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A Variational Model Dedicated to Joint Segmentation, Registration and Atlas
Generation for Shape Analysis∗

Noémie Debroux† , John Aston‡ , Fabien Bonardi§ , Alistair Forbes¶, Carole Le Guyader‖ ,
Marina Romanchikova‖ , and Carola-Bibiane Schönlieb†

Abstract. In medical image analysis, constructing an atlas, i.e. a mean representative of an ensemble of
images, is a critical task for practitioners to estimate variability of shapes inside a population,
and to characterise and understand how structural shape changes have an impact on health. This
involves identifying significant shape constituents of a set of images, a process called segmentation,
and mapping this group of images to an unknown mean image, a task called registration, making
a statistical analysis of the image population possible. To achieve this goal, we propose treating
these operations jointly to leverage their positive mutual influence, in a hyperelasticity setting, by
viewing the shapes to be matched as Ogden materials. The approach is complemented by novel hard
constraints on the L∞ norm of both the Jacobian and its inverse, ensuring that the deformation is a
bi-Lipschitz homeomorphism. Segmentation is based on the Potts model, which allows for a partition
into more than two regions, i.e. more than one shape. The connection to the registration problem is
ensured by the dissimilarity measure that aims to align the segmented shapes. A representation of
the deformation field in a linear space equipped with a scalar product is then computed in order to
perform a geometry-driven Principal Component Analysis (PCA) and to extract the main modes of
variations inside the image population. Theoretical results emphasizing the mathematical soundness
of the model are provided, among which existence of minimisers, analysis of a numerical method,
asymptotic results and a PCA analysis, as well as numerical simulations demonstrating the ability
of the model to produce an atlas exhibiting sharp edges, high contrast and a consistent shape.

Key words. Segmentation, registration, nonlinear elasticity, Ogden materials, Potts model, atlas generation,
asymptotic results, Dm-splines, geometric PCA

AMS subject classifications. 68U10, 49, 65D18, 41A15, 62H25.

1. Introduction. In recent years, joint image processing models have experienced increas-
ing attention, including combined segmentation/registration models [33, 37] (joint phase field
approximation and registration), [52] (model based on metric structure comparison), [29, 68]
(level set formulation that merges the piecewise constant Mumford-Shah model with regis-
tration principles), [36] (grounded in the expectation maximisation algorithm), [28] (based
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on a nonlocal characterisation of weighted-total variation and nonlocal shape descriptors), or
[2, 48, 59, 62, 70, 76]; joint image reconstruction and motion estimation [11, 16, 22, 58, 64,
69, 15, 53, 8]; joint reconstruction and registration for post-acquisition motion correction [25]
with the goal to reconstruct a single motion-free image and retrieve the physiological dynam-
ics through the deformation maps, joint optical flow estimation with phase field segmentation
of the flow field [14], or joint segmentation/optimal transport models [12] (to determine the
velocity of blood flow in vascular structures). This can be attributed to several factors:

(i) the will to limit error propagation. Indeed, addressing the considered tasks in a unified
joint framework (or multitasking) and thus exploiting the strong correlation between
them reduces the propagation of uncertainty, contrary to a sequential treatment that
may amplify errors from step to step;

(ii) Second, —and this is a corollary of the previous point —, performing simultaneously
these tasks yields positive mutual influence and benefit on the obtained results as
shown in Figure 1. To exemplify this observation, we can think first of joint models
for image reconstruction and registration: not only does the approach correct the mis-
alignment problem, but it also allows for alleviating ghosting artefacts.
In the case of joint segmentation/registration models —the case that will be addressed
more thoroughly afterwards —, as salient component pairing, shape/geometrical fea-
ture matching and intensity distribution comparison drive registration, processing
these tasks simultaneously in a single framework may in particular reduce the influence
of noise since the mapping can be done through the pairing of significant structures,
e.g., by transferring the edges, and not only through intensity correlation.
Besides, the registration operation can be viewed as the inclusion of priors to guide the
segmentation process, in particular, for the questions of topology-preservation (the un-
known deformation is substituted for the classical evolving curve of the segmentation
process —[40, 47][72, Chapter 9] for instance —and the related Jacobian determinant
is subject to positivity constraints) and geometric priors (since the registration allows
to overcome the issue raised by weak boundary definition due to noise sources in the
acquisition device, to degradation of the image contents during reconstruction, etc.,
by restoring them). In return, relevant segmented structures contribute to fostering
accurate registration, providing then a reliable estimation of the deformation between
the encoded structures, not only based on intensity matching (taking the form of a
local criterion), but also on geometrical/shape pairing (having a nonlocal character).

(iii) Lastly, the pooling of the various results produced by the joint model allows for accu-
rate post-processing treatments based on mutual analysis: for instance, the represen-
tation of the true underlying anatomy of an organ from a set of multiple acquisitions
corrupted by motion, when tackling simultaneously reconstruction and registration, or
the generation of an atlas in the context of joint segmentation and registration. Atlas
refers to a specific model for an ensemble of images and serves as a benchmark, i.e. a
meaningful statistical image, to account for the variability (e.g., different shapes and
sizes for organs in medical imaging) that might be observed in a population.

The proposed work adopts this joint model philosophy. It aims at addressing the issue of
designing a unified variational model for joint segmentation, registration and atlas generation
by exploiting the strong correlation between the two former tasks thus reducing error propaga-
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Figure 1. Illustration of the positive impact of joint approaches against sequential ones.

tion, in the medical imaging setting. The latter one requires the mapping of a group of images
to a mean representative, which is an additional unknown of the problem, the subsequent goal
being to extract a relevant hidden structure from this ensemble of images. As in medical
images the variability between individuals is significant, constructing a meaningful statistical
image of the global underlying anatomy of an organ from a set of images to measure this
variableness is of great interest. It allows for the derivation of image statistics, the retrieval
of the inherent dynamics of a single individual’s organ, the estimation of the probability that
a particular spatial location takes on a certain label, the detection and quantisation of ab-
normalities, that is, more generally, it allows to characterise and understand how geometrical
and structural changes influence health. A large body of papers feeds the field of atlas gener-
ation and shape statistics among which [39] (atlas generation problem phrased in the Large
Deformation Diffeomorphic Metric Mapping (LDDMM) framework [10]), [18] (the shapes to
be analysed are modeled as random histograms and in order to learn principal modes of vari-
ation from such data, the Wasserstein distance between probability measures is introduced),
[78] (dedicated to elastic shape analysis; a unified registration/parameterised object statistical
analysis framework is tackled, based on square-root transformations and able to process data
as diverse as curves, functions, surfaces and images), [4] (statistics performed on the space of
diffeomorphisms), [38] (the use of a kernel descriptor that characterises local shape properties
ensures geometrically meaningful correspondence between shapes with statistical studies of
the deformations), [62, 63] (the shapes are viewed as closed contours approximated by phase
fields, and shape averaging and covariance analysis are carried out in a nonlinear elasticity
setting), to name a few.

The difficulty in designing the model arises from the complexity of the formulation that
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is generally underconstrained, involves nonlinearity and non-convexity, and is dictated by the
given application. While segmentation attempts to reproduce the ability of human beings to
track down significant patterns and automatically gather them into significant constituents
(see [7, Chapter 4] or [72, Part II] for a relevant analysis of this problem), it remains a chal-
lenging and ill-posed task (as emphasised by Zhu et al. ([79])) since the definition of an object
encompasses various acceptations: it can be something material —a thing —or a periodic
pattern, this heterogeneity entailing the design of suitable methodologies for each specific
application. Similarly, for the registration assignment (see [54, 55, 66] for the registration
counterpart with Matlab software), the sought deformation is usually viewed as a minimal
argument (uniqueness defaults in general) of a specifically tailored cost function that has a
polymorphous character in nature. For images acquired on different devices and depicting
various physical phenomena, the quality of registration is not measured by intensity distribu-
tion alignment, but by the degree of shape/geometrical feature pairing. Also, several stances
can be adopted to describe the setting the objects to be matched fall within (physical mod-
els —[10], [13], [17], [21], [26], [31], [32], [35], [48], [59], [62] —, purely geometric ones —[5],
[27], [65], [77] —, models including a priori knowledge ([24]), depending on the assumption
regarding the properties of the deformation to be recovered) and to devise the measure of
alignment (that is, how the available data are exploited to drive the registration process), in-
creasing thus the complexity of the problem. To meet these criteria, we devise, in a variational
framework, a theoretically well-motivated and physically relevant combined model, capable of
handling large deformations, reliable in terms of pairing of the shapes encoded in the images,
and efficient in extracting a relevant underlying structure decomposed into shapes from the
considered set of images. Statistical shape analysis is then performed by means of a Princi-
pal Component Analysis (PCA) on the obtained deformations to retrieve the main modes of
variations inside the dataset, after finding a suitable representative of the deformation in a
linear space (i.e. in order that the recovered deformation lives in a vector space).

