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Abstract. Time series classification is a task that aims at classifying
chronological data. It is used in a diverse range of domains such as me-
teorology, medicine and physics. In the last decade, many algorithms
have been built to perform this task with very appreciable accuracy.
However, the uncertainty in data is not explicitly taken into account by
these methods. Using uncertainty propagation techniques, we propose
a new uncertain dissimilarity measure based on euclidean distance. We
also show how to classify uncertain time series using the proposed dis-
similarity measure and shapelet transform, one of the best time series
classification methods. An experimental assessment of our contribution
is done on the well known UCR dataset.

Keywords: Time series · Classification · Uncertainty · Shapelet.

1 Introduction

The last decade have been characterized by the availability of measurements in a
large and variate set of applications such as meteorology, astronomy and object
tracking. Generally, these measurements are represented as time series [3], that
means a sequence of data ordered in time. Meanwhile, there has been an increase
of the number of methods for time series classification [6, 2]. However, to the
best of our knowledge, all the existing methods assume that the measurements
are always precise and complete, and hence they do not take uncertainty into
account. Any measurement is subject to uncertainty that can be due to the
environment, the mean of measurement, privacy constraint and other factors.
Furthermore, even if uncertainty can be reduced, it cannot be eliminated [11].
In some applications, uncertainty cannot be neglected and has to be explicitly
handled [9].
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Shapelet based methods are one of the best approaches that have been devel-
oped for time series classification. They are especially appreciated for their in-
terpretability, their robustness and their classification speed [12]. This approach
can be summarized in three steps:

– the first step is the extraction of shapelets. This step can be seen as a feature
selection,

– the second step is the shapelet transformation. Here, the feature vector of
each instance in the dataset is computed,

– the third and last step consists of training a supervised classifier on the
feature vectors computed in the second step.

In this paper, we show how this approach can be applied in the context of
uncertain time series classification. To do that, we firstly propose an uncertainty
dissimilarity measure based on euclidean distance. Secondly we integrate it in a
shapelet approach to classify uncertain time series.

The rest of this paper is organized as follows: related works are presented in
section 2. In section 3, we present a new uncertain dissimilarity measure and in
section 4, we built a shapelet method to classify uncertain time series. Section 5
is about experiments and section 6 finally concludes this paper.

2 Related Works

Uncertain time series analysis is a well known problem, and some reported works
have been performed to tackle it. These works led to the development of prob-
abilistic similarity measures. Given two uncertain time series, probabilistic sim-
ilarity measures compute the probability that the magnitude of the similarity
between them is not greater than a given user defined threshold [3]. Probabilis-
tic similarity have been coupled with 1-NN classifier to perform uncertain time
series classification, for instance [9] has classified uncertain time series using its
proposed probabilistic measure called DUST and a 1-NN classifier. Probabilis-
tic measures are not always applicable in practice; In fact, they are based on
some assumptions that are not always satisfied. For instance, the probabilistic
measure PROUD [13] requires the uncertainty deviation to be the same at each
time point of a series [9]. MUNICH [1], another probabilistic measure requires
many observations at each time step of a series. DUST avoids the limitations of
PROUD and MUNICH, but requires the uncertainty distribution at the same
time step of every time series to be the same. Lately, the dissimilarity measure
FOTS [10] has been proposed; it is robust to uncertainty but do not explicity
take it as input. Another limitation that is shared by all of these measures is
that they all take uncertain data as input and output a value without any un-
certainty; It is not possible to compare uncertain measures with 100% reliability.
For all these reasons, we propose in section 3, UED, an uncertain dissimilarity
measure that makes no assumption on the distribution of the uncertainty and
outputs the dissimilarity value with a confidence interval.
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Firstly introduced by [12] as shapelet decision trees, time series classifica-
tion based on shapelets have been generalized by [5] as shapelet transformation.
This generalization allows shapelet approaches to be applicable with any su-
pervised classifier. [5] also shown that coupling shapelet transformation with a
good classifier significanly improves the classification accuracy. To the best of
our knowledge, the best time series classification method reported in the state of
the art is HIVE-COTE [7]. It is an ensemble methods containing several modules
of different time series models and one of its module is based on shapelet trans-
formation. To build an uncertain HIVE-COTE, each module of HIVE-COTE
should take uncertainty into account and in this paper we take a first step in
this way by showing in section 4 how uncertain time series can be classified using
shapelet transformation.

