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Association rule mining to shortlist plant
phenolic compounds likely to decrease methane
emissions by ruminants

Sylvie Guillaume and Didier Macheboeuf

Abstract The purpose of this work was to find phenolic compounds in plants that
could act on ruminal fermentations to limit methane emissions by ruminants, in or-
der to propose natural additives or food alternatives. We used a data mining method
to extract class association rules that would identify compounds likely to have a
significant effect. Such extraction usually generates a large number of rules. Our
problem was to select the best rules, and thereby the most promising compounds.
We carried out a new kind of extraction: mining for strongly expressed rules, that is
to say rules that govern whether compounds are abundant in the plants. We propose
two new interesting measures to evaluate the intensity of expression rules, and a
new type rule visualization. Among the 1,075 phenolic compounds found in the 208
plants analysed, 7 promising compounds and 5 useful associations of compounds
were shortlisted.

1 Introduction

Ruminants are important to mankind not only because they provide useful produce
such as milk, wool or meat, but also because they have a crucial ability to digest
plant fibres. This is due to the microbial ecosystem in the hosts rumen considered
to be one of the most highly diverse ecosystems in terms of species diversity and
functional richness [Mizrahi and Jami, 2018]. The fermentation process results in
volatile fatty acids. These nutrients are absorbed and serve as the main energy source
for the animal. Gases (CO2 and methane) are natural by-products of the process and
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are expelled into the atmosphere by eructation. Methane is produced by microor-
ganisms from domain Archaea, which are strict anaerobes that use the metabolic
pathways of methanogenesis [Garcia et al., 2000]. The main electron acceptor is
CO2 which is reduced to methane by the hydrogenotrophic pathway and less so
methyl-group and acetate converted to methane by the methylotrophic or acetoclas-
tic pathways [Patra et al., 2017, Garcia et al., 2000].

In terms of the gross energy intake from the feed, methane emissions can
be considered as energy lost (in the process). This is estimated at 5 - 7%
[Hristov et al., 2013] or 2 - 12 % [Huws et al., 2018] depending on the type of feed
or feed quality. This energy inefficiency represents a lack of production and an eco-
nomic loss for the farmer. In addition, methane is a powerful greenhouse gas (GHG)
that has a 28- to 34-fold higher global warming potential than CO2 on a 100-y hori-
zon [Duin et al., 2016] but it depends on the metrics used [Lynch, 2019]. Enteric
methane emissions mainly coming from ruminant livestock, comprise 17 and 3.3%
of global methane and GHG emissions annually [Knapp et al., 2014]. In the Euro-
pean Union, there were about 150 million-metric-tonne of CO2 equivalent (data of
2011). As livestock productions will continue to increase to contribute to the food
security of the growing human population [Dangal et al., 2017], the mitigation of
methane emissions has become a research priority in ruminant nutrition for the im-
plementation of sustainable and environmentally friendly livestock systems.

Numerous methane mitigation strategies have been explored [Patra et al., 2017].
They can be classified into 3 broad groups: animal genetic, feed management and ru-
men modifiers [Knapp et al., 2014]. In the last group, since the ban on the use of an-
tibiotics and all synthetic additives in animal feed in the European Union from 2006
(regulation 1831/2003/EC), there has been a great demand for natural plant extracts
that are effective additives to manipulate ruminal fermentations and limit methano-
genesis. Research has been directed towards secondary plant metabolites. These
chemical compounds that are not essential for the constitution of plants, but are
produced in response to stress (e.g. water) or aggression (insects, micro-organisms,
herbivores) or during their reproduction. It would therefore be of interest to know
the effect of these compounds on methane emissions by the ruminal ecosystem.
However, the very wide diversity of their chemical structures, estimated at more than
200,000 [Patra and Saxena, 2010], makes testing the activity of all these compounds
unfeasible. While many studies have focused on certain types of these compounds
(essential oils, saponins, tannins), very little is known about the effect of small phe-
nolic compounds on the methanogenesis. Here we focus on low-molecular-weight
(< 1000 Dalton) phenolic compounds.

We screened 208 plants by in vitro fermentation to identify bioactive plants
against methane emission. Some of these plants were chosen for their medicinal
properties such as anti-microbial properties that could be useful in handling Ar-
chaea. Others, on the contrary, were chosen due to the lack of information. The
choice took into account the results of other research teams in order to avoid redun-
dancies along with the need some common plants for comparison. At the same time,
the profile of small phenolic compounds extracted from these plants was determined
for each plant. At this stage, the compounds were not identified, because there were
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on average more than a hundred compounds per plant (detected as peaks by the an-
alytical method). It was imperative to first select a small number of compounds in-
volved in the plants anti-methanogenic effect, because the subsequent steps, namely
the identification of the compounds, and the in vitro validation of the expected effect
with the pure compound, are costly and time-consuming.

Given the very large fluctuations in the relative abundance of compounds in the
profiles, and their low frequencies in plants, it is difficult to link the presence of
a compound or combination to the plants activity. We therefore used data mining,
specifically the association rule mining, to select a few compounds that could have
an effect. The large number of projects focusing on association rules in research
papers is a good evidence of the importance of this data mining task.

Association rule mining is one of the most popular data mining methods and
is a powerful method for discovering the relationship between variables in large
databases. This method has the advantage of overcoming the primary limitations of
the general linear models [Vougas et al., 2019]. Except in the domain of soil, asso-
ciation rules have rarely been used in agricultural research. However, we found this
method interesting for three reasons. First, the method can quickly highlight syner-
gic effect between 2 or more compounds. Secondly, the method is well adapted to
the data particularities related to the acquisition of profiles of phenolic compounds.
This analytical method is semi-quantitative. The data are quantitative when com-
paring the same compound which is found at different concentrations in several
plants but the data is qualitative because the response factor of the phenolic struc-
ture, measured at 280 nanometers (nm) can be very different from one compound
to another. As a result, the data has been binarized and the association rules are
a simple and easy way to process this type of data. Thirdly, our search for com-
pounds active against methane emissions is similar to the search for efficient drugs
in the pharmacological field where associative methods have already been used
[Vougas et al., 2019, Wu et al., 2018]. It is therefore interesting to know whether
this method could also be used in relation to our problem.

