternating minimisation scheme, to solve our
new hybrid model, in which we fix all the variables except one and solve the simplified
sub-problem for each unknown in turn. The algorithm is therefore divided into four
steps which will be described in the following sub-sections, each one relying on the
primal dual Chambolle and Pock algorithm [13]. We now recall the general setting of
this method. The Chambolle and Pock procedure aims at solving the nonlinear primal
problem minx∈X F (Cx) +G(x) with the following primal dual formulation:

min
x∈X

max
y∈Y
〈Cx, y〉+G(x)− F ?(y). (11)

The hypothesis are: X and Y are finite dimensional real vector spaces, the map
C : X → Y is a continuous linear operator, G : X → [0,+∞[ and F ? : Y → [0,+∞[

are proper, convex, lower-semicontinuous functions and F ? is the Legendre-Fenchel
conjugate of F . The following (1) converges towards a saddle-point of (11). The
resolvent operators defined through

x = (I + τ∂F )−1(y) = arg min
x

{
‖x− y‖2

2τ
+ F (x)

}
. (13)

Our reconstructed sequence is initialised as the zero filling inverse Fourier reconstruction
from the sub-sampled measurements. Zero filling is a common choice for initialisation
as it does not add any substantial computational time. A discussion on other possible
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Algorithm 1: Chambolle and Pock iteration
Choose τ, σ > 0 such that τσ‖C‖2 < 1, θ ∈ [0, 1], (x0, y0) ∈ X × Y and set x̄0 = x0

Update xn, yn and x̄n as follows:
yn+1 = (I + σ∂F ?)−1(yn + σCx̄n)

xn+1 = (I + τ∂G)−1(xn − τC?yn+1)

x̄n+1 = xn+1 + θ(xn+1 − xn)

(12)

initialisations can be seen in Appendix D. The first approximation of the optical flow u0

is computed on this image sequence by the TV − L1 method. We consider a sequence
of Nt frames with size Nx × Ny pixels. Each frame will be decomposed in overlapping
square patches of size Ps×Ps and we choose Nd, the number of atoms in the dictionary
such that Nd(Ps)

2 > NxNy. We denote by Pn the number of patches for a given frame.
Then the main loop of our algorithm is described by algorithm 2.

Algorithm 2: Main Loop
Given a threshold ε > 0.
Let m0 be a first approximation of the MRI sequence (ZF).
Let u0 be a first approximation of the optical flow (TV − L1).
Learning the dictionary D (if needed).
Let a0 be a first approximation of the sparse decomposition of u0 in D (from the
learning part).
repeat
Compute mn+1 = arg minmE(m,un, an)

Compute un+1 = arg minuE(mn+1,u, an)

Compute an+1 = arg minaE(mn+1,un+1, a)

until ‖mn+1 −mn‖ < ε‖mn‖
return mn+1.

In what follows, we describe each of the four required algorithms, namely: learning
the dictionary, image reconstruction, optical flow estimation, and sparse coding.

4.1. Learning the dictionary

In this section, we present the process of learning the dictionary for the optical
flow consisting in the minimisation of eq. (7) following the strategy of [53] which
we recall here for the sake of completeness. Given a discrete reference optical flow
uref = (urefx , urefy )T ∈ [RNx×Ny×(Nt−1)]2, dictionary learning aims at finding the best

dictionary Du =

(
Dx 0

0 Dy

)
with Dx and Dy having Nd atoms such that all the data
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can be expressed as a linear combination of these atoms. Let Rp =

(
Rx,p 0

0 Ry,p

)
be

the extracting patch operator centred at pixel p. Let P be the set of all patches, we
set Pn = |P| and R = (Rp)p∈P so that the extracting patch operator R goes from

[RNx×Ny×(Nt−1)]2 onto [RP 2
s×Pn×(Nt−1)]2. Let a =

(
ax
ay

)
∈ [RNd×Pn×(Nt−1)]2 be the sparse

coefficients of the decomposition of

(
ux
uy

)
in Du.

From now on, we keep the notation u for both ux and uy, the notation R for both
Rx and Ry, the notation D for both Dx and Dy and the notation a for both ax and ay
as the learning process is decoupled for both directions and can be performed in parallel
computing.

Let ū = Ruref ∈ RP 2
s×Pn×(Nt−1) be such that ūk ∈ RP 2

s×Pn is the matrix of all patch
extracted from ū at time k. And let a = (ak)

Nt−1
k=1 defined by

min
‖a‖l0≤ε

Nt−1∑
k=1

‖ūk −Dak‖2
2. (14)

The pseudo-norm l0 of a ∈ RNd×Pn×(Nt−1) is given by ‖a‖l0 = min
1≤k≤Nt−1

|{(ak)i,j 6= 0}|
and ε > 0 controls the amount of sparsity. Dictionary learning performs an optimisation
both on the dictionary D and on the set of coefficients a. This joint optimisation reads

min
D∈D,a∈A

E(D, a) =
Nt−1∑
k=1

1

2
‖ūk −Dak‖2

F (15)

The constraint set on D is D = {D ∈ RP 2
s×Nd , ∀ 1 ≤ j ≤ Nd, ‖Dj‖ ≤ 1}, the

columns of the dictionary are unit normalised, the sparsity constraint set on a reads
A = {a ∈ RDn×Pn , ∀ 1 ≤ j ≤ Pn, |aj|0 ≤ ε}.
Remark. These constraints ensure uniqueness of the solution, indeed if they were not
here, we could always find a transformation P such that Pa has smaller l0 norm and
the transformed dictionary DP−1 has bigger norm.

