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Abstract: Dehydration and �uid circulation are integral parts of subduction tectonics that govern
the dynamics of the wedge mantle. The knowledge of the elastic behavior of aqueous �uid is
crucial to understand the �uid�rock interactions in the mantle through velocity pro�les. In this
study, we investigated the elastic wave velocities of chlorite at high pressure beyond its dehydrating
temperature, simulating the progressive dehydration of hydrous minerals in subduction zones. The
dehydration resulted in an 8% increase in compressional (Vp) and a 5% decrease in shear wave (Vs)
velocities at 950 K. The increase in Vp can be attributed to the stiffening of the sample due to the
formation of secondary mineral phases followed by the dehydration of chlorite. The �uid-bearing
samples exhibited Vp/Vs of 2.45 at 950 K. These seismic parameters are notably different from the
major mantle minerals or hydrous silicate melts and provide unique seismic criteria for detecting
mantle �uids through seismic tomography.

Keywords: elastic wave velocity; subduction zone; dehydration; chlorite; seismic anomalies; high pressure

1. Introduction
The dehydration of subducted hydrous minerals releases a �ux of �uid into the wedge

mantle [1]. The aqueous �uid entering the overlying mantle in�uences geochemical and
geophysical processes, such as arc melting [2], mantle metasomatism [3,4], intermediate-
depth seismicity [5,6], and the dynamics of the wedge-mantle �ow [7]. The determination
of the physical state of slab �uid can constrain the thermal state of the slab as melting,
and dehydration reactions occur at different temperatures. Detection and differentiation
of aqueous �uid and silicate melt and how they migrate and interact with the overlying
mantle are therefore fundamental to the understanding of the subduction zone system [8].

Seismic velocities, anelastic attenuation, and seismic anisotropy are the key parameters
that provide information on physical and chemical interactions between the slab and the
mantle [8]. The low velocity and high attenuation (low-Q) in subduction zones have often
been interpreted as an indication of the presence of a liquid phase [8]. This interpretation
comes from the notion that the shearing motion cannot be transmitted through a liquid, as it
may slow down the compressional (P) waves and hinder the propagation of shear (S) waves
and attenuate [9�11]. The attenuation is often described by the seismic attenuation factor
(Q�1), which depends on the temperature, composition, �uid/melt fraction, �uid/melt
geometry, and grain size [12,13], and provides robust constraints on subduction zone
components [14].

The seismic structures of most subduction systems have been well documented,
and the high-resolution seismic tomography images [14], receiver function method [15],

Minerals 2021, 11, 70. https://doi.org/10.3390/min11010070 https://www.mdpi.com/journal/minerals

https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0001-8161-081X
https://orcid.org/0000-0002-8332-9033
https://doi.org/10.3390/min11010070
https://doi.org/10.3390/min11010070
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/min11010070
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/2075-163X/11/1/70?type=check_update&version=2


Minerals 2021, 11, 70 2 of 11

and seismic refraction methods allow the detection of seismic anomalies with great accu-
racy [16]. The prior knowledge of the elastic properties of major mantle mineral phases
provides the basic framework for the interpretation of seismic parameters [17] obtained
through inversion methods. The available criteria allow the identi�cation of solid from
liquid phases [18�22] or distinguish hydrous minerals from nominally anhydrous miner-
als [15,22�24]. However, there are no robust seismic parameters to identify aqueous �uids.
At present, the interpretation of the presence of �uid is based on indirect observations,
mainly through comparison of the seismic anomaly with the depth of dehydration, temper-
ature pro�le, and proximity to the volcanic activity [15,25�27]. Despite the importance of
seismic properties of �uid-bearing systems that have long been identi�ed [15,24,28], the
elastic velocity data on aqueous �uids have not been determined experimentally, partly
due to the challenging nature of investigating �uid-bearing systems at high pressure. With
the notable absence of seismic parameters of aqueous �uids, the interpretation of seismic
anomalies in subduction zones remains an uncertain exercise.

The present study investigated the elastic properties of the dehydration-induced �uid
occurring in subduction zones. Using high-pressure ultrasonic measurements, we have
determined elastic wave velocities of chlorite and dehydrating �uids at 1.8 and 3.8 GPa
with increasing temperatures, simulating the progressive dehydration in the subducting
slab. Chlorite (Mg, Fe)5Al(Si3Al)O10(OH)8, is one of the major hydrous phases stable in
subducting ultrama�c, ma�c, and sediment lithologies [1,29�31]. The presence of chlorite
in both the subducting slab and the hydrated mantle wedge presents a unique opportunity
to investigate diverse dehydration scenarios in subduction zones.