The results are obtained through the use of the hyperelasticity setting and the design of
an original geometric dissimilarity measure ensuring alignment of the (possibly nested) shapes
for the combined model —thus favouring the matching of shapes rather than the coupling of
grey levels with the underlying goal to potentially process images with different modalities—,
and the introduction of a tensor-based approximation problem for the statistical analysis.
Unlike [62], the shapes to be matched are not modeled by their closed contour but through
a piecewise-constant partition (Potts model [56, 61]), which constitutes the main difference
with [62]. Not only does the shape pairing rely on the object outer envelope matching, but
also on the internal structure alignment. This way of looking at shapes entails substantial
modifications in the design of the functional to be minimised and in the search for an appro-
priate representative of the deformation in a vector space.

More precisely, the novelty of the paper rests upon: (i) an original modeling involving the
stored energy function of an Ogden material complemented by two new hard constraints on
the Jacobian and its inverse (in addition to the theoretical utility of these constraints, it also
allows to control changes of length), the Potts model for segmentation, and an original discrep-
ancy measure ensuring edge mapping; (ii) the derivation of theoretical results encompassing
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non straightforward mathematical tools; (iii) the analysis and comparison of three different
methods to perform statistical analysis on the obtained deformation: the first one, based on
linearised elasticity principles largely inspired by [63], the second one using the Cauchy-stress
tensors motivated by [63], and the last one, more novel and on which the paper focuses, relying
on tensor-based smoothing Dm splines, influenced by [46]. Section 2 is devoted to the analysis
of the mathematical model including a theorem of existence of minimisers, while Section 3 is
dedicated to the theoretical analysis of a numerical method of resolution based on a splitting
approach and implying the Alternating Direction Method of Multipliers (ADMM) techniques
and proximal gradient descent algorithms. Section 4 deals with the resulting geometry-driven
statistical analysis, which requires finding a fitting representation of the obtained deformation
in a linear space before performing a PCA. As already mentioned, our motivation is to investi-
gate how the linear elasticity based approach and the Cauchy-stress based method compare to
the Dm splines approximation based procedure. The first two are non-straightforward adap-
tations of the techniques envisioned in [63], but the view we take to model the shapes —phase
field rather than closed contours —implies substantial changes in the physics of the problem,
while the emphasis is put on the last one for its novelty. Section 5 focuses on numerical sim-
ulations with a thorough comparison between sequential treatments and the proposed joint
model, demonstrating the ability of our model to handle large deformations and to produce
in the end, an atlas with sharp edges, high contrast and reflecting a realistic shape.
Let us emphasise that the focus of the paper is on the mathematical presentation of a non-
linear elasticity-based unified segmentation, registration, and atlas generation model. Hence,
the computational results are currently still restricted to two dimensions due in practice to
the applications that were presented to us by clinicians. However, as will be seen next, the
proposed algorithm can be easily adapted to the three-dimensional case.

2. Mathematical Modeling.

2.1. Depiction of the Model. Let Ω be a connected bounded open subset of R3 with
boundary sufficiently smooth (convenient way of saying that in a given definition, the smooth-
ness of the boundary is such that all arguments make sense and enabling us to use compact
Sobolev embeddings among others). Let us denote by Ti : Ω̄ → R the i-th template image
with i = 1, · · · ,M —available data in our problem —, M being the total number of initial im-
ages. For theoretical and numerical purposes, we assume that each Ti is compactly supported
on Ω to ensure that Ti ◦ ϕi is always defined and we assume that Ti is Lipschitz continu-
ous. It can thus be considered as an element of the Sobolev space W 1,∞(R3), and the chain
rule applies. The partitioning of each template Ti into regions with homogeneous intensities,
defining shapes, is encoded in the variable θi : Ω̄ → R —the variables {θi}Mi=1 belonging to
the set of unknowns of the problem and being read as simplified versions of the images Ti
that encompass the geometrical shapes —, and θR : Ω̄ → R is the unknown segmented atlas
generated by our model. As will be seen later, these variables allow making the connection
between segmentation and registration. Also, using these schematic versions of the images
tends to favour shape pairing rather than grey level mapping. Let ϕi : Ω̄→ R3 be the sought
deformation between θTi and the unknown mean segmentation θR. Of course, in practice,
ϕi should be with values in Ω̄ but from a mathematical point of view, if we work with such
spaces of functions, we lose the structure of vector space. Nonetheless, we can show that our
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model retrieves deformations with values in Ω̄ — based on Ball’s results [9]. A deformation
is a smooth mapping that is orientation-preserving and injective, except possibly on ∂Ω, if
self-contact is allowed. The deformation gradient is ∇ϕi : Ω̄ → M3(R), the set M3(R) being
the set of real square matrices of order 3. The associated displacement field is denoted by
ui such that ϕi = Id + ui, and ∇ϕi = I3 + ∇ui, with Id, the identity mapping, and I3, the
3×3 identity matrix. We also need the following notations: A : B = trATB, the matrix inner
product and ||A|| =

√
A : A, the related matrix norm (Frobenius norm).

Following the joint model philosophy in a variational framework, the sought deformations
ϕi, the segmentations θTi , for all i = 1, · · · ,M , as well as the segmented atlas θR are seen as
minimal arguments of a specifically designed cost function. It comprises a regularisation on
ϕi, for all i = 1, · · · ,M , prescribing the nature of the deformations, a penalisation on θTi , for
all i = 1, · · · ,M , and θR, favouring piecewise constant segmentations, a segmentation fidelity
term ensuring the closeness of the θTi to the initial available image Ti, and a data-driven term
measuring the alignment between the deformed segmentations {θTi ◦ ϕi}

M
i=1 and θR, intertwin-

ing then segmentation and registration.

In this work, we view all the template images and their respective partitioning as deformed
versions of a single image/segmentation. Inspired by the observation in [62]: ”the arithmetic
mean x of observations {xi}Mi=1 can be interpreted as the minimiser of the total elastic deforma-
tion energy in a system where the average x is connected to each xi by an elastic spring, under
the Hooke’s law”, a natural choice for the definition of the mean segmentation is given by the
particular deformed configuration that minimises the total nonlinear hyperelastic deformation
energy required to align each segmentation to this mean configuration. To allow large defor-
mations, the shapes to be matched are viewed as isotropic (exhibiting the same mechanical
properties in every direction), homogeneous (showing the same behaviour everywhere inside
the material), and hyperelastic (with a stress-strain relation derived from a strain energy den-
sity) materials, and more precisely as Ogden ones ([23]). Note that rubber, filled elastomers,
and biological tissues are often modeled within the hyperelastic framework, which motivates
our modeling. This perspective drives the design of the regularisation on the deformations ϕi
which is thus based on the stored energy function of an Ogden material, prescribing then a
physically-meaningful nature.

We recall that the general expression for the stored energy function of an Ogden material
(see [23, 45]) is given by

WO(F ) =

K1∑
i=1

ai‖F‖γi +

K2∑
j=1

bj‖CofF‖βj + Γ(detF ),

with ai > 0, bj > 0, γi ≥ 0, βj ≥ 0, for all i = 1, · · · ,K1 and all j = 1, · · · ,K2, and
Γ : ]0,+∞[→ R being a convex function satisfying lim

δ→0+
Γ(δ) = lim

δ→+∞
Γ(δ) = +∞. The first

term penalises changes in length, the second one controls the changes in area while the third
one restricts the changes in volume. The latter also ensures preservation of topology by
imposing positivity of the Jacobian determinant almost everywhere. In this work, we focus
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on the following particular energy:

WOp(F ) ={
a1‖F‖4 + a2‖CofF‖4 + a3(detF − 1)2 + a4

(detF )10 − 3(a1 + a2)− a4 if detF > 0,

+∞ otherwise,

fulfilling the previous assumptions. The third and fourth terms govern the distribution of
the Jacobian determinant: the latter prevents singularities and large contractions by penal-
ising small values of the determinant, while the former promotes values of the determinant
close to 1 avoiding thus expansions and contractions that are too large. The choice of the
remaining terms is motivated by the theoretical results in [9] to ensure that the deformations
are homeomorphisms. The constants are added to fulfill the energy property WOp(I3) = 0.
In order to avoid singularity as much as possible, to get deformations that are bi-Lipschitz
homeomorphisms, and to obtain Cauchy-stress tensors (whose formal definition will be given
in Section SM4) in the linear space L2(Ω,M3(R)), we complement this stored energy function
WOp by the term 1{‖.‖L∞(Ω,M3(R))≤α}(F ) + 1{‖.‖L∞(Ω,M3(R))≤β}(F

−1), with α ≥ 1, and β ≥ 1,
where 1A denotes the convex characteristic function of a convex set A. Therefore, the regu-
larisation can be written as

W (F ) =

∫
Ω
WOp(F ) dx+ 1{‖.‖{L∞(Ω,M3(R))≤α}(F ) + 1{‖.‖L∞(Ω,M3(R))≤β}(F

−1).