Following standard arguments, we propose a block coordinate descent method to
minimise the energy:

Dn+1 ∈ arg min
D∈D

E(D, an), an+1 ∈ arg min
a∈A

E(Dn+1, a). (16)

Convergence on such alternating minimisation scheme can be shown, see for instance
[78].

For the first sub-problem, we assume that a is fixed, then it becomes a quadratic
optimisation problem under constraints with respect to D:

min
D∈D

∥∥∥∥∥∥∥ūk
(
Nt−1∑
k=1

aTk

)√√√√Nt−1∑
k=1

akaTk

−T

−D

√√√√Nt−1∑
k=1

akaTk

∥∥∥∥∥∥∥
2

F

. (17)
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The minimisation problem can be exactly solved as:

Dn+1 = projD

(
Dn − τ1

(
Dn

Nt−1∑
k=1

aka
T
k −

Nt−1∑
k=1

ūka
T
k

))
(18)

where the projection step is τ1 <
2

‖∑Nt−1
k=1 aka

T
k ‖

and projD(D) = D
‖D‖ .

Then we consider D fixed and minimise with respect to a. This again leads to
a constrained problem which can be solved by projections for each time step on the
constraint set,

an+1
k = projA

(
ank − τ2D

T (Dank − Uk)
)

(19)

where this time, τ2 <
2

‖DDT ‖ . For 1 ≤ j ≤ Pn we denote |āk,j(1)| ≤ · · · ≤ |āk,j(Nd)| the
order of magnitude of the vector ak,j ∈ RNd . Then the projection operator on A reads:

∀1 ≤ i ≤ Nd, ãk,j(i) =

{
ak,j(i) if |ak,j(i)| ≥ |āk,j(ε)|

0 otherwise.
(20)

Remark. Two levels of parallel computing can be performed for this process. First
we can learn the dictionary Dx for the horizontal component u of the optical flow and
the dictionary Dy for the vertical component simultaneously. Additionally, for each
component we can minimise ak in parallel.

4.2. Image reconstruction

This section describes the process of MRI reconstruction which is the core of the method.
While in [43] a smooth regularisation of the L1 norm was used, in this work, we propose
to solve the non-smooth optimisation problem using algorithm 1. Assume u is known,
the problem then reads

min
m

E(m) =

∫ T

0

1

2
‖Km− f‖2 + λ1 ‖∇m‖2,1 + λ2 ‖Ψm‖1 + λ3

∥∥∥∥∂m∂t +∇m · u
∥∥∥∥

1

dt

(21)

with ‖∇ · ‖2,1 representing the discrete spatial isotropic TV .

We proceed as in [9]. Let C =
[
K, ∇, Ψ, Dt + u · ∇

]T
be the linear operator

acting on m so that the minimisation is seen as minmE(Cm). And let y =[
y0, y1, y2, y3

]T
be the collection of dual variables for each operator. From eq. (11)

we have F := E and G = 0 and the Legendre-Fenchel conjugate of the energy is given
by

E?(y) =

∫ T

0

1

2
‖y0‖2

2 + 〈y0, f〉+ δ{y:‖y‖2,∞≤1}

(
y1

λ1

)
+ δ{y:‖y‖∞≤1}

(
y2

λ2

)
(22)

+ δ{y:‖y‖∞≤1}

(
y3

λ3

)
dt
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with δI(y) = 0 if y ∈ I and +∞ otherwise. The primal-dual algorithm requires the
proximity operator (I + σ∂E?)−1(yn + σCm̄n). The components yn+1

i for i = 0, 1, 3 are
computed exactly as in [9] and we give only

yn+1
2 = arg min

y

{∫ T

0

1

2

∥∥y − yn2 − σΨ
(
mn + θ(mn −mn−1)

)∥∥2

2
+ δ{y:‖y‖∞≤1}

(
y

λ2

)
dt

}
.

This subproblem admits a closed form solution recalled here,

ỹn+1 = yn + σC
(
mn + θ(mn −mn−1)

)
yn+1 = (I + σ∂E?)−1(yn) =


yn+1

0 =
yn0−σf
σ+1

,

yn+1
1 = πλ1(ỹ

n
1 ),

yn+1
2 = πλ2(ỹ

n
2 ),

yn+1
3 = πλ3(ỹ

n
3 )

.

The projection onto the unit ball is given by πλ(y) = y

max
(

1,
‖y‖2
λ

) . The parameters

τ , σ refer to step sizes, and have to fulfil the following constraints: τσ‖C‖2 ≤ 1 with
‖C‖ ≈ 2 +

√
8 +
√

2(1 + ‖u‖).