Furthermore, association rule discovery is a well-defined, deterministic task i.e.
any association algorithm discovers precisely the same rule set, the differences in
the proposed algorithms are mainly their relative efficiency (some algorithms are
faster than others). In contrast to association rule discovery, classification is an ill-
defined, non-determinist task i.e. using only the training data, one cannot be sure that
a discovered classification rule will have a high predictive accuracy on the test set
(set which contains examples unseen during training) [Freitas, 2000]. A very well-
known technique is decision trees (see [Loh, 2011] for an overview). In addition, de-
cision trees automatically split numerical variables and sometimes repeat the same
attribute several times [Ordonez, 2006] which is not suited to our problem because
we are only searching for rules with high values as we explain in Sect. 6. Finally,
a decision tree partitions the data set whereas association rules on the same target
attribute may refer to overlapping subsets [Ordonez, 2006], which is well suited to
our problem.

This paper is organized as follows. Sect. 2 gives a brief reminder about associa-
tion rules. Sect. 3 presents the data and how it was acquired. The rest of the paper fo-
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cuses on knowledge discovery using this data. Sect. 4 presents the process of knowl-
edge discovery in databases that was used, and explains why two kinds of extraction
were needed to find the compounds and the component associations that could have
a positive effect on methane emissions (i.e. reduction of methane emissions). We
name these promising compounds and promising associations. The first extraction,
carried out on the binary data, discovered all the class association rules 1, i.e. all the
potentially promising compounds and associations reducing methane emissions. In
fact, the association rule extraction, introduced in [Agrawal et al., 1993], discover
interesting relationships between binary attributes only, this is why we work on the
binary data. The second extraction, carried out on the numerical compound data and
explained in Sect. 6, discovered all the class strongly expressed rules (rules that
govern whether compounds are abundant in the plants), i.e. all the most promising
compounds and associations. We know wether components are abundant with the
determination of their phenolic profiles, this is why we work on the numerical com-
pound data. A comparison of these two extractions enabled us to select promising
compounds and associations. We conclude by indicating the families of the promis-
ing compounds identified.

2 Recall Association Rules

The purpose of association rule extraction, introduced in [Agrawal et al., 1993], is
to discover interesting relations between binary attributes (or variables) in large
databases.

Formally, the association rule problem can be stated as follows: Let I =
{i1, i2, ..., ip} be the set of items (or binary attributes), and let T = {t1, t2, ..., tn}
be the set of transaction identifiers or tids. The input database DB is a binary re-
lation δ ⊆ I ×T . The database consists of a set of transactions (or individuals,
objects), where each transaction t ∈ T contains a set of items, such that t ⊆I . A
set X ⊆ I is called an itemset, and a set T ⊆ T is called a tidset. An association
rule is an implication of the form X ⇒Y , where X ,Y ⊆I are two sets of items and
X ∩Y = /0. The intuitive implication of the association rule is that presence of the
set of items X in a transaction set also indicates possible presence of the itemset Y .
An example of an association rule extracted from a database of supermarket sales
is: pancakes,butter⇒ cider. This rule states that the customers who buy pancakes
and butter also tend to buy cider.
Two notions for establishing the strength of a rule are those of minimum support and
minimum confidence defined by the user. The support sup(X ⇒ Y ) of a rule X ⇒ Y
defines the range of the rule, i.e. the fraction of transactions that contain both X and
Y . The confidence con f (X ⇒ Y ) of a rule X ⇒ Y defines the precision of the rule,
i.e. the fraction of transactions containing X that also contain Y .
An association rule is considered relevant if it has support and confidence at least

1 A class association rule is a special case of association rule where the right-hand is a target class
while the left-hand may contain one or more attributes.
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equal to some user-specified minimal support minsup and confidence mincon f thresh-
olds.
An association algorithm simply returns all the rules having support and confidence
greater than user-specified thresholds. Among all these rules, the algorithm has no
criterion (no bias) to select one rule over another.

Association rule mining can be decomposed into the following subproblems
[Agrawal and Srikant, 1994]:
(1) Find all frequent itemsets: we generate all combinations of items that have
support above a minimum support (i.e. sup(X)≥ minsup).
(2) Find all valid rules: for each frequent itemset X , we generate rules of the kind
X −Y ⇒ Y for each Y ⊂ X . Once these rules have been generated, only those rules
above minimum confidence need be retained (i.e. con f (X−Y ⇒ Y )≥ mincon f ).

Two other popular interest measures used for rule mining:

1. Lift introduced by [Brin et al., 1997] is defined as:

li f t(X ⇒ Y ) =
con f (X ⇒ Y )

sup(Y )
(1)

Lift ”measures how many times more often X and Y occur together than expected
if they were statistically independent” [Hahsler, 2015].

2. Leverage introduced by [Piatetsky-Shapiro, 1991] is defined as:

leverage(X ⇒ Y ) = sup(X ⇒ Y )− sup(X)sup(Y ) (2)

Leverage ”measures the difference of X and Y appearing together in the data
set and what would be expected if X and Y were statistically dependent”
[Hahsler, 2015].

3 Data Presentation

The substrates used for in vitro fermentation and for the determination of phenolic
compound profiles were obtained from 208 plant species harvested in the French
Massif Central. Samples were frozen in liquid nitrogen to fix secondary metabolites,
freeze-dried and ground.

Fig. 1 shows the process by which the data was acquired, explained in Sect. 3.1
and 3.2.
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Fig. 1 Process by which the data was acquired.

3.1 Plant Phenolic Compounds (Descriptive Variables)

The phenolic compounds were extracted from the substrates with solution wa-
ter:ethanol (20:80), and the profiles were analyzed by an High Pression Liquid Chro-
matographic system for 95 minutes on a C18 column with a water:methanol gradient
using a method adapted from [Sakakibara et al., 2003]. The chromatographic profile
of each plant was recorded at the frequency of 280 nanometers (nm) with a diode
array detector. A standard mixture of 21 known phenolic compounds is injected in
all sequences of analysis and allows the alignment of chromatograms.

Among these standard compounds, flavone was used as a reference for calcu-
lating relative retention times (Ti) of peaks. The sequences were aligned by reposi-
tioning the Ti values of the standards. Since the retention time of the flavone was
on average 84.52 min, the variation range of Ti lay in the interval [0, 1.124] for a
separation over 95 min. Since the plant compounds were unknown, they were iden-
tified by their relative retention times Ti, i ∈ [0,1.124] (see Fig. 2 for an example of
chromatographic profile).