2. Materials and Methods
2.1. Sample Characterization

In this study, we measured the elastic wave velocities of natural chlorite with
(Mg3.77Fe1.23)Al (Si3Al)O10(OH) 8 stoichiometry at conditions representative to the mantle
wedge and subduction zone settings. The natural chlorite sample used in this study was
from the Ambatomainty region in Madagascar. The chemical composition of chlorite was
determined by electron probe microanalysis (EPMA) using a Cameca SxFiveTactis electron
microprobe, operating at an accelerating voltage of 15 kV and a beam current of 20 nA. The
samples were further characterized by powder X-ray diffraction (XRD). After each experi-
ment, cross-sections of run products were investigated using energy-dispersive X-ray spec-
troscopy (EDS) chemical mapping, using a Jeol JSM�5910 LV scanning electron microscope.

2.2. High-Pressure, High-Temperature Experiments
High-pressure and high-temperature conditions were generated using the 1200-ton

DIA-type multi-anvil module at the PSICHE beamline in SOLEIL Synchrotron in France.
For experiments conducted at 1.8 and 3.8 GPa, we used an octahedral pressure medium
composed of MgO + Cr2O3 in a 10/4 multi-anvil con�guration (Figure 1a). Cylindrical
core samples of 1.2 mm diameter and 0.5 mm in length were placed in a hexagonal boron
nitride (hBN) capsule, which electrically insulated the sample from the furnace during the
measurements. The high-purity hBN, sintered at high temperature and pressure without a
boron oxide (B2O3) binder (BNHP-FINAL Advanced Materials), ensures that there were
no B2O3 forming reactions with the aqueous �uids. Two Ni disks (10 �m) placed at the
top and bottom of the sample served as metal markers for X-ray radiography images,
which were used for the measurement of the sample lengths using the radiography images
(Figure 1b). The presence of Ni was expected to maintain the oxygen fugacity of the sample
close to the Ni-NiO buffer. A W95Re5-W74Re26 thermocouple junction was placed at one
side of the sample, which monitored the temperature. A dense Al2O3 buffer rod was placed
between one of the tungsten carbide (WC) anvil truncations and the sample, to enhance
the propagation of elastic waves and to provide suf�cient impedance contrast to re�ect
ultrasonic waves at the buffer rod�sample interface. We placed a 0.3 mm thick alumina
disc on the opposite end of the sample to maintain the sample geometry (Figure 1a). Both
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ends of the anvil, the alumina buffer rod, and the samples were mirror-polished to enhance
mechanical contacts. All ceramic parts of the cell assembly, including the pressure medium,
were �red at 1273 K prior to their assemblage, to remove any adsorbed moisture, and were
kept at 400 K in a high-vacuum furnace (10�2 Torr) before assembling the experiment.
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Figure 1. (a) Schematic assembly con�guration of the multi-anvil cell assembly (before compression)
used for the sound wave velocity measurements. (b) The stacked radiography images of the sample
with increasing temperature at 3.8 GPa. The red dashed lines show the thickness of the sample.
Examples of the ultrasonic signals recorded at 40 MHz for P-waves (c), and S-waves (d) recorded at
900 and 1000 K, before and after the dehydration of chlorite.

2.3. Seismic Wave Velocity Measurements
Sound wave velocities of the samples were measured using the ultrasonic interferome-

try technique [32]. In this method, electrical signals of sine waves of 20�50 MHz (3�5 cycles)
with Vpeak-to-peak of 5 V were generated by an arbitrary waveform generator (Tektronix
AFG3101C); they were then converted to primary (Vp) and secondary (VS) waves by a 10�

Y-cut LiNbO3 piezoelectric transducer attached to the mirror-polished truncated corner of
a WC anvil. The resonant frequency of the transducer is 50 MHz for compressional waves
(P-waves) and 30 MHz for shear waves (S-waves). Elastic waves propagated through the
tungsten carbide (WC) anvil, alumina buffer rod (BR), and the sample, and were re�ected at
the interfaces between the anvil-BR, the BR-sample, and the sample electrode (Figure 1c,d).
The re�ected elastic echo waves were converted back to electrical signals by the trans-
ducer and captured by a Tektronix DPO 5140 Digital Phosphor Oscilloscope at a rate of
5 � 109 sample/s. Signals at 20, 30, 40, and 50 MHz were recorded at each temperature
step. The two-way travel time for the sound waves propagating through the sample was
determined by the time difference between the arrivals of the echoes from the BR�sample
interface and the sample-backing material interface by the pulse-echo overlap method [32]
Sample lengths at each temperature were determined using the X-ray radiography images
(Figure 1b). Experimental measurements of velocity are subject to uncertainties originating
from the estimation of temperature, pressure, sample dimensions, and �tting errors. Errors
have been estimated to be 2.0% (2�).

2.4. Synchrotron Experiments
Energy-dispersive X-ray diffraction was used to determine the sample pressure and

verify the sample state. Diffraction was performed in an energy-dispersive mode using a
CAESAR-type diffraction detector system [33]. The characteristics of the beam-line were
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discussed in previous studies [34�36]. Simultaneously, we acquired radiographic images
for the determination of the sample lengths, yielding accurate quantitative determination
of elastic velocity at each temperature (Figure 1b). The focused beam con�guration (in
vertical) allowed each image to be assembled by scanning the press in front of the beam.
This had the advantage of producing almost �at-�eld corrected images, a feature usually
not available when using multi-anvil modules.

3. Results
The ultrasound wave velocities of polycrystalline aggregates of natural chlorite were

obtained in situ at pressures of 1.8 and 3.8 GPa and temperatures up to 1200 K (Figure 2).
The increase in temperature incurred a gradual decrease in both Vp and vs. in chlo-
rite, consistent with the softening of bulk and shear moduli with temperature. However,
temperature appeared to have a more pronounced effect on Vp than it had on Vs. Com-
pared to major mantle minerals, the Vp and vs. of chlorite appeared to be signi�cantly
lower, 5 km/s and 2.5 km/s respectively, at 900 K. We observed that the increase in pressure
had a negligible effect on both compressional and shear wave velocities.
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Figure 2. (a) Primary (Vp) and secondary (Vs) wave velocities as a function of temperature at 1.8 and 3.8 GPa. (b) The%
drop in velocity (�Vp, �Vs) upon dehydration at 1.8 and 3.8 GPa compared to chlorite before dehydration. The lines are the
linear �ts through data points. Uncertainties in velocity estimations are estimated to be less than 2.0% (2�), smaller than the
symbol size.

The dehydration of chlorite exhibited a unique velocity behavior which resulted in
an increase in Vp and decrease in Vs. Upon dehydration, it was expected that both Vp
and vs. would decrease at the dehydration and subsequent release of �uid, following
the characteristic elastic wave velocity behavior for liquids [18,20,37]. The increase in
temperature beyond 900 K prompted a marked change of velocities, as Vp increased from
5.1 to 5.5 km/s, and vs. decreased from 2.37 to 2.23 km/s at 950 K. The change in velocities
corresponded to an 8% increase in Vp and a 5% decrease in Vs, relative to the normalized
velocities in chlorite prior to dehydration (Figure 2b).

Analyses of recovered experimental run products after sound wave velocity measure-
ments con�rmed the partial dehydration of chlorite at high temperatures, which produced
olivine, pyrope-garnet, hercynite spinel (Fe2(Mg, Al)O4) at 1.8 GPa, and the stability of
olivine and Mg-sursassit at 3.8 GPa was consistent with previous studies [38,39] (Figure 3).
We observed a higher proportion of Mg-sursassite at 3.8 GPa, which indicated partial
dehydration of chlorite and stability of an intermediate hydrous phase [38]. The par-
tially dehydrated chlorite retained the relict preferred orientation perpendicular to the
compression axis.
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4. Discussion
4.1. Elastic Wave Velocities

The measured elastic wave velocities of Fe-bearing chlorite (Mg3.77Fe1.23)Al(Si3Al)O10(OH)8
in this study indicated a ~20% decrease in Vp and ~38% decrease in Vs. relative to the am-
bient temperature velocities of Mg-endmember chlorite Mg5Al(Si3Al)O10(OH)8 obtained
using static density functional theory (DFT) [40]. The decrease in Vp and vs. with the
incorporation of Fe in chlorite was in agreement with the effect that Fe had on elastic
wave velocities of mantle minerals [41�45]. The incorporation of Fe resulted in an increase
in density from 2.60 gcm�3 of Fe-free verity [40] to 2.761 gcm�3 in our sample, which
represented a 6% increase in density at ambient conditions. While the incorporation of
Fe affected both elastic moduli and the density, it has been shown that the increase in
density due to the increase in Fe contents was responsible for the observed low velocities
in Fe-bearing minerals compared to their Fe-free varieties [46].

