
HAL Id: hal-03018187
https://uca.hal.science/hal-03018187

Submitted on 22 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Linear size MIP formulation of Max-Cut: new
properties, links with cycle inequalities and

computational results
Viet Hung Nguyen, Michel Minoux

To cite this version:
Viet Hung Nguyen, Michel Minoux. Linear size MIP formulation of Max-Cut: new properties, links
with cycle inequalities and computational results. Optimization Letters, 2020, �10.1007/s11590-020-
01667-z�. �hal-03018187�

https://uca.hal.science/hal-03018187
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Linear size MIP formulation of Max-Cut: new properties,
links with cycle inequalities and computational results

Viet Hung Nguyen · Michel Minoux

Received: date / Accepted: date

Abstract We consider the Max-Cut problem on an undirected graph G =
(V,E) with |V | = n nodes and |E| = m edges. We investigate a linear size
MIP formulation, referred to as (MIP-MaxCut), which can easily be derived
via a standard linearization technique. However, the efficiency of the Branch-
and-Bound procedure applied to this formulation does not seem to have been
investigated so far in the literature. Branch-and-bound based approaches for
Max-Cut usually use the semi-metric polytope which has either an exponential
size formulation consisting of the cycle inequalities or a compact size formu-
lation consisting of O(mn) triangle inequalities [2], [16]. However, optimizing
over the semi-metric polytope can be computationally demanding due to the
slow convergence of cutting-plane algorithms and the high degeneracy of for-
mulations based on the triangle inequalities. In this paper, we exhibit new
structural properties of (MIP-MaxCut) that link the binary variables with the
cycle inequalities. In particular, we show that fixing a binary variable at 0 or 1
in (MIP-MaxCut) can result in imposing the integrity of several original vari-
ables and the satisfaction of a possibly exponential number of cycle inequal-
ities in the semi-metric formulation. Numerical results show that for sparse
instances of Max-Cut, our approach exploiting this capability outperforms the
branch-and-cut algorithms based on semi-metric polytope when implemented
on the same framework; and even without any extra sophistication, the ap-
proach is capable of solving hard instances of Max-Cut within acceptable CPU
times.

The work is supported by the Programme Gaspard Monge pour Optimisation (PGMO).

Viet Hung Nguyen
Clermont Auvergne University, LIMOS, CNRS UMR 6158, Aubière, France
E-mail: vhnguyen@isima.fr
Corresponding author

Michel Minoux
Sorbonne University, LIP6 CNRS UMR 7606, Paris, France
E-mail: michel.minoux@lip6.fr

2 Viet Hung Nguyen, Michel Minoux

Keywords Max-Cut · cycle inequalities · triangle inequalities · semi-metric
polytope

1 Introduction

1.1 The Max-Cut problem

Let G = (V,E) be an undirected graph with n = |V | and m = |E|. We sup-
pose that the edges of G are weighted by a vector c ∈ RE , the real space of
dimension m indexed by the edges in E. In particular, G could be the com-
plete graph Kn = (Vn, En) of n nodes. We denote by ij the edge between the
two nodes i and j of V . A cut in G associated with a node subset S ⊂ V ,
denoted δ(S), is the set of the edges that have exactly one end-node in S. The
Max-Cut problem is to find a cut of maximum total weight or equivalently to
find a node subset S such that

∑
ij∈δ(S) cij is maximum.

For each cut δ(S), the incidence vector associated with δ(S) is a vector χ(δ(S)) ∈
{0, 1}E where

χ(δ(S))ij =

{
1 if ij ∈ δ(S),
0 otherwise

Hence, finding a maximum weight cut is equivalent to optimizing over the cut
polytope CUTP(G) which is the convex hull of the incidence vectors associated
with the cuts in G.

1.2 Cycle inequalities and the semi-metric polytope

A chordless cycle C in G is a cycle whose induced subgraph is the cycle itself.
Let C be the set of chordless cycles in G. For a vector x ∈ RE and for any
subset F ⊆ E, let x(F) =

∑
e∈F xe.

As a cut always intersects a cycle C in an even number of edges, the
incidence vectors associated with the cuts in G satisfy the following cycle
inequalities introduced by Barahona and Mahjoub [2]:

x(F)− x(C \ F) ≤ |F | − 1,

∀C ∈ C and F ⊆ C with |F | odd, (1)

The cycle inequalities together with some trivial lower bound and upper bound
inequalities define the so-called semi-metric polytope METP(G) associated
with G in RE :

x satisfies (1),

xe ≥ 0 ∀e ∈ E s.t. e does not belong to any triangle

xe ≤ 1 ∀e ∈ E s.t. e does not belong to any triangle (2)

Linear size MIP formulation of Max-Cut 3

Hence the semi-metric polytope is a relaxation of CUTP(G). If we replace the
trivial inequalities by the 0/1 constraints x ∈ {0, 1}E , we obtain an integer
formulation for CUTP(G). Thus, the semi-metric polytope is a linear program-
ming relaxation for the Max-Cut problem. Moreover, Barahona and Mahjoub
[2] showed that the semi-metric polytope coincides with the cut polytope when
G is no contractible to K5.
Note that since there is a priori no known polynomial upper bound (in terms
of n and m) on the number of chordless cycles and there may be also an ex-
ponential number of possible choices for the set F given a chordless cycle C,
the above formulation of METP(G) has a priori an exponential number of
inequalities. However, METP(G) has polynomial size extended formulations
[1], [16], called METP(Kn), which consist of O(n2) variables where additional
variables correspond to the additional edges which complete G to Kn. These
extended formulations involve the following so-called triangle inequalities:

xij + xik + xjk ≤ 2 for all i, j, k ∈ T . (3)

xij − xik − xjk ≤ 0, (4)

xik − xij − xjk ≤ 0, (5)

xjk − xij − xik ≤ 0 for all i, j, k ∈ T . (6)

where T is the set of all (unordered) triples of distinct nodes i, j, k ∈ V such
that at least ij, ik or jk is an edge in E.
The semi-metric polytope forms the core of the linear programming relaxations
in many practical solution procedures for the Max-Cut problem. Moreover,
when G is sparse, it is well known that the corresponding relaxation given by
the semi-metric polytope is quite good. In this case, for the Max-Cut problem
on large sparse graphs, branch-and-cut algorithms based on the integer formu-
lation obtained from the cycle inequalities and the 0/1 constraints remain the
best approaches so far (SDP approaches do not take advantage of sparsity and
are currently limited to medium-size instances, typically less than 300 nodes
see e.g. [17]). Hence, optimizing over the semi-metric polytope appears to be
of key importance. This is achieved either via a cutting-plane approach (using
the polynomial time separation algorithm for the cycle inequalities given in
[2]) or by solving the compact extended formulation involving O(n2) variables
and O(nm) constraints. However, solving the latter turns out to be very hard
[11] as the linear program to be solved is highly degenerate and its size quickly
becomes impractical when n exceeds, say, 150-200.