A total of 1,075 different compounds were detected in the set of 208 plants. A
mean of 106 compounds were found per plant, with a range from 29 to 161. The
number of occurrences of a compound in the plant set was highly variable, ranging
from a single occurrence to a frequency of occurrence of nearly 58%. The average
frequency of occurrence was equal to 10%. The data for compounds was peak area
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Fig. 2 Example of a chromatographic profile.

if the compound was present (see Fig. 2). Here again, the variations were extremely
wide, ranging from 3 mAU (detection threshold of the analysis system) to 105,200
milli arbitrary units (mAU). The median peak area was equal to 100 mAU. The
value of 10 times the area of the median peak was taken to sort minor peaks (<
1,000 mAU) from major peaks. The number of major peaks averaged 9 per plant,
with a range from 0 to 43.

The raw data was structured into a matrix of 208 (plants) x 1,075 (compounds)
at 280 nm containing the numerical values of the peak areas. This matrix had a low
filling rate of 10%. Highly frequent compounds (> 30% frequency) were discarded
to avoid false positives (i.e. 28 compounds). We therefore had a matrix composed of
208 plants described by 1,047 compounds: this formed database D1 (see Fig. 3).

In the rest of this paper, T will have the following meaning: an itemset of com-
pounds Ti.

3.2 The Anti-Methanogenic Index (Target Variable)

The particularity of this data mining process is that it involves only one target vari-
able: the anti-methanogenic index (AMI). The AMI was built from in vitro rumen
fermentation data. The fermentation profiles (gas and volatile fatty acids (VFAs)
produced) were determined for all substrates after 24 hours of fermentation at 39
◦C in vitro in rumen simulated systems. All incubations were repeated 3 times.
Each run included perennial ryegrass (PRG) as control. Methane and VFAs pro-
ductions were normalized and expressed as a ratio of mean PRG values for each
period to remove inter-period drift. The normalized methane production was there-
fore a column vector of dimension 208 without missing data, whose values (average
of three repetitions) were ratios between 0.10 and 1.33. The index was calculated as
[Macheboeuf et al., 2018]:
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AMI = (A f −Am)/Amax, where A f is the CH4 value fitted to the CH4 = f (V FAs)
linear regression minus 2.58 times the PRG standard deviation, Am is the measured
CH4 value, and Amax is the maximum (A f −Am) value observed among the 208 plant
samples.

Concretely, the AMI represents the deviation between the measured methane pro-
duction of a plant and the predicted value that would have been obtained under
normal conditions (without inhibition of methanogenesis) at equivalent VFAs pro-
duction. Any plant that has an index strictly higher than 0 has a significant anti-
methanogenic effect (p < 0.01). The index ranged from -0.74 to 1.00 with a mean
of -0.09. The index was converted to binary data and named indMeO. The anti-
methanogenic effect was observed (AMI > 0) in 64 plants, i.e. 30.77% of the plant
samples, for which indMeO took the value 1. This formed database D2 (see Fig. 3).

After showing how the data was acquired, we now describe the extraction process
we used.

4 Process of Knowledge Discovery in Databases

The process of Knowledge Discovery in Databases (KDD) is defined as ”the non-
trivial process of identifying valid, novel, potentially useful, and ultimately under-
standable patterns in data” [Fayyad, U.M. et al., 1996].

Many studies have used graph mining to analyze chemical/molecular data and
thereby detect active effects [Berasaluce et al., 2004] [Fischer and Meinl, 2004].
This approach is not possible in our case because we do not know the chemical struc-
tures of the phenolic compounds. Obtaining this knowledge requires much time and
technology (mass spectrometer). Furthermore, the plants were chosen deliberately
because they were not well-studied, and their compositions were in no bibliography
or database. Our HPLC-DAD set-up enables us to record UV spectra, and examina-
tion of these spectra by an expert makes it possible to classify unknown compounds
into molecular families. However, the classification process is manual, laborious
and clearly unfeasible when there are 1,047 compounds to classify. However, UV
spectra can be studied over a small number of peaks, and according to the spectrum
class identified, some compounds can be identified.

Our chosen strategy was therefore to use data mining with the hypothesis that
all peaks were different although some might be similar. Association rule discovery
was well-suited to solving our problem, since we were seeking relations between
compounds and their anti-methanogenic index.

The KDD process we used is presented in Fig. 3 and explained below.

1. Selection and preprocessing steps
The selection and preprocessing steps are set out in Sect. 3.1 and 3.2 where
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Fig. 3 Steps comprising the KDD process.

we describe how we obtained sets D1 and D2.

2. Data Transformation step
Data transformation is a preprocessing task that includes any procedure that

modifies the original form of the data. Mining association rules require that the
data be in binary form, as mentioned in [Agrawal et al., 1993]. In the presence
of numerical variables, discretization followed by complete disjunctive coding is
necessary.
We recall, as stated in Sect. 3.1 that the values taken by the peak areas differ
widely from one compound to another, and the frequencies of occurrence of the
compounds are also wide-ranging (see Fig. 4). Given these characteristics, we
discretized numerical variables as follows: the value 1 was assigned to all the
compounds expressed, i.e. for all the values strictly higher than 0; and the value
0 to all those non-expressed. This formed database D3 mentioned in Fig. 3. We
recall that the target data D2 is already binary.
As stated in Sect. 3, one characteristic of the database D1 is that it is sparse (i.e.
it has many null values) since the plants only contain about one hundred com-
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Fig. 4 Boxplots of some compounds.

pounds on average out of the 1,075 detected. The mean frequency of occurrence
of compounds in our base was 10%, a mean of 21 expressions per compound.

3. Data mining step
We performed two kinds of extraction:

The first one, carried out on the binary data (D2 and D3), enabled us to discover
all the class association rules, whose conclusion is the binary anti-methanogenic
index indMeO. Association rules where the conclusion is an item (i.e. only one
binary variable) were named class association rules. This enabled us to detect all
the compounds potentially promising for the desired effect (anti-methanogenic
action), together with all potentially promising compound associations. At the
end of this step, we obtained the set D4 of class association rules as mentioned
in Fig. 3.
However, this extraction usually generates a large number of rules, and it is im-
perative to select the best ones.

