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ON THE MONOIDAL INVARIANCE OF THE COHOMOLOGICAL

DIMENSION OF HOPF ALGEBRAS

JULIEN BICHON

Abstract. We discuss the question of whether the global dimension is a monoidal in-
variant for Hopf algebras, in the sense that if two Hopf algebras have equivalent monoidal
categories of comodules, then their global dimensions should be equal. We provide sev-
eral positive new answers to this question, under various assumptions of smoothness,
cosemisimplicity or finite dimension. We also discuss the comparison between the global
dimension and the Gerstenhaber-Schack cohomological dimension in the cosemisimple
case, obtaining equality in the case the latter is finite. One of our main tools is the new
concept of twisted separable functor.

1. introduction

A classical invariant of an algebra A is its (right) global dimension

r.gldim(A) = max {pdA(M), M ∈ MA} ∈ N ∪ {∞}
where for a (right) A-module M , pdA(M) stands for its projective dimension, i.e. the
smallest possible length for a resolution of M by projective A-modules.

The global dimension is a key ingredient in the analysis of certain geometric properties
of discrete groups [10, 16], and often serves as a good analogue of the dimension of a
smooth affine variety. However in some noncommutative situations, it is better to replace
it by the Hochschild cohomological dimension, which has similar geometric significance,
and is defined by:

cd(A) = max {n : Hn(A,M) 6= 0 for some A− bimodule M} ∈ N ∪ {∞}
= min

{
n : Hn+1(A,M) = 0 for any A− bimodule M

}

= pd
AMA

(A)

where H∗(A,−) denotes Hochschild cohomology and pd
AMA

(A) is the projective dimen-
sion of A in the category of A-bimodules.

Indeed, for example if A = A1(k) is the first Weyl algebra (k is, as in all the paper,
an algebraically closed field), we have r.gldim(A1(k)) = 1 (in characteristic zero) and
cd(A1(k)) = 2, while A1(k) should definitively be considered as a 2-dimensional object.

When A is a Hopf algebra, it is well-known that we have

r.gldim(A) = pdA(kε) = cd(A) = l.gldim(A) = pdA(εk)

where kε and εk denote the respective right and left trivial A-modules, and l.gldim(A) is
the left global dimension. See [28] for the equalities at the extreme left and right, and,
for example, [22] for the other equality. We simply will denote this number by cd(A),
and call it the cohomological dimension of A.

A general classical problem is whether the global dimension or the Hochschild coho-
mological dimension remain preserved under various kind of “deformations” of A, and
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the question we are particularly interested in, originally asked in [7] and suggested by
examples studied in [5], is the following one.

Question 1.1. If A and B are Hopf algebras having equivalent linear tensor categories
of comodules, do we have cd(A) = cd(B)?

Some remarks immediately arise on the signifance and interest of Question 1.1.

(1) The word “tensor” is crucial in the question, since this is what captures informa-
tion about the algebra structure inside the category of comodules. Dropping it
would make the question meaningless, as shown by the example of group algebras:
if two group algebras have equivalent categories of comodules, the only conclusion,
in lack of additional information, is that the groups have the same cardinality.

(2) Tannaka-Krein duality [23] enables one to reconstruct a Hopf algebra from its
tensor category of comodules together with the forgetful functor to vector spaces.
However, it is not assumed here that the given monoidal equivalence is compatible
with the respective forgetful functors, and so the Hopf algebras are non-isomorphic
in general. There are many instances of the situation, see for example [6, 42] for
a large review of examples, and [32, 33, 27, 37] for more recent ones.

(3) As just said, the Hopf algebras in Question 1.1 are non-isomorphic in general, but
worst, some of their ring-theoretical properties, such as Gelfand-Kirillov dimen-
sion, can be very diffrerent, see [15]. The interest in the question is thus both
theoretical, in the investigation of which properties of a Hopf algebra are preserved
under monoidal equivalence of the category of comodules, and practical, in the
determination of the global dimension of new Hopf algebras from known old ones.

There are, to the best of our knowledge, two partial positive answers to Question 1.1
in the literature.

(1) In [7, 8], it is shown that when A, B are cosemisimple with antipode satisfying
S4 = id, then cd(A) = cd(B).

(2) In [47], Wang, Yu and Zhang show that when A is twisted Calabi-Yau and B is
homologically smooth, then cd(A) = cd(B).

The aim of this paper is to provide several new positive answers to Question 1.1,
together with application to the determination of the cohomological dimension of some
Hopf algebras in some new situations (universal cosovereign Hopf algebras and free wreath
products). Indeed, we show that Question 1.1 has a positive answer in the following cases.

(1) The smooth case: we show that if A, B have bijective antipode and are (homo-
logically) smooth, then cd(A) = cd(B). This improves on [47, Theorem 2.4.5],
which assumed moreover that A is twisted Calabi-Yau (and then proved that B
is twisted Calabi-Yau as well), see Theorem 2.5. The proof is done by carefully
inspecting the arguments in [47].

(2) The cosemisimple case: we show that if A, B are cosemisimple and both have
finite cohomological dimension, then cd(A) = cd(B). See Theorem 5.7. Remov-
ing the assumption S4 = id from [8] (with instead the finiteness assumption on
cohomological dimensions) enables us to compute cohomological dimension in a
number of new situations, see Section 8.

(3) The finite-dimensional case: we show that under natural characteristic assumption
on the base field or the assumption that A∗ is unimodular, then cd(A) = cd(B),
see Theorem 9.1. Here, since finite-dimensional Hopf algebras are self-injective, we
have cd(A) ∈ {0,∞}, and the interest of Question 1.1 is more on the theoretical
side, but, as Etingof pointed out, understanding the finite-dimensional situation
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should be an important aspect. The proof of Theorem 9.1 is a rather direct conse-
quence of previous results [26, 18, 1], but an interesting aspect is that it connects
Question 1.1 to a weak form of an important historical conjecture of Kaplansky
saying that a finite-dimensional cosemisimple Hopf algebra is unimodular (the
strong form says that a cosemisimple Hopf algebra satisfies S2 = id).

Our method in the smooth and cosemimple cases is based on the fact that if MA ≃⊗

MB as above, results by Schauenburg [40] ensures that there exists an A-B Galois
object R, and then on proving that cd(A) = cd(R) = cd(B), which is achieved in
the smooth case by following arguments of Yu [50]. In general one notices further-
more that cd(A) = pd

RMB
R
(R), the projective dimension of R in the category of R-

bimodules inside B-comodules, and then the main question is to compare pd
RMB

R
(R) and

pd
RMR

(R) = cd(R). The main ingredient in this comparison in the cosemisimple case is a
twisted averaging trick, Lemma 5.3, that we believe to be quite non-straightforward. The
averaging lemma leads to the concept of twisted separable functor we define in Section
4, a generalization of the notion of separable functor introduced in [34].

Of course, the above considerations lead to the following question.

Question 1.2. Let A be a Hopf algebra. Under which conditions on A do we have
cd(A) = cd(R) for any left or right A-Galois object R?

Theorem 5.7 in the cosemimple case has the drawback, in concrete situations, that we
need to know in advance that both Hopf algebras have finite cohomological dimension,
an information that is not necessarily avalaible. This leads us back to our initial idea to
tackle Question 1.1 in [7], which was to use an auxiliary cohomological dimension for the
Hopf algebra A, the Gestenhaber-Schack cohomological dimension, defined by

cdGS(A) = max{n : Extn
YDA

A
(k, V ) 6= 0 for some V ∈ YDA

A} ∈ N ∪ {∞}

where YDA
A is the category of Yetter-Drinfeld modules over A and k is the trivial Yetter-

Drinfeld module. It was shown in [7, Theorem 5.6, Corollary 5.7] that cd(A) ≤ cdGS(A)
and that if A, B are Hopf algebras with MA ≃⊗ MB, then

max(cd(A), cd(B)) ≤ cdGS(A) = cdGS(B)

Therefore, comparing cd(A) and cdGS(A) can be a key step towards answers to Question
1.1. In this direction, we show (Theorem 6.4) that if A is a cosemisimple Hopf algebra
with cdGS(A) is finite, then cd(A) = cdGS(A). Again the method of proof is based on a
twisted averaging trick and uses an appropriate twisted separable functor. Theorem 6.4
has, as a corollary, a weak form of Theorem 5.7, which is probably sufficient in dealing
with numerous examples, see Corollary 6.5.