1.3 A basic unconstrained binary quadratic formulation for Max-Cut

Let z ∈ {0, 1}V (the node set of the hypercube of dimension n indexed by the
nodes in V), then z can be viewed as an incidence vector associated with a
node subset S in G, such that

zi =

{
1, i ∈ S,
0, otherwise

for all i ∈ V

4 Viet Hung Nguyen, Michel Minoux

We observe that for any edge ij ∈ E, ij ∈ δ(S) if and only if the sum zi(1 −
zj) + zj(1 − zi) = 1. Hence the Max-Cut problem can be formulated as the
following unconstrained 0-1 quadratic program (UBQP):

max
∑
ij∈E

cij(zi(1− zj) + zj(1− zi)) (7)

s.t. zi ∈ {0, 1} for all i ∈ V .

A simple direct way of linearizing this problem consists in adding m contin-
uous variables xij defined by xij = zi(1 − zj) + zj(1 − zi) and applying RLT
reformulation [19] on the constraints 0 ≤ zi ≤ 1, 0 ≤ zj ≤ 1. This leads to
adding the inequalities zizj ≤ zi, zizj ≤ zj and zizj ≥ zi + zj − 1 for all

ij ∈ E and replacing zizj by
zi+zj−xij

2 in the above inequalities. We obtain
the following mixed integer formulation (MIP-MaxCut) for Max-Cut.

max
∑
ij∈E

cijxij

xij + zi + zj ≤ 2, (8)

xij − zi − zj ≤ 0, (9)

−xij + zi − zj ≤ 0, (10)

−xij − zi + zj ≤ 0 for all ij ∈ E, (11)

zi ∈ {0, 1} for all i ∈ V (12)

The above formulation has already been known in the literature, in particular,
it has been used to explore the links between the boolean quadric polytope
(BQP), which is the convex hull of the solutions of (7) in the space RV+E

(with variables yij for all ij ∈ E replacing the product zizj), and the Max-
Cut polytope [10]. More precisely, Hammer [12] showed that the Max-Cut
polytope defined on G + u (where G + u is the graph obtained by adding
to G an universal vertex u) is equivalent under linear transformations to the
BQP defined on G. From this result and the result on the Max-Cut polytope
on graphs not contractible to K5 in [2], DeSimone [10] derived a complete
description of BQP on graphs not contractible to K4.

However, the possible use of (MIP-MaxCut) in practical solution proce-
dures for Max-Cut does not appear to have attracted much interest in the
literature so far. The main reason probably lies in the fact that its linear pro-
gramming relaxation is very weak. To be convinced of this, just observe that
setting zi = 1

2 for all i ∈ V makes the variables xij completely free between 0
and 1 for all ij ∈ E.

1.4 Contributions and organization of the paper

The main contributions of the paper are the following:

Linear size MIP formulation of Max-Cut 5

– We prove a new property relating the integrity of the variables zi in (MIP-
MaxCut) and the cycle inequalities. More precisely, it is shown that for
any edge ij ∈ E, the fact that the variables zi and zj are integer could
imply simultaneous satisfaction of all (possibly exponentially many) cycle
inequalities involving edge ij and the integrity of the variable xij .

– We analyze the impact of this key property when applying a Branch-and-
Bound/Cut procedure to the (MIP-MaxCut) formulation. In particular, we
show that branching on a variable zi could have very strong effects such as
satisfying a possibly exponential number of cycle inequalities and forcing
several variables xij to be integer valued.

– As an experimental confirmation of our analysis, we present and discuss in
Section 4 a series of computational results on Max-Cut for a set of large
size sparse graph instances (up to 10000 nodes) obtained by applying a
standard Branch-and-Bound solver to (MIP-MaxCut) without using any of
the sophisticated techniques previously proposed in the existing literature
for the exact solution of such large scale problems. It is observed that
the results obtained turn out to significantly outperform a branch-and-cut
algorithm based on cycle inequalities implemented on the same platform.

2 Polyhedral link between (MIP-MaxCut) and the cycle
inequalities and application for solving Max-Cut

In the present section, we first introduce the concept of pointed triangulation
and prove a basic equivalence result (Lemma 1) which turns out to be a basic
building block for deriving the link between (MIP-MaxCut) and the cycle
inequalities. The computational attractiveness of the new formulation in view
of solving the Max-Cut problem via branch-and-bound and branch-and-cut
algorithms is also analyzed.

2.1 Pointed triangulation and cycle inequalities

Let us consider any chordless cycle C in G. Let us suppose that the nodes in
C are 1, 2, . . . , k which are numbered clockwise from 1 (see Figure 1) and its
edges are i(i+ 1) for i = 1, . . . , k − 1 and k1.

Let us take any subset F = {f1, . . . , fp} ⊆ C with p odd. The cycle in-
equality associated with C and F reads:

x(F)− x(C \ F) ≤ p− 1. (13)

Consider the triangulation θ of C obtained by adding k − 3 distinct edges
(chords) 1j for j = 3, . . . , k − 1 (see the thin solid edges in Figure 1). As the
newly added edges all have 1 as an end node, θ is called pointed triangulation
at node 1. Let us call Ē the set of these new added edges and let E′ = E ∪ Ē.