Remark 2.1. In terms of functional spaces, if ϕ ∈ W 1,∞(Ω,R3) (suitable space owing to
the L∞ hard constraints), Cof∇ϕ and det∇ϕ are automatically elements of L∞(Ω,M3(R))
and L∞(Ω) respectively, since L∞(Ω,R3) has a structure of commutative Banach algebra.
Penalising the L∞ norm of ∇ϕ thus entails control over the Jacobian determinant. This
additional term implicitly gives an upper and lower bound on the Jabobian determinant
ensuring thus topology preservation.

Remark 2.2. In an effort to ensure orientation preservation, a new framework based on
quasiconformal mappings has been introduced, as developed in [43, 44, 49, 20]. This approach
takes root in mathematical considerations (the deformation is ruled by mathematical criteria
—it satisfies the Beltrami equation —rather than physical ones) and relies on the fine prop-
erties of quasiconformal mappings. Quasiconformal mappings can be defined as follows ([50])
(we restrict ourselves to quasiconformal mappings that are homeomorphisms between plane do-
mains): ‘A sense-preserving homeomorphism f of the domain G is called quasiconformal if its
maximal dilation K(G) is finite. If K(G) ≤ K <∞, then f will be called K-quasiconformal.’
As from the one hand, K(G) ≥ 1 for non-conformal sense-preserving homeomorphisms, and
from the other hand, if w is conformal, K(G) = 1, K(G) can be viewed as a measure of
deviation from conformality. The following result gives a necessary and sufficient condition
ensuring that a given homeomorphism f : Ω → Ω′ in W 1,2

loc (Ω) is K-quasiconformal. This
characterization serves as the core of the models [43, 44, 49, 20] which aim to control the
Beltrami coefficient.
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Theorem 2.3. [6, Theorem 2.5.4] Suppose f : Ω → Ω′ is a homeomorphic W 1,2
loc -mapping.

Then f is K-quasiconformal if and only if

∂f

∂z̄
(z) = µ(z)

∂f

∂z
(z) for almost everywhere z ∈ Ω,

where µ, called the Beltrami coefficient of f is a bounded measurable function satisfying

‖µ‖∞ ≤
K − 1

K + 1
< 1

With
∂f

∂z
=

1

2
(
∂f

∂x
−i ∂f

∂y
) and

∂f

∂z̄
=

1

2
(
∂f

∂x
+i

∂f

∂y
), setting f(z) = f(x+iy) = u(x, y)+iv(x, y)

(so in the context of registration, the sought deformation is ϕ = (u, v)T ), the Jacobian is de-

fined by Jf (z) =

∣∣∣∣∂f∂z (z)

∣∣∣∣2− ∣∣∣∣∂f∂z̄ (z)

∣∣∣∣2 =
∂u

∂x
(x, y)

∂v

∂y
(x, y)− ∂u

∂y
(x, y)

∂v

∂x
(x, y) = det ∇ϕ(x, y).

Consequently, if f , W 1,2
loc -homeomorphism, is K-quasiconformal,

Jf (z) =

∣∣∣∣∂f∂z (z)

∣∣∣∣2 − ∣∣∣∣∂f∂z̄ (z)

∣∣∣∣2 ,
=

∣∣∣∣∂f∂z (z)

∣∣∣∣2 (1− |µ(z)|2
)
,

entailing that Jf (z) = det ∇ϕ(x, y) > 0 a.e., since ‖µ‖∞ < 1.
This observation allows to make a connection between our model and the quasiconformal
setting in the sense that ensuring boundedness of the Beltrami coefficient (‖µ‖∞ < 1) implies
positivity of the related deformation Jacobian determinant, which is the constraint we aim to
fulfill.

The aforementioned regulariser is then applied along with a discrepancy measure, which
allows intertwining the segmentation and registration tasks, and a segmentation part com-
prising a fidelity term and a sparsity measure on the paired edges based on the Potts model
([61]). The latter, also known as piecewise-constant Mumford-Shah model [56] with N ∈ N
phases/shapes (N is thus a prior), is written, for an observed image f , as

inf
u∈U

EPotts(u) =
N∑
l=1

α

2
TV (ul) +

∫
Ω

N∑
l=1

ul(cl − f)2 dx,

with U = {u = (ul)l=1,··· ,N ∈ (BV (Ω, {0, 1}))N ,
N∑
l=1

ul = 1, a.e. onΩ}, and

cl =

{ ∫
Ω ful dx∫
Ω ul dx

if
∫

Ω ul dx 6= 0,

0 otherwise,
, α > 0 being a weighting parameter balancing the fidelity

term and the regularisation. The notation TV denotes the classical Total Variation, measuring
the perimeter length of the set defined by {x ∈ Ω |ul(x) = 1} thanks to the coarea formula ([30,

34]). The segmentation/partitioning is then retrieved by ũ =
N∑
l=1

ulcl, ũ being a decomposition
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of the initial image f into N shapes defined by the characteristic functions ul with constant
intensity values cl, each one corresponding to an object of interest under the assumption that
it is defined by a homogeneous region with close intensity values.

Remark 2.4. Extensions to homogeneous regions in terms of texture with a piecewise-
smooth approximation instead of a piecewise-constant approximation (see [72]) or in terms of
histograms (see [60]) are possible, depending on the nature of the considered images, but this
is not the scope of this paper.

The characteristic functions ul give a good representation of the geometric features inside the
images, and can be seen as nonlocal shape descriptors that will help the registration process.
In that prospect, we introduce this novel geometric dissimilarity measure whose aim is to align
the salient structures based on the previous decomposition without taking into account the
intensity values —thus favouring shape pairing —:

Edist((θTi , ϕi)i=1,··· ,M , θR) =
1

2M

M∑
i=1

N∑
l=1

TV (θTi,l ◦ ϕi − θR,l),

with notations consistent with the definition of U , i.e. ∀i ∈ {1, · · · ,M}, θTi = (θTi,l)l=1,··· ,N ∈
(BV (Ω, {0, 1}))N and θR = (θR,l)l=1,··· ,N ∈ (BV (Ω, {0, 1}))N .

Remark 2.5. Consistently with Remark 2.4, we could also envision a model including both
the deformations ϕi pairing the structures (i.e. viewed as global deformations) and additional
components reflecting better the more local deformations. This results mathematically in a
composition of deformations as in [71] in which they design a topology-preserving registration
model based on diffusion principles and demons’ algorithm consisting of composing small
deformations to obtain the final global one. Again, this is not the scope of the proposed work.

It thus allows for the registration of images acquired through different mechanisms and
is more robust to small changes of intensities that can happen even for images of the same
modality, especially in medical images. It measures the perimeter length of the misaligned
region for each structure of interest and thus drives the registration process by mapping the
shapes.

In the end, the overall problem denoted by (P) is stated by

inf F1(θR, {θTi , ϕi}Mi=1) =
1

M

M∑
i=1

(
γT
2

N∑
l=1

TV (θTi,l) +

∫
Ω

N∑
l=1

θTi,l(cTi,l − Ti)
2 dx

+
γR
2

N∑
l=1

TV (θR,l) +

∫
Ω

N∑
l=1

θR,l(cR,l − Ti ◦ ϕi)2 dx+
λ

2

N∑
l=1

TV (θTi,l ◦ ϕi − θR,l) +W (∇ϕi)
)
,

(P)

with cTi,l =

{ ∫
Ω θTi,l(x)Ti(x) dx∫

Ω θTi,l(x) dx
if
∫

Ω θTi,l(x) dx 6= 0

0 otherwise
,
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cR,l =

 1
M

M∑
i=1

∫
Ω θR,l(x)Ti◦ϕi(x) dx∫

Ω θR,l(x) dx
if
∫

Ω θR,l(x) dx 6= 0

0 otherwise

, α ≥ 1 and β ≥ 1.