We expect that the equality cd(A) = cdGS(A) holds for any cosemisimple Hopf algebra,
but as already pointed in [7], it cannot hold for any Hopf algebra over any field, as
we see by taking a semisimple non cosemisimple Hopf algebra over a field of positive
characteristic, so we asked there whether the equality was true in characteristic zero.
Etingof pointed out that it does not hold in characteristic zero even for the very simple
example A = k[x] with x primitive. Hence we have now the following question.

Question 1.3. What are the Hopf algebras such that cd(A) = cdGS(A)?

The paper is organized as follows. Section 2 recalls the connection between Hopf-Galois
objects and monoidal equivalences and proves our first result on the monoidal invariance
of the cohomological dimension, in the smooth case. Section 3 provides the necessary
material on categories of bimodules inside categories of comodules. Section 4 introduces
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the notion of twisted separable functor.This is used in Section 5 to prove Theorem 5.7,
our second partial positive answer to Question 1.1, in the cosemimple case. Section 6
discusses the comparison bewteen cohomological dimension and Gerstenhaber-Schack co-
homological dimension, together with the necessary material on Yetter-Drinfeld modules.
Section 7 studies the behaviour of Gerstenhaber-Schack cohomological dimension under
Hopf subalgebras in the cosemisimple case. Section 8 is devoted to applications to some
examples. Section 9 discusses the finite-dimensional situation in Question 1.1. The reader
only interested in this case might go directly to this section. The concluding Section 10
summarizes the known positive anwers to Question 1.1.

Notations and conventions. We work over an algebraically closed field k. We assume
that the reader is familiar with the theory of Hopf algebras and their tensor categories
of comodules, as e.g. in [19, 24, 31], and with the basics of homological algebra [10, 48].
If A is a Hopf algebra, as usual, ∆, ε and S stand respectively for the comultiplication,
counit and antipode of A. We use Sweedler’s notations in the standard way. The category
of right A-comodules is denoted MA, the category of right A-modules is denoted MA,
etc... The trivial (right) A-module is denoted kε. The set of A-module morphisms (resp.
A-comodule morphisms) between two A-modules (resp. two A-comodules) V and W is
denoted HomA(V,W ) (resp. HomA(V,W )).

Acknowledgements. I would like to thank Pavel Etingof for interesting discussions and
pertinent remarks.

2. Hopf-Galois objects and monoidal equivalences

2.1. Hopf-Galois objects. Let A be a Hopf algebra. Recall that a left A-Galois object

is a non-zero left A-comodule algebra R such that the canonical map

R⊗ R −→ A⊗R

x⊗ y 7−→ x(−1) ⊗ x(0)y

is bijective. Similarly a right A-Galois object is a non-zero right A-comodule algebra such
that the obvious analogue of the previous canonical map is bijective. If B is another Hopf
algebra, an A-B-bi-Galois object is an A-B-bicomodule algebra which is simultaneously
left A-Galois and right B-Galois. See [40, 42].

As said in the introduction, it is important, in view of Question 1.1, to determine
whether a Hopf algebra and its left or right Galois object have the same cohomological
dimension, which lead us to Question 1.2, and for which we list a number of basic remarks.

Remark 2.1. Let A be a Hopf algebra and let R be a left or right A-Galois object. Then
we have cd(R) ≤ cd(A). This follows from Stefan’s spectral sequence [44, Theorem 3.3],
or can be checked directly at the level of complexes defining Hochschild cohomlogy [6,
Theorem 7.12]. See [50, Lemma 2.2] as well.

Remark 2.2. There is indeed the need of assumptions on A in Question 1.2, as the example
of the Taft algebra Hn shows, which admits the matrix algebra Mn(k) as a Galois object
[29], and for which we have cd(Mn(k)) = 0 < cd(Hn) = ∞.

Remark 2.3. In the setting of Question 1.2, as the Weyl algebra example shows, which
is a Galois object over k[x, y], the good dimension to consider is indeed the Hochschild
cohomological dimension, and not the global dimension.

Recall that an algebra is said to be (homologically) smooth if the trivial bimodule has
a finite resolution by finitely generated projective bimodules. For Hopf algebras, this is
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equivalent to say that the trivial left or right A-module has a finite resolution by finitely
generated projective modules.

A partial positive anwer to Question 1.2 was obtained by Yu [50]. Indeed, if A is a Hopf
algebra with bijective antipode and R be a left of right A-Galois object, [50, Theorem
2.4.5] states that if A is twisted Calabi-Yau of dimension d, then so is R, and hence
in particular d = cd(A) = cd(R). Our first obervation is that, inspecting carefully the
arguments in [50], what is needed to ensure the equality of the cohomological dimensions
is smoothness only.

Theorem 2.4. Let A be a Hopf algebra with bijective antipode, and let R be a left of
right A-Galois object. If A is smooth, then we have cd(A) = cd(R)

Proof. Since A is homologically smooth, we have that cd(A) is finite, hence cd(A) =
max{n : Extn

AM(εk, F ) 6= 0 for some free module F}, and moreover the functor Ext∗
AM(εk,−)

commutes with direct colimits, see e.g. [10, Chapter VIII]). Hence

cd(A) = pd
AM(εk) = max{n : Extn

AM(εk, A) 6= 0 }
The algebra R is homologically smooth since A is, by [50, Lemma 2.4], hence we have
similarly

cd(R) = pd
RMR

(R) = max{n : Extn
RMR

(R,R⊗ R) 6= 0 }
We have by [50, Lemma 2.2, Lemma 2.1]

Ext∗
RMR

(R,R⊗ R) ≃ Extn
AM(εk, AA⊗ R)) ≃ Ext∗

AM(εk, AA)⊗ R

where the first isomorphism is obtained from [50, Lemma 2.2, Lemma 2.1], with the left
A-module structure on AA⊗ R being simply by multiplying in A on the left, and the
second one follows from the smoothness of R. Hence we obtain cd(A) = cd(R).

If we start with a right Hopf-Galois object R over A, it is well-known that Rop is a left
A-Galois object in a natural way (if the antipode of A is bijective), so that we can use
the result for left A-Galois objects to conclude that cd(A) = cd(R) as well. �

2.2. Monoidal equivalences. Let A, B be Hopf algebras. Schauenburg [40, Corollary
5.7] has shown the equivalence of the following assertions:

(1) There exists an equivalence of monoidal categories MA ≃⊗ MB;
(2) There exists an A-B-bi-Galois object.

It therefore follows that finding answers to Question 1.2 has immediate applications
to Question 1.1. We thus obtain, via Theorem 2.4, a partial positive answer to Question
1.1, only assuming that the Hopf algebras are smooth, while [47, Theorem 2.4.5] assumed
furthermore that one of the Hopf algebras is twisted Calabi-Yau, and then proved that
the other one is twisted Calabi-Yau with the same dimension as well.

Theorem 2.5. Let A, B be Hopf algebras that have equivalent linear tensor categories
of comodules: MA ≃⊗ MB. If A and B are smooth and have bijective antipode, we have
cd(A) = cd(B).

Proof. Since there exists an A-B-bi-Galois object R, we have cd(A) = cd(R) = cd(B) by
Theoren 2.4. �

Remark 2.6. It is pointed out in Remark 2.2 that the matrix algebra Mn(k) is a Galois
object over the Taft algebra Hn, and in fact Mn(k) is an Hn-Hn-bi-Galois object [41].
This indicates that the approach via Hopf-Galois objects cannot cover all the possible
situations in Question 1.1.
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3. Equivariant bimodule categories and projective dimensions

In this section we explain how one can use bimodule categories in order to obtain
informations on Question 1.2 and hence on Question 1.1.

Let A be a Hopf algebra, let R be a right A-comodule algebra (recall that this means
that R is an algebra in the monoidal category MA) and let RMA

R be the category of A-
bimodules in the category MA: the objects are the A-comodules V with an R-bimodule
structure having the Hopf bimodule compatibility conditions

(x · v)(0) ⊗ (x · v)(1) = x(0) · v(0) ⊗ x(1)v(1), (v · x)(0) ⊗ (v · x)(1) = v(0) · x(0) ⊗ v(1)x(1)

for any x ∈ R and v ∈ V . The morphisms are the A-colinear and R-bilinear maps.
The category RMA

R is obviously abelian, and the tensor product of bimodules induces a
monoidal strucure on it.

The following basic property is certainly well-known, and a straightforward verification.

Proposition 3.1. Let A be a Hopf algebra and let R be a right A-comodule algebra.