The unique increase in Vp at the dehydration of chlorite re�ected important miner-
alogical changes that occurred in the sample. Unlike melting, in which mineral phases
are consumed to produce melt, dehydration stabilizes a suite of solid minerals together
with the �uid phase. We attributed the unique increase in Vp during dehydration of
chlorite to the increase in the stiffness of the sample due to the crystallization of secondary
mineral phases, which affected the compressibility, compensating for the velocity decrease
by the �uid phase. The increase in Vp can be explained by dehydration of only 10 vol.%
of chlorite (Figure 4). Further dehydration increased the volume fraction of �uid in the
sample, gradually masking the effect of nominally anhydrous minerals, garnet, olivine,
spinel, as seen by the decrease in Vp with increasing temperature (Figure 4).
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Figure 4. P-wave velocity compared with the vol.% of chlorite dehydration. The Vp vs. temperature
diagram showing the P-wave velocity for chlorite and dehydration products. The black dashed line
indicates the Vp of chlorite before dehydration, extrapolated to high temperatures. The purple solid
line indicates the P-wave velocity of a mixture of olivine [47], garnet [48], and spinel [49], computed
for 3:1:1 proportion based on the dehydration reaction 2chl = 3ol + gt + spl + 8 H2O. Blue dashed lines
indicate the linear mix between the velocity of chlorite and the (3ol + gt + spl) without taking into
account the velocity effect of �uid. The numbers next to dashed lines indicate the fraction chlorite
dehydrated producing the (ol + gt + spl). The red and blue solid lines indicate linear �ts through the
Vp data points of chlorite measured at 1.8 and 3.8 GPa, respectively.

4.2. The Velocity Ratio (Vp/Vs) in Chlorite and Dehydrating Fluids
The velocity ratio Vp/Vs is frequently used to interpret composition, structure, and

dynamic properties in the Earth’s interior [50�52]. For major upper mantle minerals, the
ratio varies within a narrow range of 1.7�1.8, with garnet showing the highest value around
1.8 [52]. The velocity ratios of major mantle minerals show a general tendency to increase
with increasing pressure and temperature. In this study, we observed a 13% increase in the
Vp/Vs ratio, from 2.14 at 900 K to 2.45 at 950 K, as a result of the dehydration of chlorite.
After dehydration, the value remained nearly constant, while further increases occurred
in temperatures up to 1200 K (Figure 5). The unusually high Vp/Vs ratio of chlorite was
consistent with the previous DFT calculations [40]. The progressive decrease in velocity
ratio in chlorite with increasing temperature prior to the dehydration may be linked to
the decrease in the principal elastic moduli C33 component, due to the development of
preferred orientation in chlorite perpendicular to the principal compression axis. Low
elastic wave velocities and a high Vp/Vs ratio have also been reported for antigorite [23],
another principal hydrous mineral in subduction zones.

While the velocity ratio of major mantle minerals varies in a narrow range, the param-
eter has been considered as a reliable seismic tool to distinguish liquid phases from solid
minerals. The velocity ratio has been used to predict the melting in the asthenosphere�
lithosphere boundary, at subduction zones, and at the D� layer at the core�mantle boundary
region [18,53,54]. The iron-enriched minerals observed at the core�mantle boundary region
appeared to have anomalous seismic velocities, while the velocity ratio has been used to
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predict chemical interactions between the metal�liquid outer core and the overlying solid
mantle [55].
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Figure 5. The Vp/Vs ratios of chlorite and dehydrating �uid at 1.8 and 3.8 GPa. The Vp/Vs of
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second-order polynomial �ts through data points.