6 Viet Hung Nguyen, Michel Minoux

1

2

3

4

5

6 7

8

9

10

11

− −

+

+

+

−

−

−

−

+

+

−
+ −

+

−
+ −

+

+−

+−

+ −

+ −

: ∈ C \ F

: ∈ F

: ∈ Ē

Fig. 1 A pointed triangulation of a chordless cycle C

The triangle inequalities corresponding to the various triangles thus created
read:

x1i + x1(i+1) + xi(i+1) ≤ 2 for all i = 2, . . . , k − 1, (a,i)

x1i − x1(i+1) − xi(i+1) ≤ 0 for all i = 2, . . . , k − 1, (l,i)

x1(i+1) − x1i − xi(i+1) ≤ 0 for all i = 2, . . . , k − 1, (r,i)

xi(i+1) − x1i − x1(i+1) ≤ 0 for all i = 2, . . . , k − 1. (m,i)

Lemma 1 If x ∈ [0, 1]E
′

satisfies all the triangle inequalities (a,i), (l,i), (r,i)
and (m,i) then the restriction of x on [0, 1]E, x|E, satisfies all the cycle in-
equalities associated with the cycle C. Conversely, if x ∈ [0, 1]E satisfies all
the cycle inequalities associated with the cycle C then there is an extension of
x to [0, 1]E

′
satisfying all the inequalities (a,i), (l,i), (r,i) and (m,i).

Proof ⇒ The proof of the first part of the lemma given here closely follows the
one given in [16] for deriving a different result, namely the fact that the num-
ber of triangle inequalities can be reduced to O(nm) instead of O(n3) in the
extension of METP(G) to METP(Kn). Since the purpose of the present lemma
is both to prove Theorem 1 and to provide a constructive way of strengthening
the new linear size formulation to be discussed in Section 3, we provide the
full proof in the appendix for self-containedness.
⇐ Let x ∈ [0, 1]E be a vector satisfying all the cycle inequalities associated

with C. Let us extend x to x ∈ [0, 1]E
′

by determining the intervals of possible
values that the extra variables x1j for j = 3, . . . , k − 1 in E′ \ E can take.
We will compute the intervals in clockwise order, i.e. for x13 first then for x14,
. . . and at the end for x1(k−1). Let us consider x13 and the triangle {1, 2, 3},
we can see that for the validity of the inequalities (a,i), (l,i), (r,i) and (m,i)
associated with this triangle, x13 should belong to the interval I3 = [max(x12−
x23, x23−x12),min(x12+x23, 2−x12−x23)]. Note that if x12 and x23 belong to

Linear size MIP formulation of Max-Cut 7

[0, 1] then this interval is not empty. To compute the possible values of x14, the
triangle {1, 3, 4} and the validity of the inequalities (a,i), (l,i), (r,i) and (m,i)
associated with this triangle imply that for each possible fixed value of x13
(i.e. one of the values in I3), x14 should belong to the interval, say Ix13

4 where
Ix13
4 = [max(x13−x34, x34−x13),min(x13 +x34, 2−x13−x34)]. Generally, for
j = 4, . . . , k − 1, for each possible fixed value of x1(j−1) previously computed,

x1j should belong to the interval I
x1(j−1)

j = [max(x1(j−1) − x(j−1)j , x(j−1)j −
x1(j−1)),min(x1(j−1) + x(j−1)j , 2 − x1(j−1) − x(j−1)j)] by the validity of the
inequalities (a,i), (l,i), (r,i) and (m,i) associated with the triangle {1, (j −
1), j}. These intervals are always non-empty as a possible fixed value of x1(j−1)
is always between 0 and 1. In particular, when j = k − 1, for a possible
fixed value of x1(k−2), we have x1(k−1) ∈ I

x1(k−2)

k−1 . However, by the triangle
{1, (k − 1), k}, x1(k−1) should also belong to the following interval I2k−1 =
[max(x1k−x(k−1)k, x(k−1)k−x1k),min(x1k+x(k−1)k, 2−x1k−x(k−1)k)] as the
(a,i), (l,i), (r,i) and (m,i) inequalities associated with the triangle {1, (k−1), k}
should also be satisfied. Hence, for each possible fixed value of x1(k−2), the

possible values of x1(k−1) should belong to I
x1(k−2)

k−1 ∩I2k−1. Thus, the extension

of x to [0, 1]E
′

requires I
x1(k−2)

k−1 ∩ I2k−1 6= ∅. We will show that if the opposite

happens, i.e. I
x1(k−2)

k−1 ∩ I2k−1 = ∅, then x violates a cycle inequality associated
with C, contradicting the initial assumption on x. Thus, let us suppose that
I
x1(k−2)

k−1 ∩ I2k−1 = ∅. Then one of following two cases necessarily arises:

– The first case is when the lower bound of I2k−1 is strictly greater than the

upper bound of I
x1(k−2)

k−1 , i.e. max(x1k−x(k−1)k, x(k−1)k−x1k) > min(x1(k−2)+
x(k−2)(k−1), 2− x1(k−2) − x(k−2)(k−1)). Let us suppose that x1k ≥ x(k−1)k.
(The case x1k ≤ x(k−1)k would be treated in a similar way).
(i) x1k−x(k−1)k > x1(k−2) +x(k−2)(k−1). Hence, x1k−x(k−1)k−x1(k−2)−

x(k−2)(k−1) > 0. This can be viewed as the violation of x on the cycle
inequality x(F)−x(Ck−2 \F) ≤ 0 where Ck−2 = {1(k− 2), (k− 2)(k−
1), (k − 1)k, 1k} and F = {1k}. We can see that replacing x1(k−2)
by min(x1(k−3) + x(k−3)(k−2), 2 − x1(k−3) − x(k−3)(k−2)) – which is a
possible fixed value of x1(k−2) with respect to some possible fixed value
of x1(k−3) in the above violated cycle inequality – yields another violated
cycle inequality associated with the cycle Ck−3 = {1(k−3), (k−3)(k−
2), (k − 2)(k − 1), (k − 1)k, 1k}.

(ii) x1k − x(k−1)k > 2 − x1(k−2) − x(k−2)(k−1). Hence, x1k + x1(k−2) +
x(k−2)(k−1) − x(k−1)k > 2. This can also be viewed as the violation of
x on the cycle inequality x(F) − x(Ck−2 \ F) ≤ 2 where Ck−2 as in
case (i) and F = {1k, 1(k − 2), (k − 2)(k − 1)}. Similarly as in case (i),
replacing x1(k−2) by max(x1(k−3)−x(k−3)(k−2),−x1(k−3) +x(k−3)(k−2))
yields another violated cycle inequality associated with the cycle Ck−3.