(1) The forgetful functor ΩA : RMA
R → MA has a left adjoint, which associates to a

comodule V the object R ⊗ V ⊗ R whose bimodule structure is given by left and
right multiplication of R and whose comodule structure is the tensor product of
the underlying comodules.

(2) The forgetful functor ΩR : RMA
R → RMR has a right adjoint, which associates to

an R-bimodule V the object V ⊗ A whose R-bimodule structure is given by

x · (v ⊗ a) = x(0) · v ⊗ x(1)a, (v ⊗ a) · x = v · x(0) ⊗ ax(1)

and whose A-comodule structure is induced by the comultiplication of A.

Objects in RMA
R that are images of the above left adjoint functor are called free, they

are indeed free as bimodules. Any object in RMA
R is a quotient of a free object.

As usual, if C is an abelian category having enough projective objects, the notation
pdC(V ) refers to the projective dimension of the object V , i.e. the smallest length of a
resolution of V by projective objects in C, with, as well

pdC(V ) = max{n : ExtnC(V,W ) 6= 0 for some object W in C}
The following corollary is a direct consequence of Proposition 3.1 and of the standard

properties of pairs of adjoint functors.

Corollary 3.2. Let A be a Hopf algebra and let R be a right A-comodule algebra.

(1) The category RMA
R has enough injective objects, since RMR has, and we have,

for any object V in RMA
R and any R-bimodule W :

Ext∗
RMR

(ΩR(V ),W ) ≃ Ext∗
RMA

R
(V,W ⊗A)

(2) IfMA has enough projective objects (in which case one says that A is co-Frobenius),
so has RMA

R. In that case, the previous isomorphism ensures that for any object
V in RMA

R, we have

pd
RMR

(ΩR(V )) ≤ pd
RMA

R
(V )

(3) If A is cosemisimple, then RMA
R has enough projective objects, and the projective

objects are the direct summands of the free ones.

The connection between our problem and bimodules is now given by the following
result.
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Proposition 3.3. Let A be a Hopf algebra, let R be a left A-Galois object, and let B a
Hopf algebra such that R is A-B-bi-Galois. Then the category RMB

R has enough projective
objects, and we have

cd(A) = pd
RMB

R
(R) ≥ pd

RMR
(R) = cd(R)

Proof. First recall that it follows from the right version of [39, Theorem 5.7] (the structure
theorem for Hopf modules) that the functor

AM −→ AMA
A

V 7−→ V ⊚A

is a monoidal equivalence of categories, where V ⊚A is V ⊗A as a vector space, has the
tensor product left A-module structure and the right module and comodule structures
are induced by the multiplication and comultiplication of A respectively. This monoidal
equivalence transforms the trivial module εk into the A-bimodule A.

Now let R be an A-B-bi-Galois object. The corresponding monoidal equivalence
MA ≃⊗ MB in [40] is given by the cotensor product −�AR, and sends A to R, and
thus clearly induces an equivalence between the bimodule categories AMA

A and RMB
R.

Composing with the equivalence at the beginning of the proof, we get a monoidal equiv-
alence

AM ≃⊗
RMB

R

sending εk to R. It is then clear that RMB
R has enough projective objects, and that

cd(A) = pdA(εk) = pd
RMB

R
(R). The last inequality has been given in Remark 2.1. �

It is therefore crucial to compare pd
R
MB

R
(R) and pd

R
M

R
(R) for R a right B-Galois

object. Notice that the problem makes sense and is interesting for any comodule algebra,
as soon as RMB

R has enough projective projects. This is the motivation for the tools we
develop in the next section.

4. Twisted separable functors

In this section we introduce the notion of twisted separable functor.
If C is category, we say that a subclass F of objects of C is generating if for every object

V of C, there exists an object P of F together with an epimorphism P → V .

Definition 4.1. Let C and D be some categories. We say that a functor F : C → D is
twisted separable if there exist

(1) an autoequivalence Θ of the category D;
(2) a generating subclass F of objects of C together with, for any object P of F , an

isomorphism θP : F (P ) → ΘF (P );
(3) a natural morphism M−,− : HomD(F (−),ΘF (−)) → HomC(−,−) such that for

any object P of F , we have MP,P (θP ) = idP .

The naturality condition above means that for any morphisms α : V ′ → V , β : W →
W ′ in C and any morphism f : F (V ) → ΘF (W ) in D, we have

β ◦MV,W (f) ◦ α = MV ′,W ′(ΘF (β) ◦ f ◦ F (α))
When F is the whole class of objects of C, the autoequivalence Θ is the identity and

the isomorphisms θP all are the identity, we get the notion of separable functor from [34],
which is known to be provide a convenient setting for various types of generalized Maschke
theorems, see [12]. A basic example of a separable functor is, when A is a cosemisimple
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Hopf algebra, the forgetful functor MA → Veck: this is the content of Proposition 5.1 in
the next section.

Our motivation to introduce the present notion of twisted separable functor is the
following result.

Proposition 4.2. Let C and D be abelian categories having enough projective objects,
and let F : C → D be a functor. Assume that the following conditions hold:

(1) the functor F is exact and preserves projective objects;
(2) the functor F is twisted separable and F , the corresponding class of objects of C,

contains a generating subclass F0 consisting of projective objects.

Then, for any object V of C such that pdC(V ) is finite, we have pdC(V ) = pdD(F (V )).

We begin with some preliminaries.

Lemma 4.3. Let C be an abelian category having enough projective objects, and let F0

be a generating subclass of C consisting of projective objects. If pdC(V ) is finite, we have

pdC(V ) = max{n : ExtnC(V, F ) 6= 0 for some object F in F0}
Proof. Every object X fits into an exact sequence 0 → W → F → X → 0 with F an
object of F0, hence projective. The result is thus obtained via a classical argument: if
n = pdC(V ), the long Ext exact sequence gives that the functor ExtnC(V,−) is right exact,
and hence ExtnC(V, F ) 6= 0 for some object F of F0. �

Lemma 4.4. Assume we are in the setting of Proposition 4.2. For any objects X,W of
C, we have a morphism

Ext∗D(F (X),ΘF (W )) −→ Ext∗C(X,W )

which is surjective if W is an object of F .

Proof. Start with a projective resolution

· · · −→ Pn
dn−→ Pn−1

dn−1−→ · · · d2−→ P1
d1−→ P0

d0−→ X → 0

of X by objects in C. Since the functor F is exact and preserves projectives, we get a
projective resolution

· · · −→ F (Pn)
F (dn)−→ F (Pn−1)

F (dn−1)−→ · · · F (d2)−→ F (P1)
F (d1)−→ F (P0)

F (d0)−→ F (X) → 0

of F (X) in D. For all i ≥ 0, we have, by the naturality assumption, commutative
diagrams

HomD(F (Pi),ΘF (W ))

MPi,W

��

−◦F (di+1)
// HomD(F (Pi+1),ΘF (W ))

MPi+1,W

��

HomC(Pi,W )
−◦di+1

// HomC(Pi+1,W )

that induce a morphism of complexes

M̃ : HomD(F (P∗),ΘF (W )) → HomC(P∗,W )

and hence a morphism between the corresponding cohomologies:

H∗(M̃) : Ext∗D(F (X),ΘF (W )) −→ Ext∗C(X,W )

Assume now that W is an object of F , and let f ∈ HomC(Pi,W ). We have

MPi,W (θW ◦ F (f)) =MW,W (θW ) ◦ f = f
8



and if moreover f ◦ di+1 = 0, we have also θW ◦ F (f) ◦ F (di+1) = 0. This shows that

H∗(M̃) is surjective. �

Remark 4.5. Assume, as the setting of Proposition 4.2 allows us to, that in the proof of
the previous lemma, we have started with a projective resolution

· · · −→ Pn
dn−→ Pn−1

dn−1−→ · · · d2−→ P1
d1−→ P0

d0−→ X → 0

of X by objects in F . Then, for f ∈ HomC(Pi,W ), we have

MPi,W (Θ(F (f)) ◦ θPi
) = f ◦MPi,Pi

(θPi
) = f

This shows that the morphism of complexes M̃ : HomD(F (P∗),ΘF (W )) → HomC(P∗,W )
in the above proof is surjective in general. However, since we see no reason that ΘF (f) ◦
θPi

◦ F (di+1) = 0, we cannot conclude that the corresponding morphism in cohomology
is surjective without our assumption on W .