In the Earth, melts or aqueous �uids occur in small quantities (a few vol.%), distributed
along grain boundaries of the matrix minerals. The presence of a small amount of liquid
shuts off the direct travel paths for wave propagations through shearing motion thereby
effectively increasing the travel time and decreasing Vs. The compressional wave velocity is
decreased due to the absence of the shear component; however, compressional waves could
still travel through liquid media. Therefore, a general increase in Vp/Vs is expected for
liquid phases due to the large drop in Vs. This tendency has been demonstrated by recent
experimental studies [18,20,21], showing a systematic increase in Vp/Vs with increasing
melt fraction.

The elastic wave velocity of aqueous �uids has not been investigated prior to this
study. In this study, we have shown for the �rst time that the Vp/Vs ratio of the �uid-
bearing sample increased sharply upon dehydration from 2.15 at 900 K to 2.45 at 950 K
(Figure 5). Despite the increase in temperature, the �uid fraction appears to have had a
negligible in�uence on the ratio. A higher Vp/Vs ratio was observed for the hydrous silicate
melt [18,20]. Nevertheless, the Vp/Vs of hydrous basaltic melt was strongly dependent on
the melt fraction, and a Vp/Vs of less than 2 can be expected for the geologically relevant
melt fractions in the Earth [18]. Thus, the Vp/Vs ratio of about 2.4 could be a robust
indicator of the presence of �uid in the mantle.

4.3. The Effect of Dehydration on the Amplitudes of P- and S-Wave Echoes
The amplitudes of both P- and S-wave echoes exhibited unusual behavior above 900 K,

closely following the dehydration temperature of chlorite (Figure 6a,b). For example, the
amplitude of the �rst echo of P-waves at 3.8 GPa was unaffected by the onset of dehydration
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at 900 K; however, an 8.5% decrease in the amplitude relative to the values normalized to
the chlorite before dehydration was observed at around 1050 K. The amplitude of the �rst
echo of P-wave of chlorite at 1.8 GPa, on the other hand, decreased by 50%, then recovered
to the initial value and continued to decrease with increasing temperature. Amplitudes
of the 1st echo of S-waves of 1.8 and 3.8 GPa samples followed a decreasing trend, with
chlorite at 3.8 GPa exhibiting a steep change compared to the measurements at 1.8 GPa.

Minerals 2021, 11, x 8 of 12 
 

 

(Figure 5). Despite the increase in temperature, the fluid fraction appears to have had a 
negligible influence on the ratio. A higher Vp/Vs ratio was observed for the hydrous sili-
cate melt [18,20]. Nevertheless, the Vp/Vs of hydrous basaltic melt was strongly depend-
ent on the melt fraction, and a Vp/Vs of less than 2 can be expected for the geologically 
relevant melt fractions in the Earth [18]. Thus, the Vp/Vs ratio of about 2.4 could be a 
robust indicator of the presence of fluid in the mantle. 

4.3. The Effect of Dehydration on the Amplitudes of P- and S-Wave Echoes 

The amplitudes of both P- and S-wave echoes exhibited unusual behavior above 900 
K, closely following the dehydration temperatur e of chlorite (Figure 6a,b). For example, 
the amplitude of the first echo of P-waves at 3.8 GPa was unaffected by the onset of dehy-
dration at 900 K; however, an 8.5% decrease in the amplitude relative to the values nor-
malized to the chlorite before dehydration was observed at around 1050 K. The amplitude 
of the first echo of P-wave of chlorite at 1.8 GPa, on the other hand, decreased by 50%, 
then recovered to the initial value and continue d to decrease with increasing temperature. 
Amplitudes of the 1st echo of S-waves of 1.8 and 3.8 GPa samples followed a decreasing 
trend, with chlorite at 3.8 GPa exhibiting a steep change compared to the measurements 
at 1.8 GPa. 

 

Figure 6. The% change of amplitude of P- (a) and S- (b) waves relative to the amplitude for the chlorite before dehydration. 
Blue and red lines are for 1.8 and 3.8 GPa respectively. The vertical dashed line indicates the dehydration temperature 
observed for chlorite. (c) The change of amplitudes in the 1st, 2nd, and 3rd echos of the P-waves at 3.8 GPa. The blue and 
red lines in panels (a) and (b) are the cubic-spline fits through data points. 