[Klemettinen et al., 1994] propose the use of rule templates to easily describe the
structure of useful rules according to the user’s intuitions, and have developed
visualization tools (such as the Rule Visualizer System) to show them to the user.
This method retrieves those match rules from the set of extracted rules and does
not prune insignificant rules.
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[Hahsler, 2016] cluster association rules into a small number of meaningful
groups. These groups would be valuable for experts who need to manually in-
spect the rules, for visualization and as the input for other applications.
[Aggarwal and Yu, 1998] present association rules in a compact form, eliminat-
ing redundancy. This kind of redundancy arises when rules have more than one
item in the consequent. [Bastide et al., 2000] extract minimal non-redundant as-
sociation rules using frequent closed itemsets. These rules have minimal premises
2 and maximal conclusions 3 (i.e. the most relevant association rules). These au-
thors [Pasquier et al., 1999a, Pasquier et al., 1999b] focused mainly on the dis-
covery of frequent closed itemsets, and do not report any experiments on rule
mining. [Zaki, 2000, Zaki, 2004] has been mainly interested in generating a
smaller non-redundant rule set after mining the frequent closed itemsets.
[Djenouri et al., 2014, Djenouri et al., 2018] prune association rules using meta
rules extraction. First, they cluster association rules and then, for each obtained
cluster, different dependencies between rules are extracted using a meta-rules
algorithm. At the end of the process, the meta rules discovered are used to find
the set of representative rules, and the remaining rules are systematically pruned.
Multi-Criteria Decision Making methods have been used to rank the discovered
association rules. [Choi et al., 2005] used ELECTREE II method to rank the as-
sociation rules. [Shukla et al., 2019] proposed an approach based on DEA (Data
Envelopment Analysis) to rank discovered association rules. DEA measures the
efficiency of each discovered association rule based on multiple criteria. These
efficiency scores for each rule help to rank these rules for implementation.

We know the rule template to extract and that is the following: what com-
pounds or compound associations have a positive effect (i.e. reduction of methane
emissions) ? These are rules where the conclusion is an item: the binary anti-
methanogenic index. The best rules for biologists are those where compounds
are abundant in the plants. The more abundant a compound is in a plant, the
greater will be its peak area. Thus for our purposes, a class rule will be of greater
utility the more strongly expressed the phenolic compounds are, i.e. the higher
their values are. We named such rules ”class strongly expressed rules”. Thus a
second extraction carried out on the numerical data D1 enabled us to discover all
the class ”strongly expressed” rules. We proposed two new interest measures to
evaluate the intensity of expression rules.

4. Interpretation/Evaluation step
At the end of these two kinds of extraction, a comparison of the two sets of

rules (D4 and D5) with their different measures enabled us to select the best rules.
This is the set D6 of rules.

2 or left hand sides or antecedents.
3 or right hand sides or consequents.
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We now focus on the first data mining step in our KDD process: the discovery of
class association rules.

5 Mining The Potentially Promising Compounds and
Associations

The extraction was carried out using the package arulesViz [Hahsler, 2017]
in the R statistical software [R Development Core Team, 2020]. This package pro-
poses interfaces to the popular C implementations of Apriori and Eclat by
Christian Borgelt [Borgelt and Kruse, 2002, Borgelt, 2003]. We retained the value
of 0.025 for the minimum support, i.e. verified by at least 6 transactions (sub-
strates). We considered a rule verified by fewer than 6 transactions as untrustwor-
thy. For the minimum confidence, we chose a value strictly higher than 0.50 so that
con f (T ⇒ indMeO) > con f (T ⇒ indMeO). We recall that the database D2 had
30% of anti-methanogenic plants (sup(indMe0)=0.30). The minimum confidence
therefore guarantees that extracted rules are necessarily in the attractive zone, i.e.
the zone where con f (T ⇒ indMeO)> sup(indMeO).

We found 676 class rules distributed as follows according to ”order” (see Tab. 1),
i.e., the number of items contained in the rule:

Table 1 Number of extracted class rules by order

Order Number of rules

2 19
3 573
4 82
5 2

Total 676

The scatter plot of Fig. 5 shows us the 676 rules extracted and was generated
by the plot function in the R statistical software. This is a special version of a
scatter plot called two-key plot introduced by [Unwin et al., 2001]. Support
and confidence are used for the x and y-axes respectively, and the color of the
points is used to indicate order. From this plot, we verified that order and support
had a very strong inverse relationship, known to be the case for association rules
[Seno and Karypis, 2005].

We now study the rules of order 2 that reveal potentially promising compounds.
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Fig. 5 The 676 rules extracted.

5.1 Mining The Potentially Promising Compounds

The plot in Fig. 6 displays the 19 extracted rules of order 2. This graph-based visu-
alization was generated with the R-extension package arulesViz. The size of the
circle is proportional to the value of the confidence of the rule (the larger the size,
the higher the value of the confidence) and the intensity of the color in the circle is
proportional to the value of the support of the rule (the darker the color, the higher
the value of the support).

The 5 most promising rules of order 2 are summarized in Tab. 2. These rules are
ranked in decreasing order of confidence.

Table 2 The 5 most promising rules of order 2.

Premise Support Confidence Lift

T0.9792 0.03 0.70 2.31
T0.0492 0.029 0.67 2.20
T0.9756 0.029 0.67 2.20
T0.0816 0.03 0.64 2.10
T0.4404 0.067 0.64 2.10
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Fig. 6 General Rules Ti⇒ indMeO generated with the R-extension package arulesViz.

New visualization of rules
The graph in Fig. 6 lets us compare rules for the two main measures (i.e. support
and confidence), which gives us a good overview of the quality of rules. However,
we would like more information to select, as accurately as possible, a manageable
number of promising compounds. It would therefore be useful to know how many
of the substrates containing the compound have a positive effect (information given
by the value of the absolute support of the rule) and how many have a negative effect
(methanogenic). Confidence informs us about this proportion (for a confidence
equal to c and among substrates containing compound Ti, c% have a positive
effect and (1− c)% have a negative effect) but we would like to visualize these
two numbers. For a confidence equal to c%, to have 100× c substrates that have a
positive effect or 1,000× c, does not have the same value. Again, support informs
us about this proportion, but we would like to visualize these two values side by side.
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The first information corresponds to the number of examples of a rule (i.e. the
number of substrates verifying the premise and conclusion of the rule) and the
second to the number of counter-examples (i.e. the number of substrates verifying
the premise but not verifying the conclusion). Knowing the proportion of one
relative to the other can offer valuable information to select the most promising
rules.

We propose the visualization represented by Fig. 7.