An illustration of the overall components of the model as well as the pipeline of the resulting
analysis is given in Figure 2.

Figure 2. Overview of our framework

2.2. Theoretical Results. In this subsection, we theoretically analyse problem (P) by
showing its well-definedness. In that purpose, we prove the existence of minimisers in the
following theorem.

Theorem 2.6 (Existence of minimisers.).
We introduce the functional space:
• Ŵ = {ψ ∈ Id +W 1,∞

0 (Ω,R3), 1
det∇ψ ∈ L

10(Ω), det∇ψ > 0 a.e. in Ω,

‖∇ψ‖L∞(Ω,M3(R)) ≤ α, ‖(∇ψ)−1‖L∞(Ω,M3(R)) ≤ β},
The infimum is searched for θR ∈ U , θTi ∈ U , and ϕi ∈ Ŵ for all i ∈ {1, · · · ,M}. There
exists at least one minimiser to this problem.

Remark 2.7. We would like to highlight that the design of the considered functional spaces
are dictated by mathematical and practical reasons, and that we cannot fundamentally relax
the constraints in their formulation.

(i) As ∀i ∈ {1, · · · ,M}, θTi is an unknown of the problem, when addressing sub-problem 1
in the algorithm —optimisation over θTi —, we need to rephrase explicitly the objective
function in terms of ϕ−1

i in order to make the computations feasible. It implies that
from a mathematical viewpoint, the functional space the ϕi’s belong to should ensure
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that the ϕ−1
i ’s exist and that the deformations are with values in Ω̄, which is guaranteed

here with the devised stored energy function WOp(F ) and thanks to Ball’s results. In
particular, ϕi is a bi-Lipschitz homeomorphism such that det∇ϕi > 0 a.e.

(ii) According to [1, Theorem 2.6.], if F : U → V is a bi-Lipschitz homeomorphism between
open subsets of RN such that, either detDf ≥ 0 HN -a.e. on U or detDf ≤ 0 HN -a.e.
on U , ∀f ∈ BV (U), the function f ◦ F−1 belongs to BV (V ). Our framework fulfills
these criteria, so θTi,l ◦ ϕi ∈ BV (Ω) and the vector space structure of BV gives us
immediately that for all i ∈ {1, · · · ,M}, θTi,l ◦ ϕi − θR,l ∈ BV (Ω).

Proof. The proof is based on the theory of the calculus of variations, and relies on Ball’s
results [9] and arguments inspired by [75]. See section SM1 for the detailed proof.

We now investigate an original numerical method for the resolution of (P).

3. Numerical Method of Resolution.

3.1. Description and Analysis of the Numerical Method. Inspired by a prior work by
Negrón Marrero [57] in which the author describes and analyses a numerical method detecting
singular minimisers and avoiding the Lavrentiev phenomenon for 3D problems in nonlinear
elasticity, we introduce auxiliary variables and split the original problem into sub-problems
that are computationally more tractable. The idea of Marrero’s work is to decouple the
deformation ϕ from its gradient ∇ϕ and to formulate a related decoupled problem under
equality constraints, moving thus the nonlinearity in the Jacobian to this new variable. With
this in mind, we introduce the following auxiliary variables: Vi simulating the Jacobian of ϕi
for each i, Wi simulating the inverse Jacobian (∇ϕi)−1 for all i, and ∀i ∈ {1, · · · ,M}, ∀l ∈
{1, · · · , N}, θT̃i,l = θTi,l◦ϕi−θR,l, to simplify numerical computations, and derive a functional
minimisation problem phrased in terms of (θTi , ϕi, Vi, Wi, θT̃i)i=1,··· ,M , θR. However, we do
not impose equality constraints as in [57], but integrate instead, Lp-type penalisations (p = 1
or p = 2; the choice for the L1-penalisation will be discussed later) into the functional, partially
relaxing a constrained problem under both equality and inequality constraints by a problem
under inequality constraints only. The decoupled problem is thus defined as follows:

inf

{
F1,γ({ϕi, θTi , Vi,Wi}Mi=1, (θT̃i,l) i=1,··· ,M

l=1,··· ,N
, θR) =

1

M

M∑
i=1

(γT
2

N∑
l=1

TV (θTi,l)

+

∫
Ω

N∑
l=1

θTi,l(cTi,l − Ti)
2 dx+

γR
2

N∑
l=1

TV (θR,l) +

∫
Ω

N∑
l=1

θR,l(cR,l − Ti ◦ ϕi)2 dx

+
λ

2

N∑
l=1

TV (θT̃i,l) + γ

∫
Ω

N∑
l=1

|θT̃i,l − (θTi,l ◦ ϕi − θR,l)| dx+

∫
Ω
WOp(Vi) dx

+
γ

4
‖Vi −∇ϕi‖4L4(Ω,M3(R)) + 1{‖.‖L∞(Ω,M3(R))≤α}(Vi) + 1{‖.‖L∞(Ω,M3(R))≤β}(Wi)

+
γ

2
‖Wi − V −1

i ‖
2
L2(Ω,M3(R))

)}
,(DP)
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with ∀l ∈ {1, · · · , N}, cTi,l =

{ ∫
Ω θTi,l(x)Ti(x) dx∫

Ω θTi,l(x) dx
if
∫

Ω θTi,l(x) dx 6= 0

0 otherwise
,

cR,l =

 1
M

M∑
i=1

∫
Ω θR,l(x)Ti◦ϕi(x) dx∫

Ω θR,l(x) dx
if
∫

Ω θR,l(x) dx 6= 0

0 otherwise

, α ≥ 1 and β ≥ 1. We address this

problem for ϕi ∈ Id + W 1,4
0 (Ω,R3), Vi ∈ {ξ ∈ L∞(Ω,M3(R)) |detξ > 0 a.e. on Ω, 1

detξ ∈
L10(Ω), ‖ξ‖L∞(Ω,M3(R)) ≤ α}, Wi ∈ {ξ ∈ L2(Ω,M3(R)) | ‖ξ‖L∞(Ω,M3(R)) ≤ β}, θTi ∈ U such
that θTi,l ◦ ϕi ∈ L1(Ω) for all l ∈ {1, · · · , N} and for all i ∈ {1, · · · ,M}, θT̃i,l ∈ BV (Ω, {−1, 0,
1}) for all l ∈ {1, · · · , N} and for all i ∈ {1, · · · ,M}, and θR ∈ U .

3.2. Theoretical Results. In this subsection, we theoretically analyse problem (DP) and
show an asymptotic result relating the decoupled problem (DP) to the initial problem (P).

Theorem 3.1 (Asymptotic result). Let (γj)j≥0 be an increasing sequence of positive real

numbers such that lim
j→+∞

γj = +∞. Let ({ϕi,kj , θTi,kj , Vi,kj ,Wi,kj}Mi=1,
(
θT̃i,l,kj

)
i=1,··· ,M
l=1,··· ,N

, θR,kj )

be a minimising sequence of the problem F1,γ for γ = γj. Then there exists a subsequence such

that ϕi,kj
W 1,4(Ω,R3)

⇀
j→+∞

ϕ̄i, θTi,kj
(L1(Ω))N−→
j→+∞

θ̄Ti, θR,kj
(L1(Ω))N−→
j→+∞

θ̄R, Vi,kj
∗
⇀

j→+∞
∇ϕ̄i in L∞(Ω,M3(R)),

Wi,kj
∗
⇀

j→+∞
(∇ϕ̄i)−1 in L∞(Ω,M3(R)), θT̃i,l,kj

L1(Ω)−→
j→+∞

θ̄Ti,l ◦ ϕ̄i − θ̄R,l, for all l = 1, · · · , N ,

for all i = 1, · · · ,M , and lim
j→+∞

F1,γj ({ϕi,kj , θTi,kj , Vi,kj ,Wi,kj}Mi=1,
(
θT̃i,l,kj

)
i=1,··· ,M
l=1,··· ,N

, θR,kj ) =

F1(θ̄R, {θ̄Ti , ϕ̄i}Mi=1) = inf F1, so that (θ̄R, {θ̄Ti , ϕ̄i}Mi=1) ∈ UM+1 × ŴM is a minimiser of the
initial problem (P).