The decrease in wave amplitudes mostly depends on the reflectance (and transmit-
tance) of waves at the interfaces between sample and alumina. Reflectance and transmit-
tance of waves at interface depend on the contrast of acoustic impedance. The sharp de-
crease in the amplitude of P-and S-waves can be correlated to the release of aqueous fluid 
into the sample, which may change the acoustic impedance of the fluid-bearing sample. 
The unique increase in amplitude after the initial drop may be related to the growth of 
olivine, garnet, and spinel crystals in the sample, which may increase the bulk density of 
the sample relative to chlorite (Figure 6a). However, the attenuation in hydrous minerals 
during progressive dehydration appears to be governed by the fine balance between the 
amount of aqueous fluid present in the sample and the increase in bulk density due to the 
appearance of nominally anhydrous mineral phases. The shear waves lose more energy 
compared to P-waves, due to scattering at grain boundaries, especially when the grain 
boundaries contain a liquid phase. The decrease in the amplitudes of S-waves observed 
in our study was consistent with the continuous  release of fluid into the sample with in-
creasing temperature (Figure 6b). 

The 1st, 2nd, and 3rd echos observed for p-waves in our sample at 3.8 GPa exhibited 
a unique behavior, indicating a sudden drop in  amplitude at three different temperatures 
(Figure 6c). The magnitude of the drop in amplitude and the temperature at which the 

Figure 6. The% change of amplitude of P- (a) and S- (b) waves relative to the amplitude for the chlorite before dehydration.
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The decrease in wave amplitudes mostly depends on the re�ectance (and transmit-
tance) of waves at the interfaces between sample and alumina. Re�ectance and trans-
mittance of waves at interface depend on the contrast of acoustic impedance. The sharp
decrease in the amplitude of P-and S-waves can be correlated to the release of aqueous �uid
into the sample, which may change the acoustic impedance of the �uid-bearing sample.
The unique increase in amplitude after the initial drop may be related to the growth of
olivine, garnet, and spinel crystals in the sample, which may increase the bulk density of
the sample relative to chlorite (Figure 6a). However, the attenuation in hydrous minerals
during progressive dehydration appears to be governed by the �ne balance between the
amount of aqueous �uid present in the sample and the increase in bulk density due to the
appearance of nominally anhydrous mineral phases. The shear waves lose more energy
compared to P-waves, due to scattering at grain boundaries, especially when the grain
boundaries contain a liquid phase. The decrease in the amplitudes of S-waves observed
in our study was consistent with the continuous release of �uid into the sample with
increasing temperature (Figure 6b).

The 1st, 2nd, and 3rd echos observed for p-waves in our sample at 3.8 GPa exhibited a
unique behavior, indicating a sudden drop in amplitude at three different temperatures
(Figure 6c). The magnitude of the drop in amplitude and the temperature at which the
maximum drop occurred decreased from the 1st echo to the 3rd echo. While we could
not offer a de�nitive explanation, we propose that this observation could be due to the
cumulative effect of sound waves traveling multiple times through the �uid-bearing media.

4.4. Geophysical Implications
Mantle wedges, where increased �uid activities can be expected, are often character-

ized by anomalous seismic properties. The low velocity and high Vp/Vs have often been
interpreted as an indication of the presence of hydrous minerals such as serpentine and
chlorite [40,56]. In light of the new data obtained in this study, we can explore low-velocity
and high Vp/Vs regions to track �uid migration in mantle wedges.

The most compelling observation comes from the absolute Vp/Vs ratios obtained
using the 3D seismic tomography at the central Chile�Argentina subduction zone [57] and
the south-central Chilean subduction zone [58], where they emphasize high Vp/Vs ratios
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at the mantle depth of about 50 km. It has been speculated that a Vp/Vs ratio of around
two, may indicate the presence of frozen pooled-melt [57] in these subduction systems.
However, the depth at which the anomaly is observed (~50 km) may not correspond to
the arc melting. The depth at which the seismic anomaly has been observed also coincides
with the high conductivity anomaly observed for the Andean subduction system [59,60].
Such high conductivities can be attributed to the presence of aqueous �uids [61]. We
interpreted the low-velocity anomaly and the high Vp/Vs ratio observed in the Chile and
Argentina subduction systems as some of the best examples of the presence of aqueous
�uid in subduction systems. The increase in �Vp, decrease in �Vs, and the high Vp/Vs
ratio around 2.4 can, thus, be used to de�ne aqueous �uids in subduction zones. This
study would lay the foundation for tracking dehydrating �uid in the mantle through a
high-resolution seismic tomography method.
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