4.3. Sparse flow representation and optical flow approximation

The minimisation over the variable a can be split for each component ap which is given
by Ẽ(ap) = λ5‖Rpu −Dap‖2

F + λ6‖ap‖1. From algorithm 1 we take F = λ6‖ · ‖1, the
proximal operator of its Legendre-Fenchel conjugate is given by projection operator:

(I + σ∂F ?)−1(y) = πλ6(y) (23)

Moreover since G = λ4‖Rpu−D ·‖2
2 is smooth, its resolvent reduces to the gradient,

τ∇G(ap) = 2τλ5D
T (Dap −Rpu). (24)

Finally we optimise on the optical flow u, given fixed m and a = (ap)p∈P .
Let E(u) = F (∇u) + G(u) with F (·) = λ4‖ · ‖2,1 and G = λ3

∥∥∂m
∂t

+∇m·
∥∥

1
+

λ5

∑
p ‖Rp · −Dap‖2

F . For simplicity of the notations we introduce the operators
A = I + 2τλ5

∑
RT

pRp, ρ(u) = ∂m
∂t

+ u · ∇m and the notation ũ = u + 2τλ5

∑
RT

pDa.
Then the proximal operator of G reads,

A(I + τ∂G)−1(u) = ũ +


−λ3∇m if ρ(A−1ũ) > τλ3A−1‖∇m‖2,

λ3∇m if ρ(A−1ũ) < −τλ3A−1‖∇m‖2,

−ρ(ũ) ∇m
‖∇m‖2 else,

(25)

and the F ? one is

(I + σ∂F ?)−1(y) = πλ6(y). (26)

Details of the computation of eq. (25) can be found in appendix Appendix C and
details about the discretization of the operators can be found in appendix Appendix A.
We now turn to the numerical experiments.
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5. Numerical Experiments

In this section we show the results of our numerical experiments. All tests and
comparisons were run under the same CPU-based implementation (Intel Core i7-8550U)
with MATLAB 2018b. Compared techniques were either used as provided by the author
or implemented when not available.

5.1. Data Description and Evaluation Protocol

Our approach is evaluated by using data coming from: cine cardiac, right lobe liver and
phantom generated cardiac cine. The datasets were saved as fully sampled raw data
and then were retrospectively undersampled using a variable-density random sampling
pattern, and in particular, a cartesian pattern. ‡ Figure 1 as suggested by Lustig [43].
Datasets characteristics are as follows:

• Dataset I: A cine cardiac dataset acquired from a healthy volunteer, from [69]. It is
a retrospectively gated bSSFP short-axis view of a health volunteer measured on 3T
scanner(Skyra, Siemens Healthcare, Erlangen, Germany) with the following scan
parameters: FOV=274.62 mm×340 mm, matrix size=208×168, 25 cardiac phases
with a temporal resolution of 42.72 ms, TR/TE/FA=3.56 ms/1.78 ms/40◦, 6 mm
slice-thickness, TA=16 s.

• Dataset II and III: Realistic cardiac cine simulation generated using the MRXCAT
phantom framework [85]. Whilst the Dataset II was simulated during breath
holding, the III was set with free respiratory motion. Matrix size - 128 × 128

and 24 frames.

• Dataset IV: 4DMRI dataset [81] acquired from the right liver lobe during free-brea-
thing. It was acquired using a 1.5T Philips Achieva system with: SENSE factor 1.7
and half scan, flip angle 70◦, TR=3.1ms, slices=25 and matrix size of 195 × 166,
coils=4, and a temporal resolution of 2.6− 2.8Hz.

We remark that in this work, we followed common protocol by different learning
paradigms when treating multi-coils. That is, we collapsed the multi-coil data (such
as Dataset IV) into a single view before performing the reconstruction.

We have followed common protocol for evaluating our MRIR-DLMC using two
metrics over the full reconstructions [43, 38, 45, 47]: the peak signal-to-noise ratio
(PSNR) and the structural similarity (SSIM). During the following sections we use
MRIR-DLMC and OURS to refer to our technique. The metric-wise computations were
performed between the gold-standard (i.e. fully sampled case) and the reconstructed MR
images. The explicit definition of these metrics can be found in appendix Appendix B. To
demonstrate the potentials of our approach, we designed a two-part evaluation protocol.
The first one consists in comparing our technique versus three top reference techniques

‡ Raw data and method to create the undersampled datasets can be download here https://github.
com/tschmoderer/2019_mri_reconstruction/blob/master/src/data/data_mri.tar.xz

https://github.com/tschmoderer/2019_mri_reconstruction/blob/master/src/data/data_mri.tar.xz
https://github.com/tschmoderer/2019_mri_reconstruction/blob/master/src/data/data_mri.tar.xz
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Figure 1: (Top column) Visual samples of the datasets used in our experiments.
(Bottom row) visualisation of some undersampling patterns used in our experiments
using acceleration factor={2x,4x,6x,8x}.

for MRI reconstructions: i) zero-filling (ZF) approach i.e. an inverse Fourier transform
on the undersampled data ii) the classic compressed sensing (CS) algorithm [43] and
iii) the low rank and sparsity (L+S) technique of [54]. The second comparison scheme
is based on techniques that perform also two tasks simultaneously: compressed sensing
and motion (CS+M) [3] and the recent method of (JPDAL) [92]. For visualisation
purposes, we display a cropped version of the output reconstruction to inspect better
the details.