Proof. This proof is divided into three parts. The first one consists of deriving a coercivity
inequality. The second one shows the convergence of a minimising sequence and the last one
is dedicated to the lower semi-continuity of the functional. See section section SM2 for a
detailed proof.

Equipped with this material and argument, we propose the following discretised numerical
scheme.

3.3. Numerical Scheme. In this subsection, we restrict ourselves to the two-dimensional
case and make some minor changes to the model for the purpose of simplicity but the exten-
sion to the three-dimensional case shouldn’t induce additional challenges.

We now consider the following discrete two-dimensional decoupled problem —note that
from now on, θTi denotes the partition of Ti into piecewise constant regions, i.e. θTi =
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N∑
l=1

cTi,l θTi,l, the number of shapes, N being an unknown (see Remark 3.3) similarly for θR—:

inf

{
F2,γ({ϕi, θTi , Vi, θT̃i ,Wi}Mi=1, θR) =

1

M

M∑
i=1

γT ‖∇θTi‖L0(Ω) + γT̃ ‖∇θT̃i‖L0(Ω)

+ λT ‖θTi − Ti‖2L2(Ω) + γR‖∇θR‖L0(Ω) + λR‖θR − Ti ◦ ϕi‖2L2(Ω)

+
γ2

2
‖Vi −∇ϕi‖2L2(Ω,M2(R)) +

γ1

2
‖θT̃i − (θTi ◦ ϕi − θR)‖2L2(Ω) +

∫
Ω
W ′Op(Vi, detVi) dx

+ 1{‖.‖L∞(Ω,M2(R))≤α}(Vi) + 1{‖.‖L∞(Ω,M2(R))≤β}(Wi) +
γ3

2
‖Wi − V −1

i ‖
2
L2(Ω,M2(R))

}
,(DPb)

with W ′Op(ψ, δ) =

{
a1‖ψ‖4 + a2(δ − 1)2 + a3

δ10 − 2a1 − a3 if δ > 0
+∞ otherwise

.

Remark 3.2. In the two-dimensional case, the cofactor matrix vanishes and we only need
an L2-penalisation to get the asymptotic result as in [28]. Also BV (Ω) ↪→ L2(Ω) in 2 dimen-
sions, so we can replace the L1-penalisation for the auxiliary variable θT̃i by an L2-penalisation
term.

Remark 3.3. We have also opted for the discrete Potts model for the segmentation as in
[67] since it does not require any prior knowledge on the number of shapes in the image. If
the number of shapes is known a priori, another approach based on convexification as in [19]
can be applied.

We address this optimisation problem by an alternating scheme in which we fix all the variables
except one and solve the subproblem related to the remaining unknown iteratively.

• Sub-problem 1. Optimisation over θTi . For each i = 1, · · · ,M , the problem in
θTi amounts to solve

inf
θTi

γT ‖∇θTi‖L0(Ω) + λT ‖θTi − Ti‖2L2(Ω) +
γ1

2
‖θT̃i − θTi ◦ ϕi + θR‖2L2(Ω),

⇔inf
θTi

γT ‖∇θTi‖L0(Ω) + λT ‖θTi − Ti‖2L2(Ω)

+
γ1

2
‖(θT̃i ◦ ϕ

−1
i − θTi + θR ◦ ϕ−1

i )(det∇ϕi)−
1
2 ‖2L2(Ω),

⇔inf
θTi

γT ‖∇θTi‖L0(Ω)

+ ‖
√
λT + (det∇ϕi)−1

γ1

2
θTi −

λTTi + γ1

2 (det∇ϕi)−1(θT̃i ◦ ϕ
−1
i + θR ◦ ϕ−1

i )√
λT + (det∇ϕi)−1 γ1

2

‖2L2(Ω).

This amounts to solve the Potts model with nonnegative weights and we use the
algorithm in [67] based on the Alternating Direction Method of Multipliers (ADMM)
and linear programming.
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• Sub-problem 2. Optimisation over θT̃i . For each i = 1, · · · ,M , the sub-problem
in θT̃i is the following one:

inf
θT̃i

γT̃ ‖∇θT̃i‖L0(Ω) +
γ1

2
‖θT̃i − (θTi ◦ ϕi − θR)‖2L2(Ω).

This is again the Potts model and we use the same algorithm [67] to solve it in practice.
• Sub-problem 3. Optimisation over θR. By fixing all the other variables, the

optimisation problem with respect to θR becomes

inf
θR
γR‖∇θR‖L0(Ω) +

1

M

M∑
i=1

λR‖θR − Ti ◦ ϕi‖L2(Ω) +
γ1

2
‖θR − (θTi ◦ ϕi − θT̃i)‖

2
L2(Ω),

⇔ inf
θR
γR‖∇θR‖L0(Ω) + ‖(λR +

γ1

2
)(θR −

( 1
M

M∑
i=1
λRTi ◦ ϕi + γ1

2 (θTi ◦ ϕi)− θT̃i)

λR + γ1

2

)‖2L2(Ω).

This is again a Potts model that we solve with the algorithm [67].
• Sub-problem 4. Optimisation over Vi. For each i = 1, · · · ,M , the sub-problem

in Vi reads

inf
Vi
F (Vi) +Reg(Vi) =

∫
Ω
a1‖Vi‖4 + a2(detVi − 1)2 +

a3

(detVi)10
dx

+
γ2

2
‖Vi −∇ϕi‖2L2(Ω,M2(R)) +

γ3

2
‖Wi − V −1

i ‖
2
L2(Ω) + 1{‖.‖L∞(Ω,M2(R))≤α}(Vi).

This can be cast as a structured convex non-smooth optimisation problem of the sum of
a proper closed convex function Reg(.) = 1{‖.‖L∞(Ω,M2(R))≤α}(.) and a smooth function
F corresponding to the remaining of the functional. This is a classical optimisation
problem and several schemes have been developed to solve it. In practice, we use the
simple iterative forward-backward splitting algorithm [41]:

V k+1
i = proxγReg(V

k
i − γ∇F (V k

i )),

with proxγReg(y) = min
x

1
2‖x−y‖

2
2+γReg(y) = min

x

1
2‖x−y‖

2
2+γ1{‖.‖L∞(Ω,M2(R))≤α}(y) =

P{‖.‖L∞(Ω,M2(R))≤α}(y), PC being the projection operator onto the convex set C. This

could be improved in future work by using for instance the algorithm proposed in [51].
• Sub-problem 5. Optimisation over Wi. For each i = 1, · · · ,M , we solve the

following minimisation problem

inf
Wi

γ3

2
‖Wi − V −1

i ‖
2
L2(Ω) + 1{‖.‖L∞(Ω,M2(R))≤β}(Wi) = P{‖.‖L∞(Ω,M2(R))≤α}(V

−1
i ).

• Sub-problem 6. Optimisation over ϕi. For each i = 1, · · · ,M , the sub-problem
in ϕi reads

inf
ϕi

γR‖θR − Ti ◦ ϕi‖2L2(Ω) +
γ1

2
‖θT̃i − θTi ◦ ϕi + θR‖2L2(Ω) +

γ2

2
‖Vi −∇ϕi‖2L2(Ω).

We propose to solve the associated Euler-Lagrange equation using an L2-gradient flow
scheme with an implicit Euler time stepping.
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The overall algorithm is summarised in section SM3.

Remark 3.4. Under mild assumptions —by replacing the L0-penalization by an L1 one
—, we can prove the convergence of the algorithm as well as an asymptotic result.

We now turn to the geometry-driven statistical analysis.

4. Representation of the Deformations in a Linear Space and Geometry-driven PCA.
In this section, we focus on the performance of a statistical analysis on the obtained defor-
mations in order to retrieve the main modes of variations in terms of geometric distortions in
the initial set of images. The main hindrance is that our deformation maps live in a nonlinear
space whereas classical statistical tools require the objects to be in a linear space. Therefore,
we first need to find a good representation of our deformations in a linear space equipped
with a scalar product (in order to compute the covariance operator), enabling us to perform
a Principal Component Analysis (PCA) on these representatives afterwards. The fundamen-
tal axiom of elasticity stating that the energy required to deform an object from a state of
reference to another equilibrium state is the same whatever the chosen path is, prevents a
straightforward definition of geodesics. Therefore, the use of Riemannian geometry principles
as in [42] cannot be envisioned.