Proof of Proposition 4.2. Let V be an object of C, and let

· · · −→ Pn
dn−→ Pn−1

dn−1−→ · · · d2−→ P1
d1−→ P0

d0−→ V → 0

be a projective resolution of V . Since the functor F is exact and preserves projectives,
we get a projective resolution

· · · −→ F (Pn)
F (dn)−→ F (Pn−1)

F (dn−1)−→ · · · F (d2)−→ F (P1)
F (d1)−→ F (P0)

F (d0)−→ F (V ) → 0

of F (V ) in D. This shows that pdD(F (V )) ≤ pdC(V ). To prove the converse in-
equality, we can assume that n = pdD(F (V )) is finite. We then have in particu-
lar Extn+1

D (F (V ),ΘF (P )) = {0} for any object P in F , and by Lemma 4.4, we have
Extn+1

C (V, P ) = {0} as well. Hence, assuming that pdC(V ) is finite, Lemma 4.3 shows
that pdC(V ) ≤ n, concluding the proof. �

In this paper we will not develop any more theory on twisted separable functors, and
will focus on applications of Proposition 4.2.

5. Question 1.1 in the cosemisimple case

Recall that a Hopf algebra is cosemisimple if and only if it admits a Haar integral, i.e.
a linear map h : A→ k such that for any a ∈ A, we have

h(a(1))a(2) = h(a) = h(a(2))a(1) and h(1) = 1

The proof of the semisimplicity of the category of comodules from the existence of a Haar
integral is a consequence of the following classical averaging construction, which shows
that the the forgetful functor MA → Veck is separable, and that we record for future use.

Proposition 5.1. Let V , W be right A-comodules over a cosemisimple Hopf algebra A,
and let f : V →W be a linear map. The map

MV,W (f) : V −→W

v 7−→ h
(
f(v(0))(1)S(v(1))

)
f(v(0))(0)

is a morphism of comodules, with M(f) = f if and only if f is a morphism of comodules
and with, for any morphisms of comodules α : V ′ → V and β : W → W ′, β ◦MV,W (f) ◦
α = MV ′,W ′(β ◦ f ◦ α). The above construction therefore defines a projection

MV,W : Hom(V,W ) → HomA(V,W )

that we call the averaging with respect to V and W .
9



The Haar integral is not a trace in general, but satisfies a KMS type property, discovered
by Woronowicz [49] in the setting of compact quantum groups.

Theorem 5.2. Let A be a cosemisimple Hopf algebra with Haar integral h. There exists a
convolution invertible linear map ψ : A→ k, called a modular functional on A, satisfying
the following conditions:

• S2 = ψ ∗ id ∗ ψ−1;
• σ := ψ ∗ id ∗ ψ is an algebra automorphism of A;
• we have h(ab) = h(bσ(a)) for any a, b ∈ A.

The proof relies on the orthogonality relations, whose first occurence is due to Larson
[25], and were completed by Woronowicz [49]. In all the treatment we are aware of
[24, 35], the setting is over the field of complex numbers, but inspecting the proof shows
that it is valid for any cosemisimple Hopf algebra over any algebraically closed field.

We now present our key averaging lemma for bimodules. If R is an A-comodule algebra
over a cosemisimple Hopf algebra A, we denote by ρ the algebra automorphism of R
defined by ρ = id ∗ ψ−2, i.e. ρ(x) = ψ−2(x(1))x(0), with ψ a modular functional as in
Theorem 5.2.

Lemma 5.3. Let A be a cosemimple Hopf algebra and let R be a right A-comodule algebra.
Let V,W be objects of RMA

R. If f : V →W is a linear map satisfying

f(v · x) = f(v) · x and f(x · v) = ρ(x) · f(v)

for any v ∈ V and x ∈ R, then MV,W (f) : V →W is a morphism in the category RMA
R.

Proof. We already know that MV,W (f) : V → W is colinear and there remains to prove
that MV,W (f) is left and right R-linear as well. Let v ∈ V and x ∈ R. We have, using our
condition on f and the compatibility between the comodule and right module structure:

MV,W (f)(v · x) = h
(
f((v · x)(0))(1)S((v · x)(1))

)
f((v · x)(0))(0)

= h
(
f(v(0) · x(0))(1)S(v(1)x(1))

)
f(v(0) · x(0))(0)

= h
(
(f(v(0)) · x(0))(1)S(v(1)x(1))

)
(f(v(0)) · x(0))(0)

= h
(
(f(v(0))(1)x(1)S(v(1)x(2))

)
f(v(0))(0) · x(0)

= h
(
(f(v(0))(1)x(1)S(x(2))S(v(1))

)
f(v(0))(0) · x(0)

= MV,W (f)(v) · x

Hence f is right R-linear. We also have, using our condition on f and the compatibility
between the comodule and left module structure:

MV,W (f)(x · v) = h
(
f((x · v)(0))(1)S((x · v)(1))

)
f((x · v)(0))(0)

= h
(
(f(x(0) · v(0)))(1)S(x(1)v(1))

)
f(x(0) · v(0))(0)

= ψ−2(x(1))h
(
(x(0) · f(v(0)))(1)S(x(2)v(1))

)
(x(0) · f(v(0))(0)

= ψ−2(x(2))h
(
x(1)f(v(0))(1)S(x(3)v(1)))

)
x(0) · f(v(0))(0)
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Using the properties of the modular functional, this gives:

MV,W (f)(x · v) = ψ−2(x(4))h
(
f(v(0))(1)S(v(1))S(x(5))ψ(x(1))x(2)ψ(x(3))

)
x(0) · f(v(0))(0)

= h
(
f(v(0))(1)S(v(1))S(x(4))ψ(x(1))x(2)ψ

−1(x(3))
)
x(0) · f(v(0))(0)

= h
(
f(v(0))(1)v(1)S(x(2))S

2(x(1))
)
x(0) · f(v(0))(0)

= x ·MV,W (f)(v)

and this shows that MV,W (f) is left R-linear as well. �

Lemma 5.4. Let V be a comodule over a cosemisimple Hopf algebra A, let R be an
A-comodule algebra and consider the map ρV = ρ⊗ idV ⊗ idR : R⊗V ⊗R→ R⊗V ⊗R.
We have M(ρV ) = idR⊗V⊗R, where M stands for averaging with respect to R⊗ V ⊗R.

Proof. It is immediate that ρV = ρ ⊗ idV ⊗ idR : R ⊗ V ⊗ R → R ⊗ V ⊗ R satisfies the
assumption of Lemma 5.3, hence M(ρV ) is left and right R-linear. Since it is clear that
M(ρV )(1 ⊗ v ⊗ 1) = 1 ⊗ v ⊗ 1 for any v ∈ V , we get the result by the R-bilinearity of
M(ρV ). �

We now have all the ingredients to prove the following result.

Proposition 5.5. Let A be a cosemisimple Hopf algebra and let R be a right A-comodule
algebra. The forgetful functor ΩR : RMA

R → RMR is twisted separable, and we have
pd

RMA
R
(V ) = pd

RMR
(V ) for any object V in RMA

R such that pd
RMA

R
(V ) is finite. In

particular, if pd
RMA

R
(R) is finite, we have pd

RMA
R
(R) = pd

RMR
(R) = cd(R).

Proof. In order to show that the forgetful functor ΩR : RMA
R → RMR is twisted separable,

consider

(1) the class F = F0 of free bimodules in RMA
R;

(2) the autoequivalence Θ of the category RMR that associates to an R-bimodule
W the R-bimodule ρW having W as underlying vector space and R-bimodule
structure given by x ·′ w ·′ y = ρ(x) · w · y, and is trivial on morphisms;

(3) for a free object R ⊗ V ⊗ R, the R-bimodule isomorphism ρV : R ⊗ V ⊗ R →
ρ(R⊗ V ⊗ R) in Lemma 5.4;

(4) for objects V,W in RMA
R, the averaging map

MV,W : Hom
RMR

(V, ρW ) → Hom
RMA

R
(V,W )

from Lemma 5.3.

It follows from Lemma 5.3, Lemma 5.4 and Proposition 5.1 that the functor ΩR : RMA
R →

RMR is indeed twisted separable. Moreover, as already said, the class F of free objects
consists of projective objects, the projective objects in RMA

R are direct summands of
free objects and hence are preserved by ΩR, which is clearly exact. Hence we are in the
situation of Proposition 4.2, and we obtain the equality of projective dimensions. �

We obtain the following partial answer to Question 1.2.