5.2. Parameter Selection & Dictionary Setup

The parameters were set based on an empirical testing in a coarse to fine search strategy
by maximising the SSIM metric on the dataset CINE and then we kept the same
parameters for all experiments in order to show the inherent strength of the method and
not its dependency to parameters. These parameters are fixed during the optimisation
iterations and are stable for all the experiments conducted. The parameters τ and σ

in the Chambolle & Pock iteration are chosen to fulfil the constraint τσ‖C‖2 at each
step. This is done by exactly computing the norm of the operator C when possible, or
by finding the largest set of τ and σ satisfying the constraint by numerical trials. From
this, we set the parameter for our experiments as displayed in Table 1.

For each dataset, several experiments are performed depending on the utilisation
of the dictionary. First, for each dataset and acceleration factor, we train a dictionary
based on a TV −L1 approximation of the optical flow computed on the inverse Fourier
transform of undersampled data. In a second step, to show the transfer learning
capability of our model, we train the dictionary on a TV − L1 approximation of
the optical flow from fully sampled phantom data, and use it for real cine cardiac
applications.
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Weighing
Parameters eq. (10)

Image
reconstruction

(algorithm 1 for eq. (21))

Sparse
Approximation

(algorithm 1 with eqs. (23) and (24))

Optical Flow
Approximation
eqs. (25) and (26)

Dictionary
learning
eq. (15)

λ1 = 0.003

λ2 = 0.0001

λ3 = 0.001

λ4 = 0.001

λ5 = 0.001

λ6 = 0.0001

ε = 0.001

σ = 0.05

τ = 0.05

θ = 1

σ = 0.99

τ = 0.99

θ = 1

σ = 0.5

τ = 0.25

θ = 1

ε = 0.7Nd

τ1 in (18)
τ2 in (19)

Table 1: Parameter values used in our experiments.

Figure 2: (A) Samples extracted from our learned dictionary with 1024 atoms and
patches of size 16× 16. (B) Evolution of the energy during the learning process.

We remark that one of the strengths of our approach is to avoid the need to have
a ground truth to construct the dictionary. This is a highly desirable property as in
the medical domain, the assumption of having ground truth is strong. We use over-
complete patch-based dictionary using the TV −L1 OF approximation. The dictionary
training process involves the computation of the sparse decomposition of the reference
flow, so we use this procedure to initialise our sequence a0. Our dictionary is composed
of Nd = 1024 atoms, but for visualisation purposes we display 64 atoms illustrated
on the left of fig. 2. The samples are coloured according to the standard visualisation
of optical flow. The plot on the right of fig. 2 displays the evolution of the energy
through the learning process to illustrate the speed and stability of convergence. We
remark a fast convergence towards a dictionary D and a sparse decomposition a. This
translates into a small computational time required to get the optimal dictionary and
sparse decomposition.
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Figure 3: Visual comparison of image quality of our model (MRIR-DLMC) against
variational state of the art reconstruction techniques namely: zero filling (ZF),
compressed sensing [43] (CS), and low rank and sparse decomposition [54], along with
the gold standard fully-sampled reconstruction for two real datasets I and IV. For each
dataset, the results are shown for three acceleration factors 2x, 4x and 8x.
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Figure 4: Visual comparison of both reconstruction and optical flow estimation quality of
our model (OURS) against two joint models namely the purely variational compressed
sensing and optical flow model [9, 4] (CS+M) and the technique introduced in [92]
(JPDAL), along with the gold standard fully-sampled reconstruction for datasets II
(cardiac phantom) and IV (liver MRI). For each dataset, the results are shown for three
acceleration factors 2x, 4x and 8x.

5.3. Results & Discussion

In this section, we extensively evaluate our approach following the evaluation protocol
stated in Section 4.1.

Comparison against single task MRI reconstruction methods. In fig. 3
and following common protocol for MRI reconstruction evaluation, we report the
reconstructed images obtained for two real datasets I and IV and three acceleration
factors 2x, 4x, and 8x, for a visual comparison of our model against variational MRI
reconstruction techniques: zero-filling (ZF), compressed sensing [43] (CS) and low-rank
and sparse decomposition [22] (L+S). We remark that the comparison between our
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Figure 5: Reconstruction outputs under several acceleration counts along with time-lines
(see white vertical and horizontal lines) references. Bottom part of each reconstruction
displays the reconstruction outputs for the selected time-lines.

technique and no motion can be observed when comparing the results from the CS
reconstructions against ours. Also, the impact of the dictionary learning term can
be measured by comparing the CS+M results and ours. As expected, the zero-filling
method performs the worst in all cases and exhibit blurring and wave-like artefacts.
We remark that our method outperforms the CS and L+S techniques at all acceleration
factors. For an acceleration factor of 2x, this is particularly visible in the region beneath
the ventricular chambers of the heart in which both CS and L+S reconstructions still
exhibit wave-like and blurring artefacts contrary to ours. As the acceleration factor
increases, the difference is even more visible as our method reduces the blurring and
wave-like artefacts, better preserves fine details and exhibits sharper edges. Especially,
the white blood vessels of the liver are better recovered with our technique than with the
other presented ones. The edges of the right and left ventricular chambers of the heart
as well as of the liver are sharper with our algorithm than with purely reconstruction
methods specially for an acceleration factor of 8x. The blurring and wave-like artefacts
in the liver and the myocardium are reduced with our technique for acceleration factors
4x and 8x compared to other reconstruction methods. All these statements are in favour
of incorporating motion information in the reconstruction process of dynamic sequences
to improve the overall image quality. To further support our technique, in Figure 5
we included time-line visualisations, for different reconstruction counts vs the gold-
standard, for two different line directions corresponding to the white lines. The time-
lines show the systolic and diastolic cardiac phases over the ventricles. The visualisations
help to identify subtle missing changes and/or introduced artefacts.