3 Uncertain dissimilarity measure

As stated by [11], uncertainty is different from error since it cannot be eliminated;
but it can be reduced up to a certain magnitude. Regardless of the measurement
method, there is always an uncertainty and uncertain measures cannot be com-
pared with a 100% reliability: the result of the comparison of uncertain values
should also be uncertain. There are many ways to represent uncertainty, but in
this paper an uncertain measure x is represented like in [11] by its best guess x̂
and the uncertainty δx on that guess.

x = x̂± δx (1)

The previous formula means that the real value of x is the interval [x̂−δx, x̂+δx].
Euclidean distance (ED) is widely used in the literature to measure the

dissimilarity between time series. It is particularly used in shapelet-based ap-
proaches [12, 5, 2]. Given two times series T1 = (t11, t12, ..., t1n) and T2 = (t21, t22, ..., t2n),
the ED between them is defined as follows:

ED(T1, T2) =

n∑
i=1

(t1i − t2i)2 (2)

When each tij is an uncertain measure, T1 and T2 are called uncertain time
series and the distance between them cannot be 100% reliable because of uncer-
tainty. We compute this uncertainty using uncertainty propagation techniques
[11]. Let x = x̂± δx and y = ŷ± δy be two uncertain measures then we have the
following properties:

– z = x+ y = ẑ ± δz, where ẑ = x̂+ ŷ and δz = δx+ δy
– z = x− y = ẑ ± δz, where ẑ = x̂− ŷ and δz = δx+ δy
– z = xn = ẑ ± δz, where ẑ = (x̂)n et δz = |n δxx̂ x̂

n|

Using these properties, an uncertain similarity based on ED can be computed
for two uncertain time series T1 and T2 by propagating uncertainty in the ED
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formula. We named the obtained measure UED and it is defined as follows:

UED(T1, T2) =

n∑
i=1

(t̂1i − t̂2i)2 ± 2

n∑
i=1

|t̂1i − t̂2i| × (δt1i + δt2i)

= ED(T̂1, T̂2)± 2

n∑
i=1

|t̂1i − t̂2i| × (δt1i + δt2i)

(3)

where T̂i is obtained by removing uncertainty in Ti, i.e by setting every uncer-
tainty to 0.

The ouput of UED is an uncertain measure representing the similarity be-
tween the two uncertain time series given as inputs. In order to use UED to
classify time series, especially with a shapelet algorithm, an ordering relation
for the set of uncertain measures is needed. We propose two ways to compare
uncertain measures: the first one is the simpler one and is based on confidence,
the second one is a stochastic order.

Simple ordering for uncertain measures

This ordering is based on two simple properties. Let x and y be two uncertain
measures, the first property is the property of equality and states that two
uncertain measures are equals if their best guesses and their uncertainties are
equals.

x = y ⇐⇒ x̂ = ŷ ∧ δx = δy (4)

The property of inferiority is the second one and states that the uncertain
measure x is smaller than the uncertain measure y if and only if the best guess
of x is smaller than the best guess of y. In the case where x and y have the same
best guesses, the smaller is the one with the smallest uncertainty.

x < y ⇐⇒ (x̂ < ŷ) ∨ ((x̂ = ŷ) ∧ (δx < δy)) (5)

Unlike the property of equality which is straight forward, the property of in-
feriority need some explanations. Unfortunately, we don’t have a mathematical
justification of this property but it is guided by two points: firstly we are in some
way confident about the best guess since it must have been given by an expert,
and secondly we are more confident with smaller uncertainties.

Of course, these properties do not always give a correct ordering; in fact, if
x = 2± 0.5 and y = 2± 0.1 then the inferiority property says that y < x. Now,
if there is an oracle able to compute the exact value of any uncertain measure,
it might says that x = 1.8 and y = 2, and thus invalidating our ordering. This
observation also holds for the properties of equality.