In the following, we propose, study and compare three different strategies to get a relevant
depiction of our deformations in a linear space. The first two ones are physically/mechanically-
oriented and can be viewed as non-straightforward adaptations of [63]. While in [63] the shapes
are modelled through their boundaries and subject to boundary stresses, our framework in-
volves the whole image as the object to be deformed. Note that with the prescribed boundary
conditions ∀i ∈ {1, · · · ,M}, ϕi = Id on ∂Ω, no boundary stress is applied, and subsequently,
inner volumetric stresses are considered. This constitutes a major difference with the work of
[63] and as demonstrated in section SM4, it entails substantial adaptations in the mathemat-
ical developments. The first two methods rely on fundamental notions of elastic behaviour
and the following observation made in [63] : ”the classical covariance tensor can be identified
with the covariance tensor of the displacements obtained by adding a small fraction of the i-th
spring force under the Hooke’s law”. Whilst the first method is based on the linearisation of
the stored energy function around the identity, which might result in the loss of the initial
nonlinear nature of the deformations but has the advantage of being fast, the second approach
is more intricate. It retrieves the whole nature of the deformations by performing the PCA on
the Cauchy stress tensors, relying on the locally underlying one-to-one relation between this
tensor and the deformation, but requires the resolution of a highly nonlinear and non convex
problem similar to the one studied previously to come back to the deformation space.
Our goal was to design an alternative method that would be a good compromise between
rendering the nonlinear nature of the deformation and in terms of numerical complexity. The
first objective is achieved by handling both the deformation field and the deformation tensors
that encode the local deformation state resulting from stresses. This constitutes another nov-
elty of the proposed work. We have moved toward a completely different point of view since
the problem is no longer explored as a physical one but is now identified as an approximation
one in the Dm-spline setting ([3]). The first two methods thus serve as benchmark to assess
the interest of this new vision.
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Due to page number limitation and as the third method proves to be a proper trade-off between
ability to reproduce the nonlinear nature of the deformations and intermediate computation
time, the mathematical details of the first two methods are postponed in the document Sup-
plementary Materials section SM4 and we only focus on the third one.

4.1. Third Approach: Approximation Modelling. This section is devoted to the analysis
of a novel method in which the linear representation problem is seen as an approximation
one in the Dm-spline setting. Since the deformation tensor suitably characterises the local
deformation (amplitude, direction, etc.), we aim at finding an appropriate approximation of
our deformations in a linear space H3(Ω,R2) that also approximates well the deformation
tensors. For the sake of clarity, we omit the indices i in the following. Henceforth, u denotes
the displacement field related to ϕ−1, inverse deformation field obtained at the outcome of the
first algorithmic stage. We consider the following problem in the two-dimensional case —case
of interest in the numerical part, but straightforwardly extendable to 3D —:

min
v∈H3(Ω,R2)

ε|v|23,Ω,R2 +
γ

2
〈ρ(∇v +∇vT −∇u−∇uT −∇uT∇u)〉2M2(R),N

+ 〈ζ(v − u)〉2R2,N ,(4.1)

where |.|3,Ω,R2 is the semi-norm on H3(Ω,R2), ζ :

∣∣∣∣∣ H3(Ω,R2) →
(
R2
)N

v 7→ ζ(v) = (v(a1), · · · , v(aN ))
T ,

ρ :

∣∣∣∣∣ H2(Ω,M2(R)) → (M2(R))
N

v 7→ ρ(v) = (v(a1), · · · , v(aN ))
T . Also, a1, · · · , aN denote the image pixel

coordinates with N the total number of pixels, and ∀ξ ∈ (M2(R))N , ∀η ∈ (M2(R))N ,

〈ξ, η〉M2(R),N =
N∑
i=1

ξi : ηi, while ∀ξ ∈ (R2)N , ∀η ∈ (R2)N , 〈ξ, η〉R2,N =
N∑
i=1

ξTi ηi. How-

ever, stated as it is, the problem is not well defined since u ∈ W 1,∞
0 (Ω,R2) and does not

belong to C1(Ω,R2) preventing us from extracting isolated values of ∇u. Therefore, for the
theoretical analysis of the model, we introduce (fk) ∈ C∞0 (Ω,R2)∩W 1,∞(Ω,R2), the sequence
from the density result such that,

fk −→
k→+∞

u in W 1,∞(Ω,R2).

In practice however, we solve (4.1) and we give details on the implementation in section SM12.

Remark 4.1. An alternative approach would consist in using Lebesgue-Besicovitch differ-
entiation theorem that states that for almost every point, the value of an integrable function
is the limit of infinitesimal averages taken about the point.

Let A0 = {ai}i=1,··· ,N0 and A1 = {bi}i=1,··· ,N1 be two sets of N0 and N1 points of Ω̄ respectively,
containing both a P 1-unisolvent subset. Let us denote by ρ0 the operator defined by

ρ0 :

∣∣∣∣ H3(Ω,R2)→ (R2)N0

v 7→ ρ0(v) = (v(ai))
T
i=1,··· ,N0

,
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and by ρ1 the operator defined by

ρ1 :

∣∣∣∣ H2(Ω,M2(R))→ (M2(R))N1

v 7→ ρ1(v) = (v(bi))
T
i=1,··· ,N1

.

We introduce the functionals

Fε,k :


H3(Ω,R2)→ R
v 7→ 〈ρ0(v − fk)〉2R2,N0

+ γ
2 〈ρ1(∇v +∇vT −∇fk −∇fTk −∇fTk ∇fk〉2M2(R),N1

+ε|v|23,Ω,R2

,

and consider the problem{
Search for uε ∈ H3(Ω,R2) such that:
∀v ∈ H3(Ω,R2), Fε,k(uε) ≤ Fε,k(v)

.(4.2)

We omit the explicit dependency of uε on k. In the sequel, we theoretically study the model
(4.2), and start by proving its equivalence with a variational formulation.

Theorem 4.2 (Equivalence of problems). The problem (4.2) is equivalent to the following
variational problem:

Search for uε ∈ H3(Ω,R2) such that ∀v ∈ H3(Ω,R2),
〈ρ0(uε), ρ0(v)〉R2,N0

+ γ
2 〈ρ1(∇uε +∇uTε ), ρ1(∇v +∇vT )〉M2(R),N1

+ ε(uε, v)3,Ω,R2

= 〈ρ0(v), ρ0(fk)〉R2,N0
+ γ

2 〈ρ1(∇v +∇vT ), ρ1(∇fk +∇fTk +∇fTk ∇fk)〉M2(R),N1
.

(4.3)

Proof. The detailed proof is available in section SM6.

We now define a new norm equivalent to the classical norm on H3(Ω,R2), which will be useful
in the following. We make the dependency on the set A0 explicit, while the set A1 is supposed
to be fixed once and for all.

Lemma 4.3 (Equivalence of norms). The mapping defined by

‖.‖A0,3,Ω,R2 :

{
H3(Ω,R2)→ R
f 7→ ‖f‖A0,3,Ω,R2 = (〈ρ0(f)〉2R2,N0

+ 〈ρ1(∇f +∇fT )〉2M2(R),N1
+ |f |23,Ω,R2)

1
2
,

is a Hilbert norm equivalent to the norm ‖.‖3,Ω,R2 in H3(Ω,R2).

Proof. The detailed proof is given in section SM7.

We are now able to prove the existence and uniqueness of the minimizer.

Theorem 4.4 (Existence and uniqueness of a minimizer). The variational problem (4.3) ad-
mits a unique solution.

Proof. The detailed proof is given in section SM8.

We now focus on a convergence result. Let D be a subset of ]0,+∞[ for which 0 is an
accumulation point. For any d ∈ D, let Ad be a set of N = N(d) distinct points from Ω̄ that
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contains a P 1-unisolvent subset. We assume that sup
x∈Ω

δ(x,Ad) = d, where δ is the Euclidean

distance in R2. Thus d is the radius of the biggest sphere included in Ω that contains no point
from Ad. Also d is bounded and lim

d→0
sup
x∈Ω

δ(x,Ad) = 0. For any d ∈ D, let us denote by ρd the

mapping defined by

ρd :

{
H3(Ω,R2)→ (R2)N

v 7→ ρd(v) = ((v(a))a∈Ad)T
,

and by ‖.‖Ad,3,Ω,R2 , the norm defined by

‖f‖Ad,3,Ω,R2 = [〈ρd(f)〉2N + 〈ρ1(∇f +∇fT )〉2M2(R),N1
+ |f |3,Ω,R2 ]

1
2 .