Comparison against joint MRI reconstruction and motion estimation
models. We now compare our method with other existing joint models addressing
simultaneously MRI reconstruction and motion estimation namely a purely variational
compressed sensing and optical flow model [9, 4], named CS+M, to evidence the
improvement induced by the dictionary learning process, and the new compressed
sensing and affine optical flow model introduced in [92] called JPDAL. Both the
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reconstruction and the motion estimation are reported in fig. 4 for datasets II and
IV and for three acceleration factors 2x, 4x and 8x, along with the gold standard
fully-sampled reconstruction. Regarding the motion maps, we observe that the JPDAL
retrieves small displacements mainly located on the boundary of the organs whereas our
model is able to estimate bigger displacements located in the whole organ which seems
to be closer to the physiological motion involved. Also, by visual comparison, adding
the dictionary learning process tends to smooth and to better identify small moving
regions compared to the purely variational model. The motion estimation improvement
is reflected in higher quality and visually more pleasing reconstructed images especially
for large acceleration factors. For acceleration factors 2x and 4x, the reconstruction for
all the methods are visually comparable and competitive. For an acceleration factor
of 8x, the CS+M reconstructions exhibit blurring artefacts especially in the liver and
the left ventricular chamber of the heart which are less visible in our results. This is
probably due to residual movements and less accurate motion estimation and shows
the benefits of adding the dictionary learning process in the model to improve image
quality. Small details such as the white blood vessels are also better recovered with our
technique than with the CS+M one. The JPDAL reconstructions for an acceleration
factor of 8x are also more blurred than ours and the homogeneous regions of the left
ventricular chamber and the above area are better recovered with our algorithm than
with the JPDAL model.

Global Evaluation Performance. We begin by reporting visual outputs of our
proposed algorithmic technique versus single and other joint models along with the
gold-standard (fully-sampled case). The results are displayed in fig. 6 using a high
undersampling factor 6x. By visual inspection, we observe that the outputs generated
by the single task techniques (i.e. ZF, CS and LS) are the ones displaying more artefacts
than ours, and in particular, as expected, the worst performance is reported by ZF. This
in terms of blurring artefacts and loss of preservation of relevant anatomy parts - for
example in the cardiac datasets this can be observed around the papillary muscle of the
heart whilst in the last dataset in the interior of the liver lobe. These observations are
further supported by the corresponding difference maps, in which our technique reports
closer reconstruction to the gold-standard than the compared single task techniques.
For further support of our proposed technique, we also display selected outputs of our
approach versus other techniques with similar philosophy as ours (i.e. joint models). A
closer look at these outputs we can see that while CS+M and JDPAL perform better
than the single task techniques, our proposed approach readily competes with these
techniques, and in several cases, outperforms them. To further support our technique,
we ran a nonparametric statistical test (Wilcoxon test) for two group comparison. From
the test we found that our technique is statistically significantly different than other
techniques including JPDAL (significance level = 0.05; p-value= 0.024). Moreover, we
also reported a comparison in terms of computational time (in seconds), the results are
displayed in Figure 6. These plots compare the computational time for all datasets and
different undersampling factors for our technique and other multi-task models. From an
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Dataset
Reconstruction

Scheme
2x 4x 6x 8x

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Dataset I

Zero-Filling 31.40 90.19 25.14 81.40 25 76.97 22.99 72.71
CS 32.85 93.58 31.57 88.57 27.98 81.48 22.97 72.76
L+S 34.21 92.77 31.09 86.20 27.74 80.10 22.98 72.68

CS+M 36.72 96.23 31.53 90.26 28.39 80.17 24.9 72.68
MC+JPDAL 36.7 97.85 32.72 92.06 27.80 84.29 23.15 75.51
MRIR-DLMC 38.01 97.33 32.35 92.26 27.65 84.76 23.12 76.03

Dataset IV

Zero-Filling 22.43 72.95 17.84 57.66 18.49 50.80 16.84 44.98
CS 26.61 83.48 22.7 69.31 19.36 54.15 17.03 45.86
L+S 24.26 77.68 21.71 63.39 19.19 52.46 16.82 44.96

CS+M 31.91 91.73 25.86 76.32 21.14 58.37 20.01 49.17
MC+JPDAL 32.81 93.07 27.3 82.01 22.34 65.62 19.39 54.1
MRIR-DLMC 34.21 94.16 28.28 84.26 22.65 67.17 19.57 55.02

Dataset II

Zero-Filling 28.27 78.87 23.97 68.08 20.53 61.39 22.57 61.09
CS 31.91 83.11 28.58 76.35 24.83 67.01 22.58 61.12
L+S 30.59 82.17 27.74 73.7 24.63 65.35 22.58 60.91

CS+M 32.65 87.1 30.5 81.91 24.84 70.30 21.94 63.06
MC+JPDAL 36.5 93 32.45 86.44 28.08 76.92 24.46 69.45
MRIR-DLMC 33.19 88.46 30.5 82.77 27.76 76.18 25.14 71.9