– The second case is when the lower bound of I
x1(k−2)

k−1 is strictly greater
than the upper bound of I2k−1, i.e. max(x1(k−2)−x(k−2)(k−1), x(k−2)(k−1)−
x1(k−2)) > min(x1k + x(k−1)k, 2− x1k − x(k−1)k).
– Suppose that x1(k−2) > x(k−2)(k−1). In this case, x1(k−2)−x(k−2)(k−1) >
x1k+x(k−1)k or x1(k−2)−x(k−2)(k−1) > 2−x1k−x(k−1)k and both cases

8 Viet Hung Nguyen, Michel Minoux

will imply a violated cycle inequality x(F)−x(Ck−2\F) ≤ |F |−1 where
Ck−2 = {1(k−2), (k−2)(k−1), (k−1)k, 1k} and F is either {1(k−2)}
or {1(k − 2), (k − 1)k, 1k}. In both cases, we can replace x1(k−2) by
max(x1(k−3) − x(k−3)(k−2),−x1(k−3) + x(k−3)(k−2)) to obtain another
violated cycle inequality associated with the cycle Ck−3.

– Suppose that x1(k−2) < x(k−2)(k−1). Similarly as in the previous item,
we can replace x1(k−2) by min(x1(k−3)+x(k−3)(k−2), 2−x1(k−3)−x(k−3)(k−2))
to obtain another violated cycle inequality associated with the cycle
Ck−3.

In all cases, one can reiterate the above process, which leads to exhibit violated
inequalities associated with cycles Ck−3, Ck−4,. . . , C2. By remarking that
C2 = C, a contradiction is obtained and the proof for the second part of the
lemma is completed. 2

A major practical and theoretical interest of the pointed triangulation is to
provide an alternative compact representation subsuming potentially huge car-
dinality sets of cycle inequalities as shown in the following corollary.

Corollary 1 Let C be a cycle of size Ω(n) (i.e. not too small compared to n)
in G, the number of cycle inequalities associated with C is in Ω(2n−1) while
the number of triangle inequalities resulting from a pointed triangulation of C
is (|C| − 2) ∗ 4 which is in O(n).

Another noticeable consequence of Lemma 1 and Corollary 1 is to give linear
size extended formulations for the Max-Cut polytope on some special graphs
including wheel and cactus graphs.

Corollary 2 Let G = (V,E) be a graph which satisfies the two following con-
ditions: the Max-Cut polytope and the metric polytope coincide for G, (i.e.
G is not contractible to K5 [2]) and the number of chordless cycles in G is
linear in terms of m or n. Then a linear size extended formulation for the
Max-Cut polytope on G, can be obtained by using a pointed triangulation of
each chordless cycle, and imposing the various constraints (a,i), (l,i), (r,i) and
(m,i) associated with each such chordless cycle.

2.2 Polyhedral link between (MIP-MaxCut) and the cycle inequalities

If we add 0/1 constraints to the linear representation of the semi-metric poly-
tope,

(Metric-IP)

max

∑
ij∈E cijxij

x(F)− x(C \ F) ≤ |F | − 1 ∀C ∈ C and F ⊆ C with |F | odd,
xij ∈ {0, 1} for all ij ∈ E.

we obtain (Metric-IP), an IP formulation for Max-Cut. The latter is the stan-
dard IP formulation used in LP-based approaches for solving Max-Cut. In the
following theorem, we will show that in fact (MIP-MaxCut) is equivalent to
(Metric-IP).

Linear size MIP formulation of Max-Cut 9

Theorem 1 (MIP-MaxCut) is equivalent to (Metric-IP).

Proof We first show (MIP-MaxCut) ⊆ (Metric-IP). Let x ∈ RE and z ∈
{0, 1}V a feasible solution of (MIP-MaxCut). For any edge ij ∈ E, it is quite
easy to verify that when zi = zj = (0 or 1), xij = 0 and when zi 6= zj then
xij = 1. Hence xij ∈ {0, 1} for all ij ∈ E. Moreover, one can observe that
xij = |zi − zj | or equivalently xij = max(zi − zj , zj − zi). Now, let C be any
chordless cycle in G. Let ij be any edge in C and let F ⊆ C such that p = |F |
is odd and ij ∈ F . Note that as F is never empty, the case when ij /∈ F will be
covered by the cases when some other edge i′j′ 6= ij belongs to F . Let us build
an extended graph G′ = (V ′, E′) deduced from G by adding to G a universal
node u (i.e. V ′ = V ∪ {u} and E′ = E ∪ {ui | for all i ∈ V }) and think of the
variable zi as the variable associated with the edge ui in the extended graph.
Let Cij be the cycle obtained by replacing in C the edge ij by the edges ui
and uj, i.e. Cij = (C \ {ij}) ∪ {ui, uj}.

We can see that Cij is triangulated by a pointed triangulation at u. As all
the triangle inequalities corresponding to this triangulation are expressed in
(MIP-MaxCut), by Lemma 1, (x, z) satisfies all the cycle inequalities involving
Cij . Let Fi = (F \ {ij}) ∪ {ui} and Fj = (F \ {ij}) ∪ {uj}. We can observe
that Fi and Fj are two odd subsets of Cij of cardinality p. Hence, the cycle
inequalities associated with Cij and respectively Fi and Fj can be expressed
as

x(F \ {ij}) + zi − zj − x(C \ F) ≤ p− 1, and

x(F \ {ij}) + zj − zi − x(C \ F) ≤ p− 1.

As xij = max(zi − zj , zj − zi), one of the above inequalities gives:

x(F \ {ij}) + xij − x(C \ F) ≤ p− 1, i.e.

x(F)− x(C \ F) ≤ p− 1.

As C is any cycle in G and ij is any edge in C, we conclude that x satisfies
all the cycle inequalities. Moreover, x is integer as shown above, thus x is a
feasible solution of (Metric-IP).
Now let us show that (Metric-IP) ⊆ (MIP-MaxCut). Let x ∈ {0, 1}E be any
feasible solution of (Metric-IP). Consequently, x is the incidence vector of a
cut δ(S) such that S ⊂ V . Let us build z ∈ {0, 1}V as follows. For all nodes
i ∈ S, let us set zi = 0 and for all nodes i ∈ V \ S, let us set zi = 1. It is then
easy to see that x and z form a feasible solution for (MIP-MaxCut). 2

3 Efficiency of the new MIP formulation for solving Max-Cut

In this section, we discuss the practical use of (MIP-MaxCut) in branch-and-
cut algorithms for exactly solving large scale Max-Cut instances, especially in
sparse graphs for which linear programming relaxations containing the cycle
inequalities are strong enough.