This graph gives us the following information:

1. The number of substrates verifying compound Ti or absolute
support supabs(Ti) of premise Ti, through the length of the line segment (red
and blue segments).

2. The number of examples or absolute support supabs(TiindMeO) of rule
Ti ⇒ indMeO through the length of the line segment to the left of the line of
equation x = 0 (red segment).

3. The number of counter-examples or absolute support
supabs(TiindMeO) through the length of the line segment to the right of
the line of equation x = 0 (blue segment).
We recall that supabs(Ti) = supabs(TiindMeO)+ supabs(TiindMe0).

4. The confidence of the rule through the orientation of the line segment
(the more vertical the line segment, the higher the confidence of the rule). A
horizontal line segment corresponds to a value equal to 0.50 for the confidence,
and a vertical line segment corresponds to a value equal to 1.
Supports supabs(Ti) and supabs(TiindMeO) represented on the graph enable us to
find the confidence of the rule, since con f (Ti⇒ indMeO) = supabs(TiindMeO)

supabs(Ti)
.

5. A measure of our choice on the y-axis. We chose here the interest mea-
sure MG, which evaluates the distance between two characteristic states: (i) equi-
librium 4 or independence 5 and (ii) logical implication 6. For more details on
this measure, we refer the reader to the work of [Guillaume, 2010].

This kind of representation is inspired by the Venn diagram, which here is con-
densed and flattened. We recall that for all these rules, the conclusion is the same,
item indMeO. The absolute support supabs(indMeO) is not represented on the graph
because (i) it has the same value for all the rules and, (ii) the value of its support
is approximately six times greater than the value of the support of all the rules ex-
tracted.

If two rules have the same value for the chosen measure on the y-axis, then we
perform a translation of the representation of the second rule along the x-axis. This
is the case, for example, for compounds T0.9756 and T0.4404.

4 Equilibrium is the case where con f (X ⇒ Y ) = con f (X ⇒ Y ) = 0.5.
5 Independence is the case where con f (X ⇒ Y ) = sup(Y ).
6 Logical implication is the case where con f (X ⇒ Y ) = 1.
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Fig. 7 Visualization of the 9 best rules Ti⇒ indMeO.

Such a graph is of interest and readable only for a limited number of rules and
with values for the confidence not too close to 1. If the values of the confidence are
close to 1, then we can represent this information on the y-axis and choose another
interest measure for the orientation of the line segment.

Clustering of the compounds

We went on to study how these potentially promising compounds clustered, i.e. to
what extent they were associated with other compounds. Compounds were classified
into ”gregarious” or ”solitary” according to whether they were found associated
with other compounds or not. To find out whether there were many associations
with a given compound, we searched, for each potentially promising compound, the
number of maximally frequent itemsets 7 (noted MMF) containing it together with
the size of the largest MMF (i.e. the MMF with the largest number of associated
items). The greater the number of MMFs and / or the larger the size of the largest
MMF, the more ”gregarious” will be the compound.

To extract these MMFs, we need to add the parameter target="maximally
frequent itemsets" in the apriori function of R software. 3,765 MMFs
were detected among the 339,532 frequent itemsets containing the item indMeO.
Tab. 3 (columns 1, 6 and 7) shows the result of this extraction ordered by num-

7 A frequent itemset is maximal if none of its supersets are frequent and all its subsets are frequent.
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ber of MMFs extracted. 8 ”solitary” compounds were detected among the 19 po-
tentially promising compounds. These 8 compounds were truly solitary, not being
associated with any other compound. The ”solitary” compounds were: T0.9792,
T0.0492, T0.9756, T1.0008, T0.2126, T1.0464, T0.6696 and T0.5784. As expected,
these were usually compounds with low values for the support. The three best rules
previously detected had a solitary compound in the premise (T0.9792, T0.0492 and
T0.9756).

Table 3 Associations of the Potentially Promising Compounds.

Premise Support Confidence Support
Premise

Leverage Number
MMFs

Size of the
largest MMF

T0.9792 0.03 0.70 0.05 0.02 1 2
T0.0492 0.03 0.67 0.04 0.02 1 2
T0.9756 0.03 0.67 0.04 0.02 1 2
T1.0008 0.03 0.60 0.05 0.01 1 2
T0.2126 0.03 0.54 0.05 0.01 1 2
T1.0464 0.03 0.54 0.05 0.01 1 2
T0.6696 0.03 0.54 0.06 0.01 1 2
T0.5784 0.03 0.54 0.06 0.01 1 2
T1.0896 0.03 0.54 0.05 0.01 1 3
T0.5052 0.03 0.54 0.06 0.01 1 3
T0.0816 0.03 0.64 0.05 0.02 2 3
T0.5928 0.04 0.53 0.07 0.02 2 4
T0.8496 0.05 0.53 0.09 0.02 6 3
T0.8112 0.05 0.52 0.10 0.02 7 3
T0.3540 0.05 0.58 0.09 0.02 11 3
T0.6168 0.05 0.55 0.10 0.02 16 4
T1.0140 0.06 0.52 0.11 0.02 16 5
T0.2580 0.07 0.56 0.12 0.03 23 4
T0.4404 0.07 0.64 0.11 0.03 31 5

To retrieve this information in a more user-friendly way for biologists, we per-
formed an ascending hierarchical classification, choosing as distances the Euclidean
distance and the Ward distance. This is the only usefulness of this classification. We
did not limit ourselves to these last two items of information (number of MMF and
size of the largest MMF) but took some information obtained during the extraction,
namely: (i) the support of the rule (see Tab. 3 column 2), (ii) the confidence (see
Tab. 3 column 3), (iii) the support of the compound (see Tab. 3 column 4), and (iv)
the leverage of the rule (see Tab. 3 column 5). We did not keep the lift because it was
linearly correlated to the confidence when the class association rules had the same
conclusion.

Fig. 8 shows the classification obtained. Two categories of compound appear: the
first comprises compounds with a low number of MMF (solitary compounds), and
the second comprises compounds with a large number of MMF (gregarious com-
pounds). In each of these two categories, there are two subclasses that are differen-
tiated by the characteristics listed above being somewhat more pronounced in one
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Fig. 8 Ascending Hierarchical Classification of the Potentially Promising Compounds.

of the two subclasses. The further the compounds are on the right, the more MMF
they have, and with greater lengths. This classification thus orders the compounds
from the most ”solitary” to the most ”gregarious”.

We now address the potentially promising associations.