Dataset III

Zero-Filling 28.84 79.3 24.31 67.84 20.57 60.48 22.46 59.61
CS 31.19 82.51 28.66 74.89 25.26 65.87 22.48 59.61
L+S 30.59 82.8 27.99 72.93 24.9 64.5 22.46 59.38

CS+M 32.11 86.13 30.02 89.16 24.28 67.74 21.55 60.59
MC+JPDAL 35.37 91.86 31.24 83.85 27.3 74.16 24.14 66.66
MRIR-DLMC 32.76 87.48 29.41 80.12 26.9 73.43 24.05 66.5

Table 2: Numerical comparison of our technique vs single and joint technique
for different acceleration factors. The results are reported as the average of the
corresponding metric over all the corresponding dataset.

inspection to these plots, one can see that our method not only improves performance
wise but also demands lower computational time that other existing techniques following
similar philosophy.

For a more detailed quantitative analysis, we report the global results in Table 2 for
all compared techniques and for acceleration factor of 2x, 4x, 6x and 8x. The displayed
results are the average of the image metrics, i.e. PSNR and SSIM, across the full
corresponding dataset. With respect to the realistic datasets, we reported the overall
best performance whilst for the simulated datasets our method performs similarly well,
and places second only behind JPDAL. We further support our technique by computing
the computational time (in seconds) of our technique and other multi-task techniques:
CS+M and MC+JPDAL. The results are reported in Figure 7. In a closer inspection at
this figure, one can observe that our technique required for all cases less computational
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Figure 6: Visual comparison of our technique versus single and other joint models. The
results are displayed using 4x and 6x acceleration factor. A closer look at the difference
maps, one can see that our technique reports reconstructions closer to the gold-standard
with respect to single task techniques whilst readily compete with, and several times
outperforms, the other compared joint models.
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Figure 7: Computational time comparison of our approach versus other multi-task
techniques reported in seconds. The results are reported from several acceleration factors
(2x, 4x, 6x and 8x) and for all datasets.

Dataset
Reconstruction

Scheme
2x 4x 6x 8x

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Cardiac Cine

Zero-Filling 31.40 90.19 25.14 81.40 25 76.97 22.99 72.71
CS 32.85 93.58 31.57 88.57 27.98 81.48 22.97 72.76
L+S 34.21 92.77 31.09 86.20 27.74 80.10 22.98 72.68

CS+M 36.72 96.23 31.53 90.26 28.39 80.17 24.9 72.68
MC+JPDAL 36.7 97.85 32.72 92.06 27.80 84.29 23.15 75.51
MRIR-DLMC 38.01 97.33 32.35 92.26 27.65 84.76 23.12 76.03

RIR-DLMC w/TL 37 97.05 31.79 90.71 27.70 84.85 24.80 81.01

Table 3: Numerical comparison of our technique vs other reconstruction methods. The
numerical values are computed as the averages of the similarity metrics over the complete
corresponding dataset. w/TL denotes the transfer learning capability of our technique,
that is- the results are from training our dictionary with phantom datasets and applied
to the real cardiac cine.

resources than the compared techniques.

5.4. Transfer Learning Capabilities of our Technique

We have shown in the previous section the advantages of our technique in terms of quality
and computational performance. Besides these benefits, robustness of our training
process when no ground-truth is available has been evidenced which is a highly desirable
property. In this section, we highlight another strength of our technique, which is the
ability of learning over phantom datasets and transfer this knowledge to real datasets.
The ability to transfer knowledge from phantom to real data is very challenging yet
highly desirable for any algorithmic technique. As pointed out in [62], this capability
is not straightforward and such generalisation might be difficult to achieve due to the
overparametrisation of the model given by the fundamental gap between synthetic and
real data. To prove this capability, we show a numerical comparison in table 3 and
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denote the new results as’MRIR-DLMC w/TL’. From the results, one can see that
firstly, our approach is capable to perform similarly well, when trained with phantoms
datasets, than JPDAL and ours (trained with realistic dataset). Our ’MRIR-DLMC
w/TL’ readily compete numerically with the best scores and in some cases outperforms
the compared techniques. This capability opens several opportunities in the medical
domain as we avoid the need to retrain our dictionary.

Overall, our proposed model considers local and global neighbourhood (patch based
process) flow relations, we encode the regularisation of the motions and discontinuities
through a sparse representation rather than in a separately manner, and by learning
through dictionaries we can characterise complex patterns and structures. Our technique
offers three major advantages over the compared techniques i) it improves performance
wise over the compared techniques, and in particular, over JPDAL with a statistical
difference, ii) it requires less computational time than the other techniques and iii)
our technique can narrow the gap between synthetic and real data- as our technique
performs well when trained on phantoms and then applied to real data.

6. Conclusion

This work addresses the problem of reconstructing high-quality images from dynamic
under-sampled MRI measurements. This is a fundamental problem in MRI due to the
long acquisition time required to form an image. During scanning, involuntary and
breathing motion often lead to image degradation, compromising clinical interpretation
and relevance for diagnosis.