10 Viet Hung Nguyen, Michel Minoux

3.1 Properties of (MIP-MaxCut) in a branch-and-bound framework for
solving Max-Cut

In particular, we show that using (MIP-MaxCut) could be more efficient than
(Metric-IP) in the same branch-and-cut framework. More precisely, a basic
branch-and-cut algorithm for solving (Metric-IP) consists of the following
tasks:

– Solve linear programs consisting of a system of valid inequalities Ax ≤ b
which contains a subset of the cycle inequalities and other possible valid
inequalities for CUTP(G) at each node of the branch-and-bound search
tree and possibly generate violated inequalities including violated cycle
inequalities to be added to Ax ≤ b.

– Branch on one or several variables x.

A basic branch-and-cut algorithm for solving (MIP-MaxCut) consists of the
following tasks:

– Solve linear programs consisting of the same system Ax ≤ b together with
the inequalities (8)–(11) at each node of the branch-and-bound search tree
and possibly generate violated inequalities which may be cycle inequalities
to be added to Ax ≤ b.

– Branch on one or several variables z.

The difference between the two algorithms is that instead of generating vio-
lated cycle inequalities and branching on the x variables as in the first algo-
rithm, the second algorithm branches on the z variables. The fact that this
can be more efficient is a consequence of the following proposition
which shows that branching on a variable zi is equivalent to branch-
ing on several variables xij and generating a (possibly exponential)
number of cycle inequalities.

Proposition 1 When some variable zi is fixed at an integer value by branch-
ing in a branch-and-bound framework then for all variables zj fixed at an inte-
ger value before zi, the variable xij is integer valued and the current solution
x satisfies all the cycle inequalities such that the set F contains the edge ij.

Proof As we can see from the proof of Theorem 1, when zi and zj are integer,
the inequalities (8)–(11) which involve zi, zj and xij force xij to be integer.
Moreover, xij = max(zi − zj , zj − zi). The proof of Theorem 1 uses this fact
together with Lemma 1 to prove that all the cycle inequalities such that the
set F contains the edge ij are subsequently satisfied. Hence, branching on a
variable zi can have very strong effects:

– on the one hand, this action forces the integrality of all the variables xij
such that zj is integer valued,

– on the other hand, it forces all the cycle inequalities such that the set
F contains the edge ij to be satisfied by the forthcoming solutions. The
number of such cycle inequalities may obviously be very big and possibly
exponential even if G is sparse.

Linear size MIP formulation of Max-Cut 11

2

It is then realized that branching in (MIP-MaxCut) can be much more efficient
than cut generation and branching in (Metric-IP) where only a small number
of cycle inequalities may be added and one variable xij is fixed at each round
of cut generation or branching. This will be confirmed by our numerical results
in the next section.
Let us call PCUT(G) the system Ax ≤ b used as relaxation for CUTP(G) in
a branch-and-cut algorithm based on (Metric-IP). Let us call EPCUT(G) the
system defined in RE+V that consists of Ax ≤ b together with the inequalities
(8), (9), (10) and (11). We have the following theorem.

Theorem 2 The projection of EPCUT(G) on RE, i.e. on the variables x, is
exactly PCUT(G).

Proof It is clear that the projection of EPCUT(G) on RE is contained in
PCUT(G) since in every solution (x, z) satisfying EPCUT(G), we have x sat-
isfies Ax ≤ b.
The restriction of EPCUT(G) on the linear variety zi = 1

2 for all i ∈ V is
exactly the system Ax ≤ b, i.e. PCUT(G). As the projection of EPCUT(G)
on RE contains this restriction, Ax ≤ b is contained in this projection.
Hence, the projection of EPCUT(G) on RE is equal to PCUT(G). 2

The above theorem states that a system of valid inequalities Ax ≤ b will give
the same upper bound regardless of whether the branch-and-cut algorithm is
based on (Metric-IP) or (MIP-MaxCut). Moreover, the bounding procedure in
branch-and-cut algorithms based on (MIP-MaxCut) is probably more efficient
than those based on (Metric-IP) due to the strong effects of the branching on
the variables z. Hence, we have the following important corollary.

Corollary 3 Any existing branch-and-cut algorithms based on (Metric-IP)
can be readily adapted to work on (MIP-MaxCut) with more efficiency thanks
to the properties of branching on the z variables.

Such an adaption simply consists in switching the branching strategy from
variables x to variables z and keeping the same strategy of cut generation. In-
deed, in the next sections, we will show by numerical results that with the same
initial linear programming relaxation and the same cut generation strategy,
a branch-and-cut algorithm based on (MIP-MaxCut) is much more efficient
than a branch-and-cut algorithm based on (Metric-IP). This suggests that
a potentially interesting idea for future developments might be to adapt re-
cent advanced branch-and-cut algorithms based on (Metric-IP) such as [4], [7],
. . . to (MIP-MaxCut) to improve their efficiency.

3.2 Building an initial linear programming relaxation

One important factor in LP-based branch-and-bound algorithms is the initial
LP to be solved at the root node of the branch-and-bound search tree. This

12 Viet Hung Nguyen, Michel Minoux

LP should be of reduced size and give a good upper bound for Max-Cut. We
will show below that for algorithms using (MIP-MaxCut) as well as (Metric-
IP), the question is how to build such an LP by choosing a suitable subset
of cycle inequalities. Let us consider the linear programming relaxation (R-
MIP-MaxCut) of (MIP-MaxCut). Note that when z∗i = 1

2 for all i ∈ V , any
vector x∗ ∈ [0, 1]E satisfies the constraints (8), (9), (10) and (11). Such a
(z∗, x∗) then satisfies (R-MIP-MaxCut). Hence, the upper bound given by
(R-MIP-MaxCut) is very weak (all xij equal to 1) when compared with the
one provided by (R-Metric), the linear programming relaxation of (Metric-
IP). However, the latter is hard to compute since it is highly degenerate [11].
Moreover, the number of cycle inequalities can be huge for big values of n even
with an extended formulation of (Metric-IP). Hence, in practical branch-and-
bound algorithms for Max-Cut using (Metric-IP), a small subset of the cycle
inequalities is usually chosen to be included in the initial LP relaxation, called
(iR-Metric), in order to obtain a reasonably good initial upper bound at the
root node of the branch-and-bound tree. We can use the same cycle inequalities
in the initial LP relaxation, called (iR-MIP-MaxCut), in a branch-and-bound
algorithm using (MIP-MaxCut) to obtain the same upper bound as shown in
the following theorem.