As shown in the previous lemma, ‖.‖Ad,3,Ω,R2 is equivalent to the norm ‖.‖3,Ω,R2 in H3(Ω,R2)
—but not uniformly in d—.

Lemma 4.5. Let B1 = {b01, · · · , b0,N } be a fixed P 1-unisolvent subset of Ω̄. By hypothesis,
0 ∈ D̄, and lim

d→0
sup
x∈Ω

δ(x,Ad) = 0 holds, so

∀j = 1, · · · ,N , ∃(ad0,j)d∈D, (∀d ∈ D, ad0,j ∈ Ad) and b0j = lim
d→0

ad0j .

For any d ∈ D, let Ad0 be the set {ad01, · · · , ad0,N } and let ‖.‖Ad
0,3,Ω,R2 be the norm defined by

∀f ∈ H3(Ω,R2),

‖f‖Ad
0,3,Ω,R2 = [

N∑
j=1

〈f(ad0j)〉2R2 +

N1∑
i=1

‖∇f(bi) +∇f(bi)
T ‖2 + |f |23,Ω,R2 ]

1
2 .

Then there exists η > 0 such that for any d ≤ η, ‖.‖Ad
0,3,Ω,R2 is a norm on H3(Ω,R2) uniformly

equivalent on D∩]0, η] to the norm ‖.‖3,Ω,R2.

Proof. The detailed proof is available section SM9.

Equipped with this result, we are able to prove a convergence result on the following problem:
Search for udε ∈ H3(Ω,R2) such that ∀v ∈ H3(Ω,R2),
〈ρd(udε − fk)〉2R2,N + γ

2 〈ρ1(∇udε + (∇udε )T −∇fk −∇fTk −∇fTk ∇fk)〉2M2(R),N1

+ε|udε |23,Ω,R2 ≤ 〈ρd(v − fk)〉2R2,N + γ
2 〈ρ1(∇v + (∇v)T −∇fk −∇fTk

−∇fTk ∇fk)〉2M2(R),N1
+ ε|v|23,Ω,R2 ,

.(4.4)

Theorem 4.6 (Convergence). For any d ∈ D, we denote by udε the unique solution to problem
(4.4) for ε fixed. Then under the above assumptions, there exists a subsequence (udlε ) with
lim
l→+∞

dl = 0 such that

udlε ⇀
l→+∞

fk

in H3(Ω,R2), and lim
k→+∞

lim
l→+∞

‖udlε − u‖1,∞ = 0.
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Proof. The detailed proof is available in section SM10.

An alternative convergence study is given in the Supplementary material section SM11.
A description of the numerical resolution is provided in section SM12.

Remark 4.7. A classical PCA is then performed on the obtained displacement fields using
the L2 scalar product for the covariance operator, i.e. (Ci,j) i=1,··· ,M

j=1,··· ,M
=
∫

Ω v1,jv1,i + v2,jv2,i dx,

where (v1,i v2,i)
T for i = 1, · · · ,M are the displacement fields obtained in a linear space for

each image, and the resulting displacement fields are denoted by (v1,pca,j , v2,pca,j)
T , where j

stands for the mode indexation.

5. Numerical Simulations.

5.1. General framework. This section is devoted to the analysis of numerical experiments.
First, on a set of 19 binary images ‘device8-1’ from the MPEG7 shape database (http://www.
dabi.temple.edu/∼shape/MPEG7/dataset.html) and then on medical images: cardiac MRI
made of 8 frames per slice of size 150x150, the first image of the sequence reflecting the case
where the heart is most dilated (end diastole - ED), while the last one illustrating the case
where the heart is most contracted (end systole - ES), and liver dynamic MRI made of 14
frames per slice of size 195x166.
The computations have been made on an Intel Core i7 computer with 2.60 GHz and 8 GB
memory, using MUMPS packages, in a C implementation.
The question of assessing the proposed model encompasses several angles of inquiry:

(i) the qualitative evaluation of the obtained atlas in comparison to a sequential treatment
of the segmentation and registration tasks (note that the model requires the segmenta-
tion step be processed first since it involves the penalisation ‖θT̃i−θTi ◦ϕi+θR‖2L2(Ω)).
We do not question here the relevancy of the regularisation on the ϕi’s since in practice,
the ϕi’s need to be invertible (as in the expression θTi ◦ ϕi, θTi is also an unknown),
which is guaranteed with the proposed regulariser. As the average shape is an un-
known of the problem and ground truth is not provided, the evaluation of the method
itself primarily relies on visual inspection and empirical arguments consistent with the
biological phenomena involved;

(ii) the evaluation of the PCA in capturing strongly nonlinear geometric variations.
These two main levels of discussion dictate the structure of the section. Each subsection
focuses on a specific dataset and provides both the atlas generated by our joint model, together
with the first principal modes of variation. The gain of the combined approach in terms
of sharp edges and in removing ghosting artefacts (blurring / splitting into two effects) is
emphasised compared to a sequential treatment, as well as the accuracy of our proposed
model in reflecting the high nonlinear geometric variations in comparison to the two more
physically/mechanically oriented methods. This stage is delicate since as stated below, it
requires comparing the three methodologies in the most efficient and impartial manner, and
subsequently, setting the involved tuning parameters (e.g., the weight balancing the loading
forces for the Cauchy stress tensor based PCA) adequately. That said, results demonstrate
nevertheless and as expected, that linearised elasticity produces very small displacements,
which tends to favor comparisons with the Cauchy stress tensor based PCA.

http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
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For the sake of reproducibility, we provide in Table 1 the values of the tuning parameters. The
coefficients a1, a2 and a3 involved in the Ogden stored energy function affect respectively the
averaged local change of length, and the averaged local change of area, impacting subsequently
on the rigidity of the deformation. The higher the ai’s are, the more rigid the deformation is.
The ranges of these parameters are rather stable for the medical experiments. Parameters γT
and γR weighting the L0 norm control thus the balance between the L0-component and the
L2-penalisation together with λR and λT . High values of γT /γR favor few large partitions,
while small values yield an approximation exhibiting more jumps. λR, γT̃ , and γ1 weight the
fidelity term in the registration task, and thus the higher they are, the closer the deformed
templates and deformed segmentations are to the mean segmentation. The visualisation of
the main modes of variation is done as follows. We denote by (v1,pca1,i v2,pca1,i)

T the ith

resulting displacement field (related to the ith mode of variation) from the first method based
on the linearisation of the stored energy function around the identity, providing in practice
and as expected extremely small displacements. σpca2,i represents the ith resulting Cauchy

tensor from the second method and (v1,pca2,i,δ v2,pca2,i,δ)
T the associated displacement field

obtained with weighting parameter δ balancing the inner forces chosen equal to 1, 2, 0.3 for
the T-shape, the liver and the heart respectively, that prove to be suitable parameters for
an unbiased analysis. At last, (v1,pca3,i v2,pca3,i)

T stands for the ith resulting displacement
field from the third method based on approximation theory. We propose visualising the ith

mode of variation by showing θR ◦ (Id + 5c.106

(
v1,pca1,i

v2,pca1,i

)
), θR ◦ (Id + 5c

(
v1,pca2,i,δ

v2,pca2,i,δ

)
), and

θR ◦ (Id + 50c

(
v1,pca3,i

v2,pca3,i

)
), for each method respectively, with c varying from −5 to 5. The

parameters are chosen in order to make the comparison as fair as possible. The computation
times for each method and each example are provided in Table 2.

a1 a2 a3 γ1 γ2 γ3 α β γR γT λT λR dt nbIter

T-shape 1 5.103 0.01 1 8.104 1 10 100 3 0.5 1 1 0.001 100

Heart ED(108)-ES(101) 5 1.103 4 1 8.104 1 100 100 0.02 0.03 1.5 1.5 0.01 500

Liver - slice 12 5 1.103 4 1.5 8.104 1 10 100 0.05 0.05 1.5 1.5 0.01 100

Table 1
Parameters.

Execution time Atlas generation PCA 1st method PCA 2nd method PCA 3rd method

T-shape 7 min 2 sec 4 min 44 sec

Heart ED(108)-ES(101) 49 min 3 sec 10 min 3 min 27 sec

Liver slice 12 26 min 6 sec 7 min 28 sec 13 min

Table 2
Execution times
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Figure 3. Input images.