To tackle this problem, we propose a novel mathematical model to improve the
reconstruction quality by estimating motion in dynamic MRI. The underlying idea is
to exploit the strong correlation between the two tasks of image reconstruction and
motion estimation. The main motivation of considering motion as a second task is
because, in a dynamic setting, inherent motion is contained in the scene and therefore
it strongly depends on the reconstruction quality. Our research hypothesis is that the
reconstruction accuracy can be substantially improved by a good approximation of the
motion scene. Our proposed approach combines, in a multi-task and hybrid model,
the traditional compressed sensing formulation for the reconstruction of dynamic MRI
and motion compensation by learnt optical flow approximation. First, we introduce the
classical compressed sensing reconstruction formulation along with motion estimation
algorithms depicted in [3]. Second, we show how the optical flow can be learnt from
reference samples following the work introduced in [32]. More precisely, our optical
flow model is computed as a sparse linear combination of basis functions from a learnt
dictionary. Then, we embed in a single functional the reconstruction process and the
optical flow estimation by dictionary learning. We present in details our efficient and
tractable optimisation framework adopted to solve the non-convex problem based on an
alternating splitting scheme. Finally, we extensively demonstrate the potential of our
proposed model in the context of dynamic MRI through a set of numerical experiments.
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In particular, we present comparisons with single task MRI reconstructions as well
as with joint MRI reconstruction and motion estimation models, demonstrating that
our approach reaches and outperforms state-of-the-art among mathematical variational
models and joint models.

Our multi-task hybrid model has shown enormous potential for improving
the quality of dynamic MRI reconstruction from highly undersampled data by
carefully intertwining two imaging tasks that are traditionally performed separately.
Furthermore, our motion estimation is based on a learnt approach that relies on a
sparse representation in a dictionary of reference samples, with the great advantage
that ground truth data is not required. In addition, we explore the potential of our
proposed method in the context of transfer learning, that is we learn our dictionary
on phantom data and apply it to real dataset. Our results are promising especially
in the medical domain, where many times we deal with a severe lack of ground truth
data. A perspective for future research is to embed the proposed algorithm in a coarse
to fine pyramidal approach. We would also add to the optical flow constraint another
term coding the possible brightness variations in the sequence. Finally, we will take
our findings and apply them to a more clinical study. Overall, our technique has three
major advantages over other techniques. Firstly, our technique statistically improves
reconstruction quality over the compared techniques. Secondly, our model requires less
computational resources than other multi-task models. Finally, we show the ability of
our technique to transfer knowledge from phantom to real data.

Appendix A. Description of the data structures and the operators

We assume that the space-time discrete grid consists of the following set of points:

{(i, j, t) : i = 1, . . . , Nx, j = 1, . . . , Ny, t = 1, . . . , Nt} .

Therefore, the reconstructed image sequence m takes values in RNxNyNt , whereas the
components ux, uy of the optical flow take values in RNxNy(Nt−1). We now discuss
the discretisation of the operators. Assume we have a sequence m of Nt frames of size
Nx×Ny pixels. We use a forward discretisation for the temporal derivative and a central
discretisation for the spatial derivative. Neumann boundary conditions are applied:

mt(i, j, t) =

{
m(i, j, t+ 1)−m(i, j, t) if t < Nt,

0 else,

mx(i, j, t) =
1

2

{
m(i+ 1, j, t)−m(i− 1, j, t) if i > 1 and i < Nx and t < Nt,

0 else,

my(i, j, t) =
1

2

{
m(i, j + 1, t)−m(i, j − 1, t) if j > 1 and j < Ny and t < Nt,

0 else.
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The adjoint operator then yields:

yt(i, j, t) = −


y(i, j, t) if t = 1,

y(i, j, t)− y(i, j, t− 1) if t > 1 and t < Nt,

−y(i, j, t− 1) if t = Nt,

yx(i, j, t) =
−1

2


y(i+ 1, j, y) if i ≤ 2 and t < Nt

y(i− 1, j, y)− y(i+ 1, j, y) if i > 2 and i < Nx − 1 and t < Nt

−y(i− 1, j, y) if i ≥ Nx − 1 and t < Nt

0 else,

yy(i, j, t) =
−1

2


y(i, j + 1, y) if j ≤ 2 and t < Nt

y(i, j − 1, y)− y(i, j + 1, y) if j > 2 and j < Ny − 1 and t < Nt

−y(i, j − 1, y) if j ≥ Ny − 1 and t < Nt

0 else.

The discrete derivatives for the optical flow vector field are calculated using forward
differences and Neumann boundary conditions. The corresponding adjoint operator
consists of backward differences with Dirichlet boundary conditions and is applied to
the dual variable y. In the following, u denotes either the horizontal component ux or
the vertical uy.

ux(i, j, t) =

{
u(i+ 1, j, t)− u(i, j, t) if i < Nx

0 if i = Nx,

uy(i, j, t) =

{
u(i, j + 1, t)− u(i, j, t) if j < Ny

0 if j = Ny,

∇ · y(i, j, t) =


y1(i, j, t) if i = 1

y1(i, j, t)− y1(i− 1, j, t) if i > 1 and i < Nx

−y1(i− 1, j, t) if i = Nx

+


y2(i, j, t) if j = 1

y2(i, j, t)− y2(i, j − 1, t) if j > 1 and j < Ny

−y2(i, j − 1, t) ifj = Ny.