Stochastic ordering of uncertain measures

An uncertain measure can be considered as a random variable with mean the
best guess and standard deviation the uncertainty. Given this consideration, a
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stochastic order can be defined on the set of uncertain measures. A random
variable X is stochastically less than or equal to (noted ≤st) another random
variable Y if and only if P (X > t) ≤ P (Y > t)∀t ∈ R [8]. Since the exact value
of an uncertain measure x is in the interval [x̂ − δx, x̂ + δx], the domain of t
can be reduced to the interval I = [min(X,Y ); max(X,Y )]; where min(X,Y )
and max(X,Y ) repectively return the minimal and the maximal values of the
union of possible values of X and Y . The stochastic order can be rewritten and
developed as follows:

X ≤st Y ⇐⇒ P (X > t) ≤ P (Y > t)∀t ∈ I
⇐⇒ 1− P (X > t) > 1− P (Y > t)∀t ∈ I
⇐⇒ P (X ≤ t) > P (Y ≤ t)∀t ∈ I
⇐⇒ CDFX(t) > CDFY (t)∀t ∈ I

(6)

CDFX(t) is the cumulative distribution function of the random variable X eval-
uated at t. Because the size of I is infinite, we discretized it as being the set of
the following values:

min(X,Y ) + i× max(X,Y )−min(X,Y )

k
(7)

0 ≤ i ≤ k and k is a whole number to be defined. Unlike the simple ordering
which is a total order, this stochastic ordering is a partial order. That means
that, the relation stochastically less than or equal to is not defined for any two
random variables, and thus any two uncertain measures cannot be sorted using
this stochastic order. This is clearly a limitation, but we did not find a total
stochastic ordering in the literature.

Now that we know how to compare uncertain measures, let us see how to use
UED to classify uncertain time series.

4 Uncertain shapelet classification

In this part, we describe how to classify uncertain time series using shapelets.
We use the shapelet algorithm described by [5]. However we need to define the
underlying concepts in the context of uncertain time series.

An uncertain time series T is a series of m (its length) uncertain measures.

T = T̂ ± δT = {t1 ± δt1, t2 ± δt2, ..., tm ± δtm} (8)

An uncertain subsequence S of an uncertain time series T is a series of l (its
length) consecutive values in T .

S = Ŝ ± δS = {ti+1 ± δti+1, ..., ti+l ± δti+l} (9)

The dissimilarity between two uncertain subsequences S and R is computed
using UED

d = UED(S,R) = UED(R,S). (10)
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And the dissimilarity between an uncertain time series T and an uncertain
subsequence S is defined as follows:

UED(T, S) = min{UED(S,R) |∀R ⊆ T, |S| = |R|} (11)

An uncertain separator sp for a dataset D of uncertain time series is an
uncertain subsequence that divides D in two parts D1 and D2 such that:

D1 = {T |UED(T, sp) ≤ ε , ∀T ∈ D}
D2 = {T |UED(T, sp) > ε ,∀T ∈ D}

(12)

As in [5], the quality of a separator is measured using the information gain
(IG). Given the previous definitions, we define an uncertain shapelet S for a
dataset D of uncertain time series as being a separator that maximized the
information gain.

S = argmax
sp

(IG(D, sp)) (13)

The shapelet transformation algorithm is described in detail in [5]. We give a
summary here, meanwhile showing the change when in the context of uncertain
time series.

Given a dataset D of uncertain time series, the first step is to select the
top k best uncertain shapelets from the dataset. This step is achieved using
the procedure described by Algo. 1 that takes as input, the dataset D, the
number of uncertain shapelets to be extracted k, the minimum and the maximum
length of an uncertain shapelet MIN and MAX. This algorithm uses three
subprocedures:

– GenCand(T,MIN,MAX) which generates every possible uncertain shapelet
candidates from the inputted uncertain time series T . These candidates are
uncertain subsequences of T , with length at least MIN and at most MAX.

– AssessCand(cands,D) which computes the quality of each candidate in the
list of candidates cands. The quality of a candidate is the information gain
it produces when used as a separator for the dataset.

– ExtracBest(C,Q, k) which takes the list of uncertain shapelet candidates
C, their associated qualities Q and return first k uncertain shapelets with
highest qualities.

In summary, Algo. 1 generates every uncertain subsequence of length at least
MIN and at most MAX from the dataset, assesses the quality of each one
by computing the information gain obtained when it is used as separator for
the dataset and finally returns the k subsequences that produce the highest
information gain.