Proposition 2 (iR-MIP-MaxCut) provides the same upper bound for Max-
Cut as (iR-Metric) if both formulations contain the same subset of the cycle
inequalities (1).

Proof The proof directly follows from Theorem 2. 2

The above proposition tells us that building the initial LP provides re-
laxations with the same strength regardless of whether (MIP-MaxCut) or
(Metric-IP) is used but it does not tell us how to choose the subset of the
cycle inequalities to be included in this LP. We now describe how we have cho-
sen such a subset, denoted by S, of the cycle inequalities in our experiments
involving sparse graphs. We consider the two following criteria for selecting S:

– |S| ∈ O(n), i.e. the size of the initial LP should be linear in n,
– The upper bound given by S should be “sufficiently good”.

In order to meet these two criteria, we use an observation borrowed from
previous works on Max-Cut on Ising Spin Glass 2D grid instances, namely
that the LP that consists of the cycle inequalities expressed for all the 4-cycles
gives a very good bound for Max-Cut [13], [15]. Note that the number of
4-cycles in (toroidal) 2D grid graphs is at most n and the number of cycle
inequalities expressed on each 4-cycle is 8. Hence the set of the 4-cycles in
these graphs satisfies the above two criteria for being selected in S. Notice
that for 2D grid graphs, the set of all the 4-cycles forms a cycle basis which
generates all the cycles in G by linear combination in the Galois field of two
elements GF (2), i.e. based on parity of the intersection of cycles. Hence, for
a general sparse graph G, we may take the set of all the cycle inequalities
associated with a cycle basis as the set S. Such a set S may be interesting

Linear size MIP formulation of Max-Cut 13

as cycle inequalities also express the parity of the intersection between cuts
and cycles. Moreover, as the number of cycles in a cycle basis is m − n + 1,
and hence O(n) in sparse graphs and thanks to Lemma 1 and Corollary 1, we
can represent such a set S of cycle inequalities by O(n) triangle inequalities.
The numerical experiments reported in the next section seem to confirm this
analysis.

4 Numerical results

In this section, we present experiments aimed at computing exact solutions
based on (MIP-MaxCut) for Max-Cut on sparse graph instances of various
types. For comparison, we also run the same experiments with (Metric-IP)
instead of (MIP-MaxCut) in the same computer and branch-and-cut algorith-
mic framework. To be more precise, we present comparative experiments based
on the following three variants of branch-and-cut to solve Max-Cut on sparse
graph instances.

– (Metric-IP). The branch-and-cut framework applied to the (Metric-IP) for-
mulation in x variables only with branching on the x variables.

– (MIP-MaxCut). The branch-and-cut framework applied to the (MIP-MaxCut)
formulation in both z and x variables with branching on the z variables.

– (MIP-MaxCut-SBR). The branch-and-cut framework applied to the (MIP-
MaxCut) formulation with a special branching rule (SBR) on the z vari-
ables derived from Proposition 1.

4.1 Computer framework

All the experiments have been conducted on an Intel i3-8130 CPU 2.20GHz
computer with 8GB of RAM under Linux Ubuntu 18.4. Single thread have
been used for all the runs performed.

4.2 Branch-and-cut framework

LP solver and branch-and-bound search tree handling. CPLEX 12.7.1
has been used as LP solver and for handling the branch-and-bound tree. In
particular, for the (Metric-IP) and the (MIP-MaxCut) variants, the default
automatic branching rule of CPLEX 12.7.1 has been used for branching on
the x variables and on the z variables, respectively. For the (MIP-MaxCut-
SBR) variant, we have implemented a special rule for branching (SBR) on the
z variables which can be defined as follows:
Special branching rule. This rule consists in choosing a variable zi such that
the number of neighbours j with zj integer in the current solution is greater
than the average node degree of the graph. We keep track of bi, which is the
number of times a variable zi has been chosen for branching with this rule (in

14 Viet Hung Nguyen, Michel Minoux

previous steps of the construction of the branch-and-bound search tree). In
case several variables zi are eligible, we choose any variable with smallest bi.
According to Proposition 1, branching on such a variable zi would force a
number of variables xij to be integer and would also imply the satisfaction
of many of the cycle inequalities. Notice that no other feature of CPLEX has
been used, in particular no generic cut generation procedure and no presolve
have been activated.
Initial LP. The initial LP contains the same subset S of cycle inequalities in
all the three cases. Hence, by Proposition 2, the same initial upper bound for
Max-Cut is obtained. To build the set S, we generate a cycle basis B of G and
with a fixed parameter k, we perform a pointed triangulation of all the cycles
of length at most k in B. The associated triangle inequalities are all added to
S.
Violated cycle inequality generation. The separation procedure is based
on the exact separation algorithm for cycle inequalities which operates on a
graph H of 2n nodes (n original nodes and n copies) as described in [2]. The
algorithm consists of n calls of the bidirectional Dijkstra algorithm for finding
the shortest paths between every original node i for i = 1, . . . n and its copy
in H.
In the computational experiments reported in Sections 4.3.2 and 4.3.3, this
procedure is applied to the three variants (Metric-IP), (MIP-MaxCut) and
(MIP-MaxCut-SBR). For the toroidal 2D grid instances (Section 4.3.1), the
separation procedure is only applied to the (Metric-IP) variant since we have
observed that adding violated cycle inequalities does not improve the efficiency
of the (MIP-MaxCut) and (MIP-MaxCut-SBR) variants.
For the (Metric-IP) variant, the separation procedure is also applied to sepa-
rate integer solutions if these solutions do not represent cuts.