5.2. T-shape example: 19 images. The proposed method is first evaluated on a synthetic
example (Figure 3) to emphasise the ability of the model to generate large deformations and to
produce a physically sound average shape. As depicted in Figure 4, contrary to a sequential
treatment of the tasks, the joint model creates a mean object with sharp edges perfectly
matched by the deformed templates, see particularly the bottom of the T shape. The joint
approach also tends to better preserve the original contrast of the images than the sequential
approach. The principal component analysis (Figure 5) shows that the first two modes of
variation have an effect on the undulation of both the vertical and horizontal bars (the first
mode tends to represent the undulation in the direction bottom-left corner-top-right corner
whereas the second one tends to capture the undulation in the direction top-left corner-bottom-
right corner), while the third mode affects the thickness of the vertical bar particularly at the
junction. The fourth mode, for its part, acts more locally on the curvature of the envelope
of the shape, especially on the lower part of the horizontal bar that exhibits cavities. A first
observation is that the proposed model allows uncorrelating the main tendencies, which is
what is expected from such an analysis. It seems (Figure 6) that this decoupling property is
not as well exemplified when applying the linearisation around identity which is not able to
recover the nonlinear variations coming from the undulation or the Cauchy stress tensor based
PCA mixing the first, the third and the fourth modes of variation from our third approach
based on approximation modelling.

5.3. Liver example: Slice 12 [74]. The second example is dedicated to right lobe liver
dynamic MRI http://www.vision.ee.ethz.ch/∼organmot/chapter download.shtml, the shape
of this organ being influenced by the surrounding structures such as the diaphragm ([73]).
It exemplifies the ability of the method to alleviate ghosting artefacts, in particular splitting
into two effects, through parameter γR that influences the number of phases (Figure 7). The
obtained atlas exhibits sharp edges with fewer artefacts (Figure 8) than with a sequential
approach. The statistical analysis is then performed (Figure 9). The first mode of varia-
tion encodes the motion in superior/inferior direction of the liver, which is consistent with

http://www.vision.ee.ethz.ch/~organmot/chapter_download.shtml
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Figure 4. Comparison of the atlases generated by our joint model, and by a sequential approach with our
discrepancy measure. Visual assessment in terms of blurring artefacts, and contrast are pointed out with yellow
arrows.

Figure 5. First four modes of variation obtained with our method based on approximation modelling via
contour representations.

the physics ([73]): respiration is largely governed by the diaphragm, and the liver, located
beneath the diaphragm, is thus strongly influenced by breathing (pushed downwards when
the diaphragm is contracted and upwards when expanded). The same applies to the kidney
located in the right lower part. As for the second mode of variation, it reflects the transversal
motion, particularly visible on the right excrescences exhibited by the liver and the left wall.
A comparison of the first mode of variation obtained with both the linearisation around the
identity and the Cauchy stress tensor based PCA shows that our method reflects the geomet-
ric variability slightly better in the superior/inferior direction (Figure 10) particularly in the
right lower part of the kidney.

5.4. Heart example: frames ED(108)-ES(101). Lastly, the joint algorithm is applied
to the set of MRI representing a cardiac cycle. The obtained segmentations (Figure 11) are
piecewise constant approximations of the initial images and reflect well the geometrical shapes
of the template images. The deformed segmentations (involving large deformations) are close
to each other and well aligned to the mean reference. The obtained atlas exhibits sharp edges,
contrary to the result produced by a sequential treatment (Figure 12) that shows blurry
artefacts. It is also anatomically consistent: the mean reference corresponds to a compromise
between the full expansion and the full contraction, which is reasonable from a biological
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Figure 6. Comparison of the first mode of variation from three different methods using contour represen-
tations.

standpoint. The second step of the algorithm is then applied. The obtained first modes of
variation are again consistent with the anatomical dynamic of the heart (Figure 13): while the
first mode encodes the dilation/contraction of the right ventricular chamber in the transverse
direction, the second mode of variation conveys the vertical stretching of the left ventricular
chamber. Our approximation-based PCA thus allows to disconnect these two movements, this
property being less visible in the case of the Cauchy stress tensor based PCA (Figure 14) for
which the first mode of variation encodes both tendencies.

6. Conclusion. This paper addressed the twofold question of finding an average repre-
sentative of a dataset of different subjects and deriving then some statistics by identifying
the main modes of variation. To achieve this goal, the problem is envisioned as a joint reg-
istration/segmentation one, based on nonlinear elasticity concepts. Once a linearisation is
performed in order for the displacement fields to live in a vector space, a PCA is investigated
to capture the meaningful geometric variations. The computational feasibility is exemplified
through several applications, demonstrating that the generated atlas encodes the fine geomet-
rical structures and exhibits sharp edges with fewer ghosting artefacts, while the proposed
approximation based PCA uncorrelates properly the more significant tendencies. This work
paves the way to several applications among which: (i) motion-correction problem from a
set of multiple acquisitions corrupted by motion in this joint reconstruction and registration
framework or (ii) multiscale segmentation/registration problem to extract the deformation
pairing the structures (i.e. viewed as global deformations) and an additional deformation
reflecting the more local variability.
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Figure 13. First three modes of variation obtained with our method based on approximation modelling.
The red circles shows the moving part: dilation/contraction of the right ventricular chamber for the first mode,
and vertical stretching of the left ventricular chamber for the second mode.

Figure 14. Comparison of the first mode of variation for 2 different methods.
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[30] F. Demengel, G. Demengel, and R. Erné, Functional Spaces for the Theory of Elliptic Partial Dif-
ferential Equations, Universitext, Springer London, 2012.

[31] R. Derfoul and C. Le Guyader, A relaxed problem of registration based on the Saint Venant-Kirchhoff
material stored energy for the mapping of mouse brain gene expression data to a neuroanatomical
mouse atlas, SIAM J. Imaging Sci., 7 (2014), pp. 2175–2195.

[32] M. Droske and M. Rumpf, A variational approach to non-rigid morphological registration, SIAM J.
Appl. Math., 64 (2004), pp. 668–687.

[33] M. Droske and M. Rumpf, Multiscale joint segmentation and registration of image morphology, IEEE
Trans. Pattern Anal. Mach. Intell., 29 (2007), pp. 2181–2194.

[34] L. Evans and R. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992.
[35] B. Fischer and J. Modersitzki, Curvature based image registration, J. Math. Imaging Vis., 18 (2003),

pp. 81–85.
[36] A. Gooya, K. Pohl, M. Bilello, L. Cirillo, G. Biros, E. Melhem, and C. Davatzikos, GLISTR:

Glioma Image Segmentation and Registration, IEEE Trans. Med. Imaging, 31 (2012), pp. 1941–1954.
[37] J. Han, B. Berkels, M. Droske, J. Hornegger, M. Rumpf, C. Schaller, J. Scorzin, and H. Ur-

bach, Mumford-Shah Model for One-to-One Edge Matching, IEEE Trans. Image Process., 16 (2007),
pp. 2720–2732.

[38] B.-W. Hong, S. Soatto, and L. A. Vese, Enforcing local context into shape statistics, Adv. Comput.
Math., 31 (2009), pp. 185–213.

[39] S. Joshi, B. Davis, M. Jomier, and G. Gerig, Unbiased diffeomorphic atlas construction for compu-
tational anatomy, NeuroImage, 23 (2004), pp. S151 – S160.

[40] M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, Int. J. COMPUT. VISION,
1 (1988), pp. 321–331.

[41] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J.
NUMER. ANAL., 16 (1979), pp. 964–979.

[42] H. Laga, I. H. Jermyn, S. Kurtek, and A. Srivastava, Elastic 3D shape analysis using square-root
normal field representation, in CDC, 2017 IEEE 56th Annual Conference, 2017, pp. 2711–2717.

[43] K. Lam and L. Lui, Landmark- and Intensity-Based Registration with Large Deformations via Quasi-
conformal Maps, SIAM J. Imaging Sci., 7 (2014), pp. 2364–2392.

[44] K. C. Lam and L. M. Lui, Quasi-Conformal Hybrid Multi-modality Image Registration and its Applica-
tion to Medical Image Fusion, in Advances in Visual Computing, 2015, pp. 809–818.

[45] H. Le Dret, Notes de Cours de DEA. Méthodes mathématiques en élasticité, 2003-2004.
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