The next step after the top-k uncertain shapelets selection is the uncertain
shapelet transformation. This is exactly the same as shapelet transformation
described by [5], but with the difference that uncertainty is propagated during
the transformation process. This step is done using Algo. 2 which takes as input
the dataset D, the set of the top-k uncertain shapelets S and the number of
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Algorithm 1 Top-K Uncertain Shapelet Selection

1: function UShapeletSelection(D, k,MIN,MAX)
2: C ← ∅;Q← ∅
3: for i← 1, n do
4: cands← GenCand(Ti,MIN,MAX)
5: qualities← AssessCand(cands,D)
6: C ← C + cands
7: Q← Q+ qualities
8: end for
9: S ← ExtractBest(C,Q, k)

10: return S . Top k uncertain shapelets
11: end function

uncertain shapelets k. For each uncertain time series in the dataset, its uncertain
feature vector of length k is computed using UED. The ith element of the vector
is the UED between the uncertain time series and the uncertain shapelet i.
The computed uncertain feature vectors are returned as the new transformed
uncertain dataset.

Algorithm 2 Uncertain Shapelet Transformation

function UShapeletTransformation(D,S, k)
for i← 1, n do

temp← ∅
for j ← 1, k do

tempj ← UED(Ti, Sj)
end for
Di ← tempj

end for
return D . The transformed dataset

end function

The third and last step is the effective classification. A supervised classifier is
trained on the uncertain transformed dataset, so that, given the feature vector of
an unseen uncertain time series, it could predict its class label. Since the uncer-
tainty have been propagated, the training process can be aware of uncertainty
by taking it as part of the input. More specifically, best guesses are features and
uncertainties are features of best guesses, and thus are metafeatures. If instead of
UED, we had used one of the existing metrics from the state of the art (DUST,
MUNICH, PROUD or FOTS), the classifier would have been trained without
being aware of uncertainty in the input since the output of these metrics are
apparently 100% reliable.

Fig. 1 gives an overview of the classification process. During the training step
(illustrated black path), top-k uncertain shapelets are selected and a supervised
model (illustrated here by a decision tree for simplicity) is trained on the un-
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certain transformed dataset. Each node of the trained decision tree contains an
uncertain shapelet, and the similarity at each node is the UED between the un-
certain time series and the uncertain shapelet at that node. During the testing
step (illustrated by the green path), the uncertain shapelets extracted during the
training step are used to transform the test set, and the trained model is used
to predict the class labels of the test set according to the result of the transfor-
mation. Let call this process UST for Uncertain Shapelet Transformation.

Fig. 1: Uncertain time series classification process

5 Experiments

In this section, we experimentally compare our approach to the state of the
art. The comparison criterion is the model classification accuracy as it has been
always done [2, 3, 5, 10]. Since the outpout of our model is the probability distri-
bution over the set of classes, we take the most probable class as the predicted
class and use it to compute the model accuracy. We have compared the four
following models:

– UST FLAT: this is the algorithm described in section 4. The uncertain
feature vector is represented as a flat vector such that the first half contains
best guesses and the second half contain uncertainties. This model also uses
the simple ordering for uncertain measures.

– UST FLAT ST: this is the same as UST FLAT, but with the difference
that it uses the stochastic order to sort uncertain measures. This model
considers an uncertain measure x = x̂± δx as a normal distributed random
variable with mean x̂ and standard deviation δx. The CDF of such a random
variable is

CDFX(t) =
1

2
(1 + erf(

t− x̂
δx
√

2
))

where erf(.) is the gaussian error function. To discretize I (using Eq. 7), we
fixed the value of k to 100. Larger values of k lead to best approximation of
I, however slow the classification process. We tried several values of k, but
k = 100 worked better for most of our datasets. We have also used a relaxed



Title Suppressed Due to Excessive Length 9

version of the stochastic ordering: given two random variables X and Y , we
considered X to be smaller or equal to Y if the number of values t in I such
that CDFX(t) > CDFY (t) is greater than the number of values t in I such
that CDFX(t) ≤ CDFY (t).

– DUST UNIFORM: This is the UST algorithm where UED has been re-
placed by the uniform version of DUST. The data in each time series are
assumed to be uniformly distributed. Hence there is no uncertainty propaga-
tion, and the supervised classifier is not aware of uncertainty in the dataset.
To compare two uncertain measures, DUST required them to have the same
uncertainty; hence, we used the highest uncertainty of both measures.

– DUST NORMAL: like DUST UNIFORM, but with the assumption that
the data in each time series follow a Gaussian distribution.

Although other classifiers such as Support Vector Machine, Random Forest and
Multi Layer Perceptron can be used to increase the accuracy, we choose to use the
J48 decision tree as the supervised classifier in all these four uncertain shapelet
models. We want the result to be only correlated to the uncertainty handling
and not to the used classifier. However, it is highly recommended to try other
classifiers when in real application.