Appendix B. Error measures

We evaluate the performance of our model in terms of quality for the reconstructed
images. The main metric thus used is the structural similarity index (SSIM) [82] which
measures the differences in luminance, contrast and structure of the ground truth image
m and the reconstruction mr as follows,

SSIM :=
(2µmµmr + C1)(2σm,mr + C2)

(µ2
m + µ2

mr + C1)(σ2
m + σ2

mr + C2)

where µm, µmr , σm, σmr and σm,mr are local means, standard deviations and cross
covariance for ground truth image m and reconstruction mr respectively. The constants
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are fixed to C1 = 0.012 and C2 = 0.032. The SSIM takes values between −1 and 1

where 1 stands for perfect similarity. Moreover we calculate the peak signal-to-noise
ratio (PSNR) between the ground truth and the reconstruction given by

PSNR := 10 log10

(
max(m2)

mean((m−mr)2)

)
. (B.1)

Appendix C. Proximal operators

In this section we present the computation of the proximal operator of the optical flow
minimisation for the Chambolle and Pock algorithm [13]. We recall the unconstrained
problem,

min
u

∫ T

0

λ3

∥∥∥∥∂m∂t +∇m · u
∥∥∥∥

1

+ λ4‖∇u‖1 + λ5

∑
p∈P

‖Rpu−Dap‖2
F dt.

To simplify the notation, we introduce the affine operator ρ(u) = ∂m
∂t

+ ∇m · u.
The challenging part is to compute the resolvent operator of G(u) = λ3‖ρ(u)‖1 +

λ5

∑
p∈P ‖Rpu− Dap‖2

F . We have,

(I + τ∂G)−1(u) = arg min
v

{
‖v − u‖2

2τ
+G(v)

}
(C.1)

= arg min
v

{
‖v − u‖2

2τ
+ λ3‖ρ(v)‖1 + λ5

∑
p∈P

‖Rpv −Dap‖2
F

}
.

The problem is decomposed in three cases: ρ(u) > 0, ρ(u) < 0 and ρ(u) = 0, the
previous constraint are intended component-wise. In the first two cases the l1-norm is
differentiable so they can be treated in a similar fashion:

ρ(v) > 0 =⇒ v − u

τ
+ λ3∇m + 2λ5

∑
RT

p(Rpv −Dap) = 0

=⇒
(
I + 2τλ5

∑
RT

pRp

)
v = u− τλ3∇m + 2τλ5

∑
RT

pDap. (C.2)

The equality eq. (C.2) gives the solution of eq. (C.1). Like in eq. (25) we note the
operator

(
I + 2τλ5

∑
RT

pRp

)
by A. We then plug the solution eq. (C.2) in the condition

ρ(v) > 0 to obtain a necessary condition for the realisation of this solution:

ρ
(
A−1(u + 2τλ5

∑
RT

pDap)
)
− τλ3A−1‖∇m‖2 > 0. (C.3)

When ρ(v) = 0 the l1-norm is no longer differentiable so we have to consider its sub-
differential.

ρ(v) = 0 =⇒ v − u

τ
+ λ3[−∇m;∇m] + 2λ5

∑
RT

p(Rpv −Dap) = 0

=⇒
(
I + 2τλ5

∑
RT

pRp

)
v = u− τλ3[−∇m;∇m] + 2τλ5

∑
RT

pDap.

(C.4)
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In the previous eq. (C.4) we note by [−∇m;∇m] any element of the sub-differential of
the l1-norm, then the condition ρ(v) = 0 gives us the required element:

ρ
(
A−1(u + 2τλ5

∑
RT

pDap)
)
− τλ3[−∇m;∇m] · ∇m = 0

=⇒ τλ3[−∇m;∇m] = ρ
(
A−1(u + 2τλ5

∑
RT

pDap)
) ∇m
‖∇m‖2

. (C.5)

Finally,

A(I + τ∂G)−1(u) = ũ +


−τλ3∇m if ρ (A−1ũ) > τλ3A−1‖∇m‖2

τλ3∇m if ρ (A−1ũ) < −τλ3A−1‖∇m‖2

−τλ3ρ (A−1ũ) ∇m
‖∇m‖2 otherwise

where ũ = u + 2τλ5

∑
RT

pDap.

Appendix D. Supplementary Experiments

In this section, we extend the comparison results of Table 2 from the main paper.
Table D1 shows a performance comparison of our technique under different initialisations
(ZF, CS and CS+M). A closer look at the results shows that as better the initialisation
as higher the reconstruction quality. Whilst using initialisation such as CS or CS+M
indeed improves the performance, it also implies several drawbacks such as substantial
computational load as additional optimisation process need to be solved, and biased
reconstructions closer to the initialisation. Moreover, the problem at hand might be seen
as being solved twice. For these reasons, we follow common protocol for initialisation
and, in the main paper, we use zero filling as our initialisation.

Acceleration
Factor

Initialisation SSIM PSNR Initialisation SSIM PSNR Initialisation SSIM PSNR

2x

ZF

97.33 38.01

CS

97.70 37.47

CS+M

98.34 37.75
4x 92.26 32.35 92.47 32.37 92.90 33.24
6x 84.76 27.65 84.68 28.07 84.92 29.05
8x 76.03 23.12 76.19 23.66 76.61 24.40

Table D1: Performance comparison of our technique under different initialisations
and different undersampling factors. The results are reported as the average of the
corresponding metric on Dataset I.
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