4.3 Numerical experiments

4.3.1 Toroidal 2D grid instances.

Generation of instances. We consider instances of toroidal 2D grid graphs
which have been generated according to the description in [9]. More precisely,
the first and the second half of the edge weights are initialized with −1 and +1,
respectively. Then, a random permutation of the edge weights is computed.
Branch-and-cut tuning. To set up the initial LP, we generate the set S
by taking the cycle basis containing all the 4-cycles and by setting k = 4. We
only activate the generation of violated cycle inequalities when the relative gap
goes below 0.5% (the relative gap is defined to be the ratio of the difference
between the upper bound and the lower bound of the branch-and-bound tree
over the lower bound). The separation routine is called every 100 nodes of the
branch-and-bound tree.
Numerical results. In Table 1, we compare (Metric-IP) and (MIP-MaxCut).
Each entry of the table represents an average taken over ten randomly gener-

Linear size MIP formulation of Max-Cut 15

Size
(Metric-IP) (MIP-MaxCut)

CPU Nodes C-Ine CPU Nodes

30 × 30 760 3431 11959 25 65

35 × 35 1249 2331 16882 36 130

Table 1 Comparisons between (Metric-IP) and (MIP-MaxCut) on toroidal 2D grid in-
stances with random +1/-1 weights

Size
(MIP-MaxCut) (MIP-MaxCut-SBR)
CPU Nodes CPU Nodes

55 × 55 1309 4197 1118 3135

60 × 60 2693 4653 1687 2864

65 × 65 4550 8447 3889 7518

Table 2 Comparisons between (MIP-MaxCut) and (MIP-MaxCut-SBR) on toroidal 2D
grid instances with random ±1 weights

ated instances. The column CPU is the average CPU time (in seconds) and the
column Nodes indicates the average number of nodes of the branch-and-bound
search tree. For (Metric-IP), there is an additional column C-Ine which reports
the number of violated cycle inequalities generated during the branch-and-cut
process. We restrict our experiments to relatively small sizes of toroidal 2D
grid instances as (Metric-IP) can not go beyond the size of 50× 50 within ten
CPU hours. We can see that (MIP-MaxCut) significantly outperforms (Metric-
IP) in both CPU time and size of the branch-and-bound search tree. Table 2
reports the average results of (MIP-MaxCut) and (MIP-MaxCut-SBR) on ten
random instances of larger sizes 55× 55, 60× 60 and 65× 65, respectively. We
can see that the special branching rule (SBR) derived from Proposition 1 is
more efficient than the default branching rule of CPLEX and helps to improve
the results of (MIP-MaxCut).

4.3.2 Rudy instances.

Generation of instances. We consider 10 instances generated using rudy

[18] with n = 100 and an edge density of 0.1 (series of instances with prefix
pm1s). The edge weights are chosen uniformly from {−1, 0, 1}.
Branch-and-cut tuning. To set up the initial LP, the set S is built by gen-
erating a cycle basis of G and by setting k = 5. The separation procedure for
cycle inequalities is called every ten nodes of the branch-and-bound tree.
Numerical results. Table 3 reports the performance of (Metric-IP), (MIP-
MaxCut) and (MIP-MaxCut-SBR) on 10 rudy instances. In general, (Metric-
IP) generates the largest number of cycle inequalities and has the least size
of the branch-and-bound search tree but requires more CPU time. (MIP-
MaxCut) needs fewer cycle inequalities and features more nodes in the branch-
and-bound search tree than (Metric-IP) but spends significantly less CPU
time. Finally, (MIP-MaxCut-SBR) achieves the best CPU time on average
with a slight increase in the number of generated cycle inequalities and a
slight decrease in the size of the branch-and-bound search tree compared to
(MIP-MaxCut). Getting into more detail, (MIP-MaxCut-SBR) achieves the
best CPU time for seven out of ten instances. (Metric-IP) may give the best
CPU time for easy instances but the difference of CPU time as compared to

16 Viet Hung Nguyen, Michel Minoux

Instances
(Metric-IP) (MIP-MaxCut) (MIP-MaxCut-SBR)

CPU Nodes C-Ine CPU Nodes C-Ine CPU Nodes C-Ine

Pm1s 100.0 201 434 8508 226 752 3666 222 734 3520
Pm1s 100.1 951 1466 18769 448 1439 4326 379 1436 4432
Pm1s 100.2 470 618 18205 148 759 2359 125 455 2750
Pm1s 100.3 975 1515 18700 384 1634 3595 330 1383 3927
Pm1s 100.4 424 915 1299 317 1303 3227 214 853 3451
Pm1s 100.5 255 355 12630 366 1408 3695 247 777 3780
Pm1s 100.6 660 903 15288 278 1256 3608 348 1215 4269
Pm1s 100.7 195 181 9123 172 696 1986 102 332 2013
Pm1s 100.8 231 196 10612 193 829 2878 147 452 2788
Pm1s 100.9 95 83 6750 105 551 1765 97 307 2058

Average 446 667 11988 264 1063 3111 221 794 3299

Table 3 Comparisons of (Metric-IP), (MIP-MaxCut) and (MIP-MaxCut-SBR) on rudy
sparse instances with n = 100.

(MIP-MaxCut) and (MIP-MaxCut-SBR) is tiny. Note that we have also run
(MIP-MaxCut-SBR) for solving one instance g05_60.0 with n = 60 of the
series with prefix g05 (i.e. unweighted graphs with an edge probability of 0.5)
which are known to be difficult to solve for LP-based approaches for Max-Cut.
The instance is solved optimally with a CPU time of 18627 seconds. The size of
the branch-and-bound search tree is 199457 nodes and only 2356 violated cycle
inequalities have been generated. Note that (Metric-IP) and (MIP-MaxCut)
are unable to solve this instance within 10 CPU hours.