5.2 Mining The Potentially Promising Associations

Tab. 4 displays the 28 best confidence-based potentially promising associations. All
these rules had almost the same values for the different interest measures, except for
the support. The study of the numerical values taken by these different compounds
(the database D1) enabled us to order these rules so as to retain the best ones. This
is the subject of Sec. 6.

The graph-based visualization of these 28 best rules is represented in Fig. 9. We
can see the limits of such a representation, but it gives us an overview of all the
components involved. These are moderately well distributed.

After extracting class rules on the binary data D3, we compared our results using
the numerical data D1 to take into account the intensity of expression of compounds.
This comparison enabled us to select the most promising compounds and associa-
tions.
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Table 4 The 28 potentially promising associations.

Premise Support Confidence Lift Count

T0.2724,T0.5928 0.02885 1 3.302 6
T0.7428,T0.8496 0.02885 1 3.302 6
T0.1428,T0.4404 0.02885 1 3.302 6
T0.2196,T0.7512 0.02885 1 3.302 6
T0.3600,T0.7968 0.03365 1 3.302 7
T0.3408,T0.4464 0.02885 1 3.302 6
T0.2268,T1.0980 0.02885 1 3.302 6
T0.2268,T0.7272 0.03365 1 3.302 7
T0.0720,T0.4404,T0.6060 0.02885 1 3.302 6
T0.2172,T0.3060,T0.3168 0.02885 1 3.302 6
T0.3600,T0.7968,T0.8076 0.02885 1 3.302 6
T0.1344,T0.1692,T0.8328 0.02885 1 3.302 6
T0.2100,T0.7968,T0.8076 0.02885 1 3.302 6
T0.1272,T0.1512,T0.2760 0.02885 1 3.302 6
T0.1320,T0.3060,T0.3480 0.02885 1 3.302 6
T0.1512,T0.3252,T0.4140 0.02885 1 3.302 6
T0.1944,T0.2628,T0.4140 0.02885 1 3.302 6
T0.1044,T0.2172,T0.2916 0.02885 1 3.302 6
T0.2172,T0.2484,T0.3060 0.02885 1 3.302 6
T0.2484,T0.3060,T1.0224 0.02885 1 3.302 6
T0.1512,T0.1944,T0.3252 0.02885 1 3.302 6
T0.3228,T0.7092,T0.9024 0.02885 1 3.302 6
T0.3060,T0.3228,T0.7092 0.02885 1 3.302 6
T0.3060,T0.7092,T0.8400 0.02885 1 3.302 6
T0.2556,T0.3060,T0.3480 0.02885 1 3.302 6
T0.1512,T0.3048,T1.0884 0.02885 1 3.302 6
T0.0720,T0.2172,T0.3060 0.02885 1 3.302 6
T0.1512,T0.1944,T0.2628,T0.4140 0.02885 1 3.302 6

6 Mining Class Strongly Expressed Rules

The more abundant a compound is in a plant, the greater will be its peak area. Thus
for our purposes, a class rule will be of greater utility the more strongly expressed
the phenolic compounds are, i.e. the higher their values are. We name such rules
”class strongly expressed rules”.

First, we describe the discovery of class strongly expressed rules of order 2 to
mine the most promising compounds, and then the discovery of class strongly ex-
pressed rules of order strictly higher than 2 to mine the most promising compound
associations.
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Fig. 9 Graph-based visualization of the 28 best rules.

6.1 Mining the Most Promising Compounds

Rules of order 2 that were of interest to us were those where the high values taken
by the compound Ti were contained in the rule, rules that we could formalize in the
following way: Ti ≥ v⇒ indMe0 with v a value taken by the compound Ti.

To detect this kind of rule, we used the following strategy, which we first explain
using an example.

Fig. 10 shows all the positive values taken by compound T0.6696, and that by
class of substrates, that is to say those for which there was no improvement on
methane emissions (i.e. class 1) and those for which there was a positive effect (i.e.
class 2: reduction of methane emissions). We then searched for the optimum value
vopt taken by the compound where the proportion of substrates having a positive
effect was higher than the proportion of substrates having no effect.

For each value taken by compound Ti (except the minimum value), we evaluated
the quality of the rule Ti ≥ v⇒ indMe0 by computing the value of different interest
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Fig. 10 Distribution of positive values for compound T0.6696 and that by impact class on methane
emissions.

measures (confidence, support and lift). Since we wanted these rules to verify the
user-defined minimum support, we only evaluated a subset of them (we discarded
the (minsup× n) highest values taken by the compound). To formalize our mining
method, we defined the following notations. Let ti be the number of distinct values
taken by the compound Ti and let {vi1, ..,vik, ..,viti} be the set of ordered values
taken by compound (k ∈ {1, .., ti}). Let s be the absolute minimum support defined
by the user (s = minsup × n). We are therefore looking for the best rule or rules
for a quality measure (confidence, leverage, etc.) chosen by the user among all the
following rules: Ti ≥ vik⇒ indMeO with vik ∈ {vi2, ..,vi(ti−s)}.

To select the promising compounds, we used a new measure, intensity of expres-
sion Intexp, which would inform us about the intensity of the rule compared to the
mean intensity of the compound. This was the ratio of the mean of the values taken
by the numerical rule Ti ≥ vik⇒ indMe0, that is to say the mean mean(Ti ≥ vik) of
the values higher than vik, to the mean mean(Ti) of values taken by the compound
Ti:

Intexp(Ti ≥ vik⇒ IndMeO) =
mean(Ti ≥ vik)

mean(Ti)
(3)
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Thus the more the intensity of expression of the rule is greater than 1, the better
it will be.

Algorithm for mining the most promising compounds
The pseudo-code of the SER algorithm for mining the most promising com-

pounds is presented in algorithm 1. We summarize the notations used in Tab. 5.

Table 5 The notations used for the SER algorithm.