Theorem 5.6. Let A be Hopf algebra and let R be a left or right A-Galois object. If A
is cosemisimple and cd(A) is finite, we have cd(A) = cd(R)

Proof. The result is obtained by combining Proposition 3.3 and Proposition 5.5. �

We now obtain our partial answer to Question 1.1 in the cosemisimple case. The proof
is similar to that of Theorem 2.5.
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Theorem 5.7. Let A, B be Hopf algebras that have equivalent linear tensor categories
of comodules: MA ≃⊗ MB. If A and B are cosemisimple and cd(A), cd(B) are finite,
we have cd(A) = cd(B).

We finish the section by noticing that Proposition 5.5 can be strengthened in the case
S4 = id.

Proposition 5.8. Let A be a cosemisimple Hopf algebra with S4 = id, and let R be a
right A-comodule algebra.

(1) The forgetful functor ΩR : RMA
R → RMR is separable. We thus have pd

RMA
R
(V ) =

pd
RMR

(V ) for any object V in RMA
R, and pd

RMA
R
(R) = cd(R).

(2) Let F : MA ≃⊗ MB be a monoidal equivalence with B satisfying S4 = id as well.
We then have, for the B-comodule algebra T = F (R), cd(R) = cd(T ).

(3) Let F : MA −→ Veck be a fibre functor. If cd(R) is finite, we have, for the algebra
T = F (R), cd(R) = cd(T ).

Proof. As in the proof of Lemma 5.3, using the properties of the modular functional, we
see that for any a, x ∈ A

h(S(a(1))xa(2)) = ψ−2(a(2))h
(
xa(3)S

−1(a(1))
)

At x = 1 this gives ε(a) = ψ−2(a(2))h
(
a(3)S

−1(a(1))
)
. If S4 = id, then ψ−2 convolution

commutes with the identity, hence we get ψ−2 = ε. Hence the automorphism ρ associated
to an A-comodule algebra R is the identity, the autoequivalence Θ in the proof of Propo-
sition 5.5 is the identity, and the class F is the class of all objects, and it follows that
ΩR : RMA

R → RMR is separable. The result about projective dimensions is then either
well-known or follows from the obvious improvement of Proposition 5.5 in the separable
case, having in mind that the conclusion of Lemma 4.4 now holds for any object.

A monoidal equivalence F : MA ≃⊗ MB induces, as before, an equivalence between
the bimodule categories RMA

R and TMB
T for T = F (R), sending R to T , and then the

assumption S4 = id on A and B ensures that cd(R) = pd
R
MA

R
(R) = pd

T
MB

T
(T ) = cd(T ).

Start now with a fibre functor F : MA −→ Veck, i.e. a k-linear monoidal exact faithful
functor that commutes with colimits. Such a functor induces, by Tannaka-Krein duality
(see e.g. [23, 19]) or by the results in [40], a monoidal equivalence MA ≃⊗ MB for some
Hopf algebra B, with as well a monoidal equivalence RMA

R ≃⊗
TMB

T . The assumption
that S4 = id for A then gives pd

RMA
R
(R) = cd(R). Since pd

RMA
R
(R) = pd

TMB
T
(T ),

Proposition 5.5 ensures, under the assumption that cd(R) is finite, that pd
T
MB

T
(T ) =

cd(T ), and thus this gives the expected result. �

Example 5.9. Let σ : A⊗A → k be (Hopf, right) 2-cocycle on a Hopf algebra A (see [31]),
i.e. σ is a convolution invertible linear map σ : A⊗ A→ k satisfying, for any a, b, c ∈ A

σ(a, 1) = ε(a)1 = σ(1, a), σ(a(2), b(2))σ(a(1)b(1), c) = σ(a, b(1)c(1))σ(b(2), c(2))

If R is a right A-comodule algebra, we obtain a new (associative) algebra Rσ by letting

x.y = σ(x(1), y(1))x(0)y(0)

We then have, if A is cosemisimple with S4 = id, cd(R) = cd(Rσ) if cd(R) is finite.

Proof. The algebra Rσ is the image of R under the fibre functor MA → Veck which has
the forgetful functor as underlying functor and monoidal constraint V ⊗W → V ⊗W ,
v ⊗ w 7→ σ(v(1), w(1))v(0) ⊗ w(0). The result is thus a consequence of Proposition 5.8. �

12



Remark 5.10. If the Hopf algebra Aσ (see [17, 40]) satisfies as well S4 = id, we can con-
clude that cd(R) = cd(Rσ) without the finiteness assumption. This applies in particular,
when A is a group algebra, to the 2-cocycle twisting of a group-graded algebra, which
therefore has the same Hochschild cohomological dimension as the original algebra. This
was probably well-known, but we are not aware of an explicit reference for this fact.

6. yetter-drinfeld modules over cosemimple hopf algebras

Our aim in this section is to compare the cohomological dimension and the Gerstenhaber-
Schack cohomological dimension of a cosemisimple Hopf algebra, providing in this way
a version of Theorem 5.7 that looks slightly weaker, but that is probably more useful in
concrete situations (Corollary 6.5).

Recall that a (right-right) Yetter-Drinfeld module over a Hopf algebra A is a right
A-comodule and right A-module V satisfying the condition, ∀v ∈ V , ∀a ∈ A,

(v · a)(0) ⊗ (v · a)(1) = v(0) · a(2) ⊗ S(a(1))v(1)a(3)

The category of Yetter-Drinfeld modules over A is denoted YDA
A: the morphisms are the

A-linear and A-colinear maps. The category YDA
A is obviously abelian, and, endowed

with the usual tensor product of modules and comodules, is a tensor category, with unit
the trivial Yetter-Drinfeld module, denoted k.

The forgetful functor ΩA : YDA
A → MA has a left adjoint [11], the free Yetter-Drinfeld

module functor, which sends a comodule V to the Yetter-Drinfeld module V ⊠A, which
as a vector space is V ⊗A, has the right module structure given by multiplication on the
right, and right coaction given by

(v ⊗ a)(0) ⊗ (v ⊗ a)(1) = v(0) ⊗ a(2) ⊗ S(a(1))v(1)a(3)

A Yetter-Drinfeld module isomorphic to some V ⊠ A as above is said to be free. Let us
record the following facts, that are straightforward consequences of standard properties
of pairs of adjoint functors.

(1) Every Yetter-Drinfeld module is a quotient of a free Yetter-Drinfeld module. In-
deed, for a Yetter-Drinfeld V , the A-module structure of V induces a surjective
morphism ΩA(V )⊠ A→ V .

(2) If the category MA has enough projective objects, then so has YDA
A.

(3) If A is cosemisimple, then YDA
A has enough projective objects, and the projective

objects are precisely the direct summands of the free Yetter-Drinfeld modules.

Similarly, the forgetful functor ΩA : YDA
A → MA has a right adjoint [11], the cofree

Yetter-Drinfeld module functor, which sends a module V to the Yetter-Drinfeld module
V#A, which as a vector space is V ⊗ A, has the right comodule structure given by the
comultiplication of A on the right, and right A-module structure given by

(v ⊗ a) · b = v · b(2) ⊗ S(b(1))ab(3)

Again, as a consequence of general properties of adjoint functors, it follows that the
category YDA

A has enough injective objects, since MA has.
Recall that we have defined the Gerstenhaber-Schack cohomological dimension of a

Hopf algebra A by

cdGS(A) = max{n : Extn
YDA

A
(k, V ) 6= 0 for some V ∈ YDA

A} ∈ N ∪ {∞}
The name comes from the fact, proved in [45], that if V is a Yetter-Drinfeld over A, then
Ext∗

YDA
A
(k, V ) is isomorphic with H∗

GS(A, V ), the Gerstenhaber-Schack cohomology of A

with coefficients in V [21, 43].
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Notice that since YDA
A has enough injective objects, the above Ext can computed using

injective resolutions of V , and if YDA
A has enough projective objects, using projective

resolutions of k in YDA
A. Another consequence of general properties of pairs of adjoint

functors is that we have, for any Yetter-Drinfeld module V and any A-module W, natural
isomorphisms

Ext∗A(ΩA(V ),W ) ≃ Ext∗
YDA

A
(V,W#A)

This is what proves that cd(A) ≤ cdGS(A) [7].
We now present an averaging lemma for Yetter-Drinfeld modules over cosemisimple

Hopf algebras, in the same spirit as Lemma 5.3, which will be the key tool towards the
proof of Theorem 6.4. If A is a cosemisimple Hopf algebra with modular functional ψ,
we denote by θ the algebra automorphism of A defined by θ = ψ2 ∗ id.

Lemma 6.1. Let V,W be Yetter-Drinfeld modules over a cosemisimple Hopf algebra A.
If f : V → W is a linear map satisfying f(v · a) = f(v) · θ(a) for any v ∈ V and a ∈ A,
then MV,W (f) : V → W is a morphism of Yetter-Drinfeld modules.