5.1 Datasets

We used 29 datasets from the well known UCR repository [4]. Although the
repository contains univariate and multivariate time series datasets, in this work,
we only focus on univariate datasets. However the shapelet method is not limited
to univariate time series. Each dataset on the repository is divided into a training
set and a test set.

Since the datasets in this repository are without uncertainty, we manually add
a random uncertainty. For each dataset, the added uncertainty follows a normal
distribution of mean 0 and standard deviation c × σ, where σ is the standard
deviation of the dataset. We used two different values of c which are: 0.1 and 0.2.
The uncertainty result for an instance from the CBF dataset is shown by Fig.
2. The orange line is the original time series, and the blue one is the obtained
uncertain time series. During the training, original time series are not used, only
the uncertain time series and the standard deviation of the uncertainty are used.
Each value in each uncertain time series has its own standard deviation.

5.2 Source Code

We have used the open source code from [2], hosted on github1. It’s a github
repository containing a Java implementation of state of the art time series clas-
sification algorithms such as shapelet transformation. We have added an imple-

1 https://github.com/uea-machine-learning/tsml
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Fig. 2: Uncertainty for an instance from the Chinatown dataset for c = 0.2

mentation of UED and UST and the updated code is available2. The code used
to add uncertainty is also accessible on the same repository 3.

5.3 Results and discussion

We have computed the accuracy of each model and used some statistics to com-
pare them.

We summarized the statistics of UST FLAT, DUST UNIFORM and DUST NORMAL
using boxplots as shown on Fig 3. The green triangles represent the mean of the
accuracy of each model on all the datasets. DUST based models (DUST UNIFORM
and DUST NORMAL) are not significantly different, however DUST UNIFORM
is a bit better than its Gaussian counterpart. UST FLAT is better than DUST
based models, especially when the uncertainty is high (Fig 3 right); The best
3th quartile for DUST based models is only at 0.6 while it is almost 0.8 for
UST FLAT, meaning that 25% of the datasets are classified with an accuracy of
80%: more datasets are well classified with UST FLAT than with DUST based
models. More particularly, for c = 0.2, the best accuracies given by DUST based
models are 55% and 54% for the datasets DodgerLoopGame and BME respec-
tively; while UST gives 77% accuracy for the dataset DodgerLoopGame, and
82% for BME.

Next, we have checked if the stochastic ordering improves the performances
of the UST model by comparing UST FLAT to UST FLAT ST. Since this order-
ing is not total, UST FLAT ST failed on 23 datasets; this is because unsortable
uncertain measures have been found during the training or the testing phase.
The perfomances we got from the 6 remaining datasets are summarized in Fig
4. The stochastic ordering has improved the performances for c = 0.1 (Fig. 4
left); In particular, the accuracy improved from 61% to 84% (23% better) for the
dataset Chinatown and from 14% to 35% (21% better) for the dataset SonyAI-
BORobotSurface1. When c = 0.2 (Fig. 4 right), we observe no improvement,
instead the accuracy particularly decreases for the dataset BME from 82% to
69% (13% worse) when using the stochastic ordering.

2 https://github.com/frankl1/Uncertain-Shapelet-Transform
3 https://github.com/frankl1/Uncertain-Shapelet-Transform/blob/master/

add-noise.ipynb
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Fig. 3: DUST vs UST for c = 0.1 (left) and c = 0.2 (right)

Fig. 4: UST FLAT vs UST FLAT ST for c = 0.1 (left) and c = 0.2 (right)

With UED, we are as good as, or better than state of the art uncertain
similarity measures. However, our approach is limited. In fact, using the flat
representation, the supervised classifier is not really aware of the propagated
uncertainty. Although uncertainties should be considered as metafeatures, they
are considered as normal features by the supervised classifier. We believe that a
better way of handling the propagated uncertainty will lead to a better classifi-
cation.

6 Conclusion

The goal of this paper was to classify uncertain time series using the shapelet
transformation approach. To achieve this goal, we used uncertainty propagation
techniques to defined an uncertain dissimilarity measure called UED. Then we
adapted the well known shapelet algorithm to the context of uncertain time
series using UED and proposed the uncertain shapelet transformation algorithm
(UST). We have run experiments on some state of the art datasets and the
results showed the effectiveness of our approach. As future work, we intend to
assess our approach on a real uncertain dataset. Another future work is to use
an uncertain supervised classifier instead of the simple, classical decision tree in
the last step of UST.
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