Notation Meaning

n number of transactions (substrates)
DB1 numerical compounds data
DB2 target data
R2 set of valid Rules of order 2
SER2 set of Strongly Expressed Rules of order 2
Ri set of candidate numerical Rules for compound Ti
minsup minimum support
s = minsupabs = minsup×n minimum absolute support
mincon f minimum confidence
minIntexp minimum intensity of expression
ti number of values taken by Ti
{vi1, ..,vik, ..,viti} values taken by Ti sorted in ascending order
sik = sup(Ti ≥ vik⇒ indMeO) support of the rule Ti ≥ vik⇒ indMeO
cik = con f (Ti ≥ vik⇒ indMeO) confidence of the rule Ti ≥ vik⇒ indMeO
Intexpik = Intexp(Ti ≥ vik⇒ indMeO) intensity of expression of the rule Ti ≥ vik⇒ indMeO
si = sup(Ti⇒ indMeO) support of the rule Ti⇒ indMeO
ci = con f (Ti⇒ indMeO) confidence of the rule Ti⇒ indMeO

The algorithm starts by initializing the set SER2 (i.e. the set of Strongly Expressed
Rules of order 2) with the empty set (step 1). Each compound Ti is then examined
successively (steps 2 to 30). The set Ri of candidate numerical rules for compound
Ti is initialized with the empty set (step 3). We search for all the values ti taken by Ti
(step 4) and we order them in ascending order (step 5). For each value vik taken by
compound Ti (except the minimum value and the s highest values), we evaluate the
quality of the rule Ti ≥ vik⇒ indMeO (steps 6 to 21). We compute the support (step
7), the confidence (step 8) and the intensity of expression (step 9) of the numerical
rule Ti ≥ vik⇒ indMeO. If the binary rule Ti⇒ indMeO is contained in the set R2 of
valid binary rules of order 2 (steps 10 to 15), we search for the support (step 11) and
the confidence (step 12) of the binary rule to verify that it has lower values than the
numerical rule (step 13). If this is verified and the intensity of expression of the nu-
meric rule is higher than or equal to the minimum intensity of expression (step 13),
then the numerical rule is inserted into Ri with all the different values of measures
(step 14). If the binary rule of the compound Ti is not in the set R2 (steps 16 to 19),
then we verify that all the values of different measures are higher than the minimum
thresholds (step 17) and we insert the numerical rule in the set Ri (step 18). If the
number of candidate numerical rules for the compound Ti is strictly higher than 1
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Algorithm 1 : Mining the most promising compounds with SER
Input : [DB1,DB2] (database),

R2 (set of valid Rules of order 2),
minsup, mincon f and minIntexp

Output : SER2 (set of Strongly Expressed Rules of order 2)
1: SER2 = /0 {initialization}
2: for all compound Ti do
3: Ri = /0 {initialization of the set of candidate rules for compound Ti}
4: Search for all the values ti taken by Ti
5: Sort in ascending order the values taken by Ti : {vi1, ..,vik, ..,viti}
6: for value vik ∈ {vi2, ..,vi(ti−s)} do
7: Compute sik = sup(Ti ≥ vik⇒ indMeO)
8: Compute cik = con f (Ti ≥ vik⇒ indMeO)
9: Compute Intexpik = Intexp(Ti ≥ vik⇒ indMeO)

10: if the rule (Ti⇒ indMeO) ∈ R2 then
11: Search for the support si of the rule (Ti⇒ indMeO) in R2
12: Search for the confidence ci of the rule (Ti⇒ indMeO) in R2
13: if (sik > si)∧ (cik > ci)∧ (Intexpik ≥ minIntexp ) then
14: Ri← Ri∪{(Ti,vik,sik,cik, Intexpik)}
15: end if (sik > si)∧ (cik > ci)∧ (Intexpik ≥ minIntexp )

16: else
17: if (sik > minsup)∧ (cik > mincon f )∧ (Intexpik ≥ minIntexp ) then
18: Ri← Ri∪{(Ti,vik,sik,cik, Intexpik)}
19: end if (sik > minsup)∧ (cik > mincon f )∧ (Intexpik ≥ minIntexp )

20: end if (Ti⇒ indMeO) ∈ R2

21: end for vik ∈ {vi2, ..,vi(ti−s)}
{Selection of the best rule for compound Ti}

22: if |Ri|> 1 then
23: sort(Ri, cik desc, Intexpik desc, order asc)
24: SER2← SER2∪{Ri[1]}
25: else
26: if |Ri|= 1 then
27: SER2← SER2∪{Ri}
28: end if |Ri|= 1

29: end if |Ri|> 1

30: end for compound Ti

31: return SER2;

(step 22), then we sort them first in decreasing order of confidence, then intensity
of expression and finally in increasing order of value vik (step 23) and we retain the
best one, inserting it into the set SER2 (step 24). If the cardinality of the set Ri is
equal to 1 (step 26), then we retain the single candidate rule and it is inserted into
the set SER2 (step 27). The algorithm finally returns the set SER2 containing all
strongly expressed rules of order 2 (step 31).

Here is an example of an extracted rule: T 0.6696 ≥ 60.33⇒ indMeO with a
value for the confidence equal to 0.875 and a value for the support equal to 0.034.
The value for the confidence of the binary rule T 0.6696⇒ indMeO extracted pre-
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Fig. 11 The best promising compounds.

viously is equal to 0.54 and the value for the support is equal to 0.034. There is a
significant improvement in the confidence when T 0.6696 is present as a major peak
(> 1000 mAU). The intensity of expression of this rule is equal to 1.51.
T 0.6696 ≥ 60.33⇒ indMeO is a promising rule, and therefore T 0.6696 is a com-
pound to be retained.

At the end of this step, among the 12 solitary phenolic compounds (see Fig. 8,
class 1), 7 show a threshold effect, which improves the value of the confidence:
T 0.9792, T 0.0492, T 0.9756, T 1.0008, T 1.0464, T 0.6696 and T 0.5784 (see Fig. 11).

We then search for the most promising associations by studying the numerical
values of the compounds again.
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6.2 Mining the Most Promising Compounds Associations

As stated above, we search for the rules where the compounds are strongly
expressed. To mine these rules, we propose a new interest measure.

Let T ⇒ indMe0 be the rule where T is an itemset of compounds Ti. Let sub be a
substrate. Let Sub(T, indMe0) be the set of anti-methanogenic substrates where all
the compounds Ti have a positive value. This set can be formalized as follows:

Sub(T, indMeO) = {sub / ∀Ti ⊂ T sub[Ti]> 0 ∧ sub[indMe0] = 1} (4)

where sub[Ti] is the value taken by the compound Ti for the substrate sub, and
sub[indMe0] = 1 indicates that sub is an anti-methanogenic substrate.