Proof. We already know that MV,W (f) : V → W is colinear and there remains to prove
that MV,W (f) is A-linear as well. Let v ∈ V and a ∈ A. We have, using our condition
on f and the Yetter-Drinfeld property:

MV,W (f)(v · a) = h
(
f((v · a)(0))(1)S((v · a)(1))

)
f((v · a)(0))(0)

= h
(
f(v(0) · a(2))(1)S(S(a(1))v(1)a(3))

)
f(v(0) · a(2))(0)

= h
(
(f(v(0)) · θ(a(2)))(1)S(S(a(1))v(1)a(3))

)
(f(v(0)) · θ(a(2)))(0)

= ψ2(a(2))h
(
(f(v(0)) · a(3))(1)S(S(a(1))v(1)a(4))

)
(f(v(0)) · a(3))(0)

= ψ2(a(2))h
(
S(a(3))f(v(0))(1)a(5)S(S(a(1))v(1)a(6))

)
f(v(0))(0) · a(4)

= ψ2(a(2))h
(
S(a(3))f(v(0))(1)a(5)S(a(6))S(v(1))S

2(a(1))
)
f(v(0))(0) · a(4)

= ψ2(a(2))h
(
S(a(3))f(v(0))(1)S(v(1))S

2(a(1))
)
f(v(0))(0) · a(4)

Using the properties of the modular functional, and since σ ◦ S = σ−1 = ψ−1 ∗ S ∗ ψ−1

because σ is an algebra map, this gives:

MV,W (f)(v · a) = ψ2(a(2))h
(
f(v(0))(1)S(v(1))S

2(a(1))σ(S(a(3))
)
f(v(0))(0) · a(4)

= ψ2(a(2))h
(
f(v(0))(1)S(v(1))S

2(a(1))ψ
−1(a(3))S(a(4))ψ

−1(a5)
)
f(v(0))(0) · a(6)

= h
(
f(v(0))(1)S(v(1))S

2(a(1))ψ(a(2))S(a(3))ψ
−1(a4))

)
f(v(0))(0) · a(5)

= h
(
f(v(0))(1)S(v(1))S

2(a(1))S
3(a2)

)
f(v(0))(0) · a(3)

= h
(
f(v(0))(1)S(v(1))

)
f(v(0))(0) · a = MV,W (f)(v) · a

and this shows that MV,W (f) is A-linear. �

Lemma 6.2. Let V be a right comodule over the cosemisimple Hopf algebra A, and
consider the linear map θV = idV ⊗ θ : V ⊠A→ V ⊠A. We have M(θV ) = idV ⊠A, where
M(θV ) stands for MV ⊠A,V⊠A(θV ).

Proof. It is immediate that idV ⊗ θ : V ⊠A→ V ⊠A satisfies the assumption of Lemma
6.1, hence M(idV ⊗ θ) is A-linear. Since it is clear that M(idV ⊗ θ)(v ⊗ 1) = v ⊗ 1 for
any v ∈ V , we get the result by the A-linearity of M(idV ⊗ θ). �

We now have all the ingredients to prove the following result.
14



Proposition 6.3. Let A be a cosemisimple Hopf algebra. The forgetful functor ΩA :
YDA

A → MA is twisted separable, and we have pdYDA
A
(V ) = pdA(V ) for any Yetter-

Drinfeld module V such that pdYDA
A
(V ) is finite.

Proof. In order to show that the forgetful functor ΩA : YDA
A → MA is twisted separable,

consider

(1) the class F = F0 of free Yetter-Drinfeld modules;
(2) the autoequivalence Θ of the category MA that associates to a right A-moduleW

the A-module Wθ having W as underlying vector space and A-module structure
given by w ·′ a = w · θ(a), and is trivial on morphisms;

(3) for a free Yetter-Drinfeld module V ⊠A, the A-module isomorphism θV : V ⊗A→
(V ⊗ A)θ in Lemma 6.2.

(4) for Yetter-Drinfeld modules V,W , the averaging map

MV,W : HomA(V,Wθ) → HomYDA
A
(V,W )

from Lemma 6.1.

It follows from Lemma 6.1, Lemma 6.2 and Proposition 5.1 that the functor ΩA : YDA
A →

MA is indeed twisted separable. Moreover, as already said, the class F of free Yetter-
Drinfeld modules consists of projective objects, the projective objects in YDA

A are direct
summands of free objects and hence are preserved by ΩA, which is exact. Hence we are in
the situation of Proposition 4.2, and we obtain the equality of projective dimensions. �

We thus obtain the main result in the section.

Theorem 6.4. Let A be a cosemisimple Hopf algebra. If cdGS(A) is finite, we have
cd(A) = cdGS(A).

Proof. Let A be a cosemimple Hopf algebra. Since cdGS(A) = pdYDA
A
(k) and cd(A) =

pdA(kε), we have cd(A) = cdGS(A) if cdGS(A) is finite, by Proposition 6.3. �

We get the following weak form of Theorem 5.7, whose formulation is useful.

Corollary 6.5. Let A, B be Hopf algebras such that MA ≃⊗ MB. If A and B are
cosemisimple and cdGS(A) is finite, we have cd(A) = cd(B).

Proof. We have cdGS(A) = cdGS(B), hence cd(A) = cd(B) by Theorem 6.4. �

As in Section 3, Proposition 6.3 can be strengthened when S4 = id.

Theorem 6.6. Let A be Hopf algebra. The forgetful functor ΩA : YDA
A → MA is

separable if and only if A is cosemisimple and S4 = id, and in that case we have
pdYDA

A
(V ) = pdA(V ) for any Yetter-Drinfeld module V .

Proof. If A is cosemisimple and S4 = id, we see, as in the proof of Proposition 5.8, that
the automorphism θ of A is the identity, and that ΩA : YDA

A → MA is indeed separable,
and the assertion on projective dimensions, which was already proved in [8, Section 6],
follows similarly.

Assume now that ΩA : YDA
A → MA is separable. Since ΩA admits the right adjoint

−#A, the characterization of separability for functors that admit a right adjoint in [38]
gives in particular an A-colinear and A-linear map

η : k#A→ k with η(1) = 1
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By the A-colinearity and η(1) = 1, we have that η = h is a Haar integral on A, which is
thus cosemisimple. The A-linearity of h gives, for any a, x ∈ A,

h(S(a(1))xa(2)) = ε(a)h(x)

We have seen in the proof of Proposition 5.8 that for any a, x ∈ A,

h(S(a(1))xa(2)) = ψ−2(a(2))h
(
xa(3)S

−1(a(1))
)

Hence we have for any a, x ∈ A

h
(
x(ε(a)− ψ−2(a(2))a(3)S

−1(a(1)))
)
= 0

The non-degeneracy of the Haar integral (which follows from the orthogonality relations)
then gives, for any a ∈ A

ε(a)1 = ψ−2(a(2))a(3)S
−1(a(1))

Hence applying ε gives ε = ψ−2, and we thus have S4 = id. �

We finish the section by noticing that Yetter-Drinfeld modules are also useful outside
the cosemisimple case. Recall [7] that a Yetter-Drinfeld module is said to be relative
projective if it is a direct summand of a free Yetter-Drinfeld module, and let us say that
a Hopf algebra is Yetter-Drinfeld smooth if the trivial object k has a finite resolution by
relative projective Yetter-Drinfeld modules that are finitely generated as modules.

Theorem 6.7. Let A, B be Hopf algebras that have equivalent linear tensor categories
of comodules: MA ≃⊗ MB. If A and B have bijective antipode and A is Yetter-Drinfeld
smooth, then we have cd(A) = cd(B).

Proof. Clearly A is smooth since it is Yetter-Drinfeld smooth, and if we start from a
resolution of k be finitely generated relative projective Yetter-Drinfeld modules in YDA

A,
[5, Theorem 4.1] ensures that one can transport this resolution to a resolution of k to a
finitely generated relative projective Yetter-Drinfeld modules in YDB

B. Hence B is smooth
as well and Theorem 2.5 concludes the proof. �

7. hopf subalgebras and cohomological dimension

Let B ⊂ A be a Hopf subalgebra. Under the assumption of faithful flatness of A as a B-
module, which holds in many situations and in particular if A is cosemisimple [13], we have
cd(B) ≤ cd(A) [7, Proposition 3.1]. In this section we prove, in view of an example in the
next section, an analogue inequality for Gerstenhaber-Schack cohomological dimension,
in the cosemisimple case. Of course, if the conclusion of Theorem 6.4 was known to hold
for any cosemisimple Hopf algebra, this would become trivial.

We begin with some results of independent interest. Recall [7] that a Yetter-Drinfeld
module is said to be relative projective if it is a direct summand in a free one.

Proposition 7.1. Let A be a Hopf algebra, let V be a Yetter-Drinfeld over A and let W
be a right A-comodule. Then we have an isomorphism of Yetter-Drinfeld modules

(ΩA(V )⊗W )⊠A ≃ V ⊗ (W ⊠ A)

In particular, if P is a relative projective Yetter-Drinfeld module, so is the Yetter-Drinfeld
module V ⊗ P .

Proof. The map

(ΩA(V )⊗W )⊠A 7−→ V ⊗ (W ⊠ A)

v ⊗ w ⊗ a 7−→ v · a(1) ⊗ w ⊗ a(2)
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is easily seen to be a morphism of Yetter-Drinfeld modules, and its inverse is given by
v ⊗ w ⊗ a 7→ v · S(a(1)) ⊗ w ⊗ a(2). If P is relative projective, let W be a right A-
comodule and Q be a Yetter-Drinfeld module such that W ⊠A ≃ P ⊕Q. We then have
(V ⊗ P ) ⊕ (V ⊗ Q) ≃ V ⊗ (W ⊠ A) ≃ (ΩA(V ) ⊗W ) ⊠ A, which proves that V ⊗ P is
relative projective. �

Corollary 7.2. If A is a cosemisimple Hopf algebra, we have

cdGS(A) = pdYDA
A
(k) = max

{
n : Extn

YDA
A
(k, V ) 6= 0 for some V ∈ YDA

A

}

= max
{
pdYDA

A
(V ), V ∈ YDA

A

}
= max

{
n : Extn

YDA
A
(V,W ) 6= 0 for some V,W ∈ YDA

A

}

= min
{
n : Extn+1

YDA
A

(V,W ) = 0 for any V,W ∈ YDA
A

}

= max
{
injdYDA

A
(V ), V ∈ YDA

A

}

where injdYDA
A
is the injective dimension in the category YDA

A.

Proof. The first two equalities have already been discussed. Let P∗ → k be resolution of
k by projective objects, of length n = pdYDA

A
(k). Since A is cosemisimple, the projective

objects are the relative projectives, so if V is a Yetter-Drinfeld module, tensoring the
above resolution with V yields, by Proposition 7.1, a length n resolution of V by pro-
jective objects. This gives the third equality, and the other ones then follow by classical
arguments. �

Let B ⊂ A be a Hopf subalgebra. Recall [8] that there is a pair of adjoint functors

YDA
A −→ YDB

B YDB
B −→ YDA

A

X 7−→ X(B) V 7−→ V ⊠B A

where

(1) for a Yetter-Drinfeld module X over A, X(B) = {x ∈ X | x(0) ⊗ x(1) ∈ X ⊗ B}
has the restricted B-module structure;

(2) for a Yetter-Drinfeld module V over B, V ⊠B A is the induced module V ⊗B A,
with A-comodule structure given by

(v ⊗B a)(0) ⊗ (v ⊗B a)(1) = v(0) ⊗B a(2) ⊗ S(a(1))v(1)a(3)

Lemma 7.3. Let B ⊂ A be a Hopf subalgebra, and assume that A is cosemisimple. Let
V be a Yetter-Drinfeld module over B. Then V is isomorphic to a direct summand of
(V ⊠B A)

(B).

Proof. It is immediate to check that we have a morphism of Yetter-Drinfeld modules

i : V → (V ⊠B A)
(B), v 7→ v ⊗B 1

Assume now that A is cosemisimple. Then, by the proof of Theorem 2.1 in [13], there
exists a sub-B-bimodule T ⊂ A, which is as well a subcoalgebra, such that A = B ⊕ T .
Let E : A → B be the corresponding projection: E(b) = b for b ∈ B and E(a) = 0 for
a ∈ T . By construction E is a B-bimodule map and a coalgebra map, and it is immediate
to check that we have for any a ∈ A

S(E(a)(1))⊗ E(a)(2) ⊗E(a)(3) = S(a(1))⊗ E(a(2))⊗ a(3)

From this, we see that the map

(V ⊠B A)
(B) → V, v ⊗B a→ v · E(a)
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is a morphism of Yetter-Drinfeld modules. Since this map is clearly a retraction to i, this
proves the lemma. �

We now have all the ingredients to prove the expected result.

Proposition 7.4. Let B ⊂ A be a Hopf subalgebra. If A is cosemisimple, we have
cdGS(B) ≤ cdGS(A).

Proof. We can assume that cdGS(A) = n is finite. Since A is cosemisimple, [13, Theorem
2.1] ensures that A is flat as a left B-module, and B ⊂ A is coflat. Hence, by [8,
Proposition 3.3] we have

Ext∗
YDA

A
(V ⊠B A,X) ≃ Ext∗

YDB
B
(V,X(B))

for any Yetter-Drinfeld module X over A, and any Yetter-Drinfeld module V over B.
Hence, for V = k, Corollary 7.2 yields

Extn+1
YDB

B

(k,X(B)) ≃ Extn+1
YDA

A

(k ⊠B A,X) = {0}
for any Yetter-Drinfeld module X over A. Lemma 7.3 ensures that any Yetter-Drinfeld
module over B is a direct summand in one of type X(B), so we get cdGS(B) ≤ n, as
required. �

8. examples

We now use the previous results to examine some examples that were not covered by
the literature.

8.1. Universal cosovereign Hopf algebras. In this subsection we complete some of
the results of [8] on the cohomological dimension of the universal cosovereign Hopf alge-
bras. Recall that for n ≥ 2 and F ∈ GLn(k), the algebra H(F ) is the algebra generated
by (uij)1≤i,j≤n and (vij)1≤i,j≤n, with relations:

uvt = vtu = In; vFutF−1 = FutF−1v = In,

where u = (uij), v = (vij) and In is the identity n × n matrix. The algebra H(F ) has a
Hopf algebra structure defined by

∆(uij) =
∑

k

uik ⊗ ukj, ∆(vij) =
∑

k

vik ⊗ vkj,

ε(uij) = ε(vij) = δij, S(u) = vt, S(v) = FutF−1.

We refer the reader to [4, 8] for more information and background on the universal
cosovereign Hopf algebras H(F ).

Recall [8] that we say that a matrix F ∈ GLn(k) is
• normalizable if tr(F ) 6= 0 and tr(F−1) 6= 0 or tr(F ) = 0 = tr(F−1);

• generic if it is normalizable and the solutions of the equation q2−
√

tr(F )tr(F−1)q+
1 = 0 are generic, i.e. are not roots of unity of order ≥ 3 (this property does not depend
on the choice of the above square root);

• an asymmetry if there exists E ∈ GLn(k) such that F = EtE−1.

Theorem 8.1. Let F ∈ GLn(k), n ≥ 2. If F is an asymmetry or F is generic, we have
cd(H(F )) = 3.

Proof. We know from [8, Theorem 2.1], that cd(H(F )) = 3 if F is an asymmery and that
cdGS(H(F ) = 3 if F is generic, in which case H(F ) is cosemisimple [4], so Theorem 6.4
gives the result in that case. �
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As an illustration of Theorem 5.6, consider, for E ∈ GLn(k) and F ∈ GLm(k), n,m ≥ 2,
the algebra H(E, F ) presented by generators uij, vij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, and relations

uvt = Im = vFutE−1 ; vtu = In = FutE−1v.

Theorem 8.2. If E, F are generic, tr(E) = tr(F ) and tr(E−1) = tr(F−1), then we have
cd(H(E, F )) = 3.

Proof. The assumption tr(E) = tr(F ) and tr(E−1) = tr(F−1) ensures that H(E, F ) is
an H(E)-H(F )-bi-Galois object [4]. Hence, since the genericity assumption ensures that
H(E) cosemisimple and we know from the previous result that cd(H(E)) and cd(H(F ))
are finite, the result follows from Theorem 5.6. �

8.2. Free wreath products. In this subsection we assume that the base field is k = C,
since the monoidal equivalences on which we rely [20, 27] were obtained in this framework.
Before going to the general setting of Theorem 8.4, we feel it is probably worth to present
a particular example. So for n, p ≥ 1, consider, following the notation of [2], the algebra
Ap

h(n) presented by generators uij, 1 ≤ i, j ≤ n, and relations

n∑

j=1

upij = 1 =

n∑

j=1

upji, uijuik = 0 = ujiuki, for k 6= j,

At p = 1, A1
h(n) = As(n), the coordinate algebra of Wang’s quantum permutation group

[46]. In general Ap
h(n) is a Hopf algebra with [3]

∆(uij) =
∑

k

uik ⊗ ukj, ε(uij) = δij , S(uij) = up−1
ji

The following result, for which the p = 1 case was obtained in [7] (see [9] as well, where
it is shown that As(n) is Calabi-Yau of dimension 3), will be a particular instance of the
forthcoming Theorem 8.4.