For all these substrates sub contained in the set Sub(T, indMe0), we compute the
mean of the values sub[Ti] of all the compounds Ti contained in T . This is a measure
of the mean intensity of rule T ⇒ indMe0 that we can formalize in the following
way:

Int(T ⇒ indMe0) =
∑sub∈Sub(T,indMe0)(∑Ti⊂T sub[Ti])

|Sub(T, indMe0)|× |T |
(5)

where |Sub(T, indMe0)| is the cardinality of the set Sub(T, indMe0) i.e. the
number of substrates, and |T | is the number of compounds Ti contained in T .
We recall that all compounds Ti are expressed in the same unit (i.e. mAU).

Let Int(T+) be the mean of the positive values of all compounds Ti contained in
T :

Int(T+) =
∑sub(∑Ti⊂T sub[Ti]> 0)

∑Ti⊂T sup(Ti)
(6)

Int(T+) is a measure of mean intensity of the positively expressed compounds
contained in T .

We propose a new interest measure Intexp which evaluates the strength of ex-
pression of the rule T ⇒ indMe0. This is the ratio of the mean intensity of the rule
Int(T ⇒ indMe0) to the positive mean intensity Int(T+) of compounds involved in
the rule. This measure can be formalized as follows:

Intexp(T ⇒ indMe0) =
Int(T ⇒ indMe0)

Int(T+)
(7)

Only rules with an intensity of expression higher than minIntexp will be considered
of interest, and therefore retained.
We now present the algorithm SER+ that mines all class strongly expressed rules
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Algorithm 2 : Mining the most promising compound associations with SER+

Input : [DB2,DB3] (database),
AR2+ (set of class Association Rules of order higher than 2),
minIntexp (minimum intensity of expression) and
maxrules (maximum number of rules)

Output : SER2+ (set of Strongly Expressed Rules of order higher than 2)
1: SER2+ = /0 {initialisation}
2: for all rules R ∈ AR2+ do
3: Compute Intexp(R)
4: if Intexp(R)> minIntexp then
5: SER2+ ← SER2+ ∪{R}
6: end if Intexp(R)> minIntexp

7: end for rules R ∈ AR2+

{selecting the best rules}
8: if |SER2+ |> maxrules then
9: sort(SER2+ , Intexp(R)desc)

10: SER2+ ← SER2+ [1..maxrules]
11: end if |SER2+ |> maxrules

12: return SER2+ ;

of order higher than 2.
The pseudo-code of the SER+ algorithm for mining the most promising compound
associations is presented in algorithm 2.

The algorithm starts by initializing the set SER2+ (set of Strongly Expressed
Rules of order higher than 2) with the empty set (step 1). For each class association
rule R of order higher than 2, we evaluate the quality of the rule T ⇒ indMeO
and more specifically, we measure the presence of high values (steps 2 to 7). We
compute the intensity of expressed Intexp(R) of the rule (step 3). If this intensity
is higher than the minimum intensity of expression minIntexp (step 4) then the rule
is retained and inserted into the set SER2+ (step 5). If the number of strongly
expressed rules is higher than the user-defined maximum number of rules (steps
8 to 11), then the maxrules best are selected (step 10) according to the intensity
of expression Intexp(R) (step 9). The algorithm finally returns the set SER2+

containing all strongly expressed rules of order higher than 2 (step 12).

The 5 best rules of order 2 extracted are shown in Tab. 6.
Tab. 7 displays the values of the intensity of expression for the best association

rules of order 2.
At the end of this extraction, we retained the following associations (see Tab. 8).

We chose 1 as the minimum value for the intensity of expression. We selected asso-
ciations of order 2 because they involved fewer compounds.
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Table 6 The 5 best rules of order 3.

Premise Intexp(R) Int(T ⇒ indMe0) Int(T+) Confidence

T0.1248,T0.2232 5.3 5,348.28 1,008.78 0.75
T0.1632,T0.2232 3.72 4,657.17 1,253.09 0.57
T0.1512,T0.2004 3.5 2,671.62 764.19 0.60
T0.3060,T0.3252 3.44 1,139.17 331.46 0.60
T0.1368,T0.3924 3.35 1,697.89 507.03 0.75

Table 7 Values of the intensity of expression for the best association rules of order 3.

Premise Intexp(R) Int(T ⇒ indMe0) Int(T+) Confidence

T0.2724,T0.5928 1.24 493.13 396.28 1
T0.7428,T0.8496 0.72 142.31 197.84 1
T0.1428,T0.4404 0.55 217.62 398.56 1
T0.2196,T0.7512 0.3 175.81 579.18 1
T0.3600,T0.7968 0.49 191.25 389.27 1
T0.3408,T0.4464 0.85 870.96 1,023.25 1
T0.2268,T1.0980 1.08 251.45 231.8 1
T0.2268,T0.7272 1.17 428.3 364.95 1

Table 8 The associations selected.

Premise Intexp(R) Int(T ⇒ indMe0) Int(T+) Confidence

T0.1248,T0.2232 5.3 5,348.28 1,008.78 0.75
T0.1368,T0.3924 3.35 1,697.89 507.03 0.75
T0.2724,T0.5928 1.24 493.13 396.28 1
T0.2268,T0.7272 1.17 428.3 364.95 1
T0.2268,T1.0980 1.08 251.45 231.8 1

7 Conclusion

From the 1,047 unidentified phenolic compounds contained in our database, the
discovery of class-association rules generated 676 valid rules, representing far too
many compounds for biologists and chemists to identify. The association rules of
order 2 allow us to extract the potentially promising compounds. These were classi-
fied into two categories using a hierarchical ascending classification: 12 ”solitary”
compounds and 7 ”gregarious” compounds. Taking into account the intensity of
expression of these rules and the new visualization proposed, 7 compounds were
finally selected, all belonging to the category of ”solitary” compounds. The associ-
ation rules of higher order highlighted 28 potentially promising associations with a
confidence equal to 1. The extraction of the strongly expressed rules enabled us to
select 5 promising associations involving 9 new compounds. This comparison of the
two kinds of extraction retained only 3 rules out of the 28 rules with a confidence
equal to 1 and revealed 2 new promising associations. Examination of the ultraviolet
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spectra of the solitary compounds already shows that they belong to (i) the family
of cinnamic acids, and (ii) the family of flavonols. They remain to be identified pre-
cisely, so that the pure products can be synthesized to determine whether they have
true anti-methanogenic effects in fermentation tests. Encouragingly, previous results
[Macheboeuf et al., 2008] have shown that cinnamaldehyde has a significant effect
on methane release.
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