Theorem 8.3. We have, for p ≥ 1 and n ≥ 4, cd(Ap
h(n)) = 3.

Let A be a Hopf algebra, and consider A∗n, the free product algebra of n copies of
A, which inherits a natural Hopf algebra structure such that the canonical morphisms
νi : A −→ A∗n are Hopf algebras morphisms. The free wreath product A ∗w As(n) [3] is
the quotient of the algebra A∗n ∗As(n) by the two-sided ideal generated by the elements:

νk(a)uki − ukiνk(a) , 1 ≤ i, k ≤ n , a ∈ A.

The free wreath product A ∗w As(n) admits a Hopf algebra structure given by

∆(uij) =
n∑

k=1

uik ⊗ ukj, ∆(νi(a)) =
n∑

k=1

νi(a(1))uik ⊗ νk(a(2)),

ε(uij) = δij, ε(νi(a)) = ε(a), S(uij) = uji, S(νi(a)) =

n∑

k=1

νk(S(a))uki.

When A is a compact Hopf algebra (i.e. arises from a compact quantum, we do not need
the precise definition here), the free wreath product is as well a compact Hopf algebra.
In that case the monoidal categories of comodules have been described for n ≥ 4 by
Lemeux-Tarrago [27] in the case S2 = id and Fima-Pittau [20] in general.

Taking A to be the group algebra C[Z/pZ], we have Ap
h(n) ≃ C[Z/pZ] ∗w As(n) by [3,

Example 2.5], hence Theorem 8.3 is a particular instance of the following result.
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Theorem 8.4. We have cd(A ∗w As(n)) = max(cd(A), 3) for any compact Hopf algebra
A such that cd(A) = cdGS(A) and any n ≥ 4.

Proof. First notice that there is a Hopf algebra map π : A ∗w As(n) → As(n) such that
π(uij) = uij and π(a) = ε(a), hence As(n) stands as Hopf subalgebra of A ∗w As(n). We
thus have, by [7, Proposition 3.1], 3 = cd(As(n)) ≤ cd(A∗wAs(n)). Similarly the natural
map A∗n → A∗wAs(n) has a retraction, and hence A∗n stands as left coideal ∗-subalgebra
of A∗wAs(n). By the results in [14], A∗wAs(n) is thus faithfully flat as A∗n-module, hence
projective [30]. We then have, using [8, Corollary 5.3], cd(A) = cd(A∗n) ≤ cd(A∗wAs(n)),
since restricting a resolution by projective A ∗w As(n)-modules to A∗n-modules remains
a projective resolution. Hence we have

max(cd(A), 3) ≤ cd(A ∗w As(n))

The converse inequality obviously holds is cd(A) is infinite, hence we can assume that
cd(A) is finite, and hence, in view of our assumption, that cdGS(A) is finite.

The results in [20, 27] ensure the existence, for q satisfying q+q−1 =
√
n, of a monoidal

equivalence between the category of comodules over A ∗w As(n) and the category of
comodules over a certain Hopf subalgebra H of the free product A∗O(SUq(2)). We have,
combining Proposition 7.4 and [8, Corollary 5.10]

cdGS(H) ≤ cdGS(A ∗ O(SUq(2))) = max(cdGS(A), cdGS(O(SUq(2)))

Since cdGS(O(SUq(2)) = 3 by [5, 7], we get cdGS(H) ≤ max(cdGS(A), 3), and since we
assume that cdGS(A) is finite, we get that cdGS(H) is finite. Hence by Corollary 6.5 and
Theorem 6.4, we get

cd(A ∗w As(n)) = cd(H) = cdGS(H) ≤ max(cdGS(A), 3) = max(cd(A), 3)

which concludes the proof. �

Remark 8.5. At n = 2, using the simple description of the free wreath product as a crossed
coproduct in [3], it is not difficult to show directly that cd(A ∗w As(2)) = max(cd(A), 1)
if A is non trivial.

Remark 8.6. Fima-Pittau [20] define more generally a free wreath product A∗wAaut(R,ϕ),
for suitable pairs (R,ϕ) consisting of a finite-dimensional C∗-algebra and a faithful state,
and prove a similar monoidal equivalence result, so that Theorem 8.4 should generalize
to this setting.

9. question 1.1 in the finite-dimensional case

In this section we provide a partial answer to Question 1.1 in the finite-dimensional
case. Recall that a Hopf algebra A is said to be unimodular if there is a non-zero two-
sided integral in A, i.e. there exists a non-zero t ∈ A such that ta = at = ε(a)t for any a.
If A is cosemisimple and finite-dimensional, then A∗ is unimodular.

Theorem 9.1. Let A, B be finite-dimensional Hopf algebras such that MA ≃⊗ MB.
Then we have cd(A) = cd(B) if one of the following condition holds.

(1) The characteristic of k is zero, or satisfies p > d
ϕ(d)
2 , where d = dim(A).

(2) A∗ is unimodular.

Proof. First notice that since a finite-dimensional Hopf algebra is self-injective (projective
modules are injective), we have cd(A), cd(B) ∈ {0,∞} and hence there are only few cases
to consider. Moreover, for the Drinfeld double D(A), we have cd(D(A)) = 0 if and only
if D(A) is semisimple, if and only if A is semisimple and cosemisimple [36, Proposition
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7], and cd(D(A)) = ∞ otherwise. Moreover, we have cd(D(A)) = cd(D(B)) since our
monoidal equivalence MA ≃⊗ MB induces a monoidal equivalence between the monoidal
centers of these categories (notice that cd(D(A)) = cdGS(A)).

If k has characteristic zero or satisfies p > d
ϕ(d)
2 , then by [26, Theorem 3.3] and [18,

Theorem 4.2] respectively, we have that A is semisimple if and only if A is semisimple
and cosemisimple, if and only if cd(D(A)) = 0. Hence under one of these assumptions
we have cd(A) = cd(B) because cd(D(A)) = cd(D(B)).

Since MA ≃⊗ MB and A, B are finite-dimensional, We have, by [40, Corollary 5.9],
B ≃ Aσ for some Hopf 2-cocycle σ. At the dual level this means that B∗ ≃ (A∗)J for
some Drinfeld twist J . Hence if cd(A) = 0, i.e. A is semisimple, we have that A∗ is
cosemisimple, and assuming that A∗ is unimodular, we have that B∗ is cosemisimple as
well by [1, Corollary 3.6], and hence B is semisimple, so that cd(B) = 0, as needed. The
assumption that A∗ is unimodular is stable under Drinfeld twist since the multiplication
does not change, thus B∗ is unimodular as well, and hence we also have cd(B) = 0 ⇒
cd(A) = 0, concluding the proof. �

As we see in the proof of the previous theorem, a complete answer to Question 1.1 in
the finite-dimensional case reduces to the question whether the class of finite-dimensional
cosemisimple Hopf algebras is stable under Drinfeld twists. Remark 3.9 in [1] claimed
that this is expected to be true, and would follow from a weak form of an important
conjecture of Kaplansky saying that a finite-dimensional cosemisimple Hopf algebra is
unimodular (the strong form says that a cosemisimple Hopf algebra satisfies S2 = id),
but we are not aware of a proof since then.

10. summary of known answers to Question 1.1

In this last section, for the convenience of the reader, we summarize what are, to
the best of our knowledge, the known positive answers to Question 1.1. Let A, B be
Hopf algebras having equivalent linear tensor categories of comodules. Then we have
cd(A) = cd(B) in the following situations.

(1) A, B have bijective antipode and are smooth.
(2) A, B are cosemisimple and their antipodes satisfy S4 = id.
(3) A, B are cosemisimple and cd(A), cd(B) are finite.
(4) A, B are finite-dimensional, and the characteristic of k is zero, or satisfies p >

d
ϕ(d)
2 , where d = dim(A).

(5) A, B are finite-dimensional and A∗ is unimodular.
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