4.3.3 Quadratic 0/1 programming instances.

Generation of instances. We consider several instances of the quadratic 0/1
programming problem from the BiqMac library [20]. These instances are rather
well solved by SDP-based solvers such as BiqMac [17] and BiqCrunch [14] but
known to be difficult for LP-based Max-Cut solvers. We particularly experi-
ment on two series of instances: bqp250 (n = 250) of density 0.1 generated by
Beasley [5]; be120 and be250 (n = 120 and 250) of densities respectively 0.3
and 0.1 generated by Billionnet and Elloumi [6].
Branch-and-Cut tuning. To set up the initial LP, the set S only contains
the triangle inequalities involving the binary variables z. Violated cycle in-
equalities are generated every ten nodes of the branch-and-bound tree.
Numerical results. The results are reported in Table 4. When the program
has not been able to solve the instance to optimality within ten CPU hours, all
the column values are represented by a ‘-’. We can see that on average (MIP-
MaxCut) significantly outperforms (Metric-IP) in all respects: the CPU time,
the number of nodes in the branch-and-bound search tree and the number of
cycle inequalities generated. (MIP-MaxCut) reduces the CPU times by a fac-
tor between two and four as compared to (Metric-IP). Finally, (MIP-MaxCut-
SBR) achieves the best performance. The special branching rule (SBR) re-
ally helps to improve (MIP-MaxCut), especially for hard instances such as
Bqp250.2 and Bqp250.4 which (MIP-MaxCut) could not solve within 10 CPU
hours. The performance of (MIP-MaxCut-SBR) regarding the CPU times is
quite satisfactory for a linear programming based algorithm compared to the
results reported in [7]. Moreover, the CPU times are in a ratio of 1:6 from the
easiest instance to the hardest one (in the same series) which indicates a rather

Linear size MIP formulation of Max-Cut 17

Instances
(Metric-IP) (MIP-MaxCut) (MIP-MaxCut-SBR)

CPU Nodes C-Ine CPU Nodes C-Ine CPU Nodes C-Ine

Be120.3.1 9652 1592 19934 2581 995 8494 2470 1011 8874
Be120.3.2 6734 1263 16609 2616 962 8260 2021 878 7851
Be120.3.3 5252 1273 15305 2210 867 7734 2193 908 7715
Be120.3.4 5036 1198 15925 2092 873 7172 1845 881 7067
Be120.3.5 13268 1923 25401 2420 959 7963 2743 1054 8813
Be120.3.6 7874 1431 19475 1898 829 7741 2048 846 7365
Be120.3.7 2240 804 10673 1100 701 5660 1071 679 5619
Be120.3.8 3991 1036 12443 1926 837 7819 1732 831 6828
Be120.3.9 - - - 9546 2756 18147 6403 2082 13381
Be120.3.10 6838 1489 16997 3475 1125 9504 2611 1002 8086

Average - - - 2986 1090 8849 2514 1017 8160

Be250.1 14515 1019 20894 6607 768 12499 6892 735 12797
Be250.2 - - - 27175 1883 25043 19285 1458 20339
Be250.3 30557 1394 29987 12016 1019 16469 12138 995 16320
Be250.4 22844 1168 25371 7795 794 15239 7670 800 12757

Average - - - 13398 1116 17313 11496 997 15553

Bqp250.1 25231 1306 26941 10042 928 16183 8809 852 14548
Bqp250.2 - - - - - - 28323 2057 22547
Bqp250.3 22504 1171 26928 9428 764 13334 9216 814 13293
Bqp250.4 - - - - - - 35956 2366 24110

Average - - - - - - 20576 1522 18625

Table 4 Numerical results on quadratic 0/1 programming sparse instances. Entries featur-
ing ‘-’ indicate that no exact solution could be obtained within 10 CPU hours.

stable behaviour. In any case, this ratio turns out to be much smaller than the
one observed for other LP-based or SDP-based algorithms for Max-Cut such
as those described for instance in [7], [8], [9], [14], [17].

4.4 Concluding remarks on numerical experiments

Our numerical experiments on various sparse instances of Max-Cut confirm
the positive impact of using (MIP-MaxCut) instead of (Metric-IP) for sparse
instances of Max-Cut. The fact that (MIP-MaxCut-SBR) achieves the best
performance on these instances confirms the theoretical relevance of the anal-
ysis leading to our Proposition 1 and its potential for suggesting ways of im-
proving practical algorithmic efficiency.

Conclusions

In this paper, a linear size MIP formulation for integer metric polyhedra has
been proposed and its application to the Max-Cut problem for sparse graphs
has been discussed. When the formulation is used for solving Max-Cut via
branch-and-bound, a detailed analysis has been carried out which reveals that
each step of branching amounts to implicitly imposing simultaneous satisfac-
tion of many cycle inequalities (those inequalities defining the metric poly-
hedron). Numerical experiments on a series of large size instances involving
sparse graphs have confirmed the efficiency of a standard branch-and-bound
procedure when applied to the formulation, even without resorting to any of
the advanced techniques usually required to cope with large size Max-Cut
instances. Among the perspectives thus opened to future investigations, it is
clear that further significant improvements in efficiency can be expected from
the combined use of the (MIP-MaxCut) formulation with some of the advanced
techniques available in the literature, such as: the use of the Volume Algorithm

18 Viet Hung Nguyen, Michel Minoux

in line with [3], [4] or the contraction-lifting approach from [9]. Implementing
such combined procedures can easily be achieved as suggested by Corollary 3.

Acknowledgements We would like to thank one anonymous referee for his/her helpful
comments to improve the presentation of the paper.

References

1. Barahona, F.: On cuts and matchings in planar graphs. Math. Prog. 60, 53–68 (1993)
2. Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Prog. 36, 157–173 (1986)
3. Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with a

subgradient method. Math. Prog. 87(3), 385–399 (2000)
4. Barahona, F., Ladányi, L.: Branch and cut based on the volume algorithm: Steiner trees

in graphs and max-cut. RAIRO-Oper. Res. 40(1), 53–73 (2006)
5. Beasley, J.: Or-library. Tech. rep. (1990)
6. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for

the unconstrained quadratic 0-1 problem. Mathematical Programming 109(1), 55–
68 (2007). DOI 10.1007/s10107-005-0637-9. URL https://doi.org/10.1007/s10107-005-
0637-9

7. Bonato, T.: Contraction-based Separation and Lifting for Solving the Max-Cut Prob-
lem. PhD Thesis, University of Heidelberg (2011). URL https://archiv.ub.uni-
heidelberg.de/volltextserver/12289/

8. Bonato, T.: Contraction-based Separation and Lifting for Solving the Max-cut Problem.
Optimus-Verlag (2011). URL https://books.google.fr/books?id=7ARLMwEACAAJ

9. Bonato, T., Jünger, M., Reinelt, G., Rinaldi, G.: Lifting and Separation Procedures for
the Cut Polytope. Math. Prog. 146(1–2), 351–378 (2014)

10. De Simone, C.: The cut polytope and the Boolean quadric polytope. Discrete Mathe-
matics 79(1), 71–75 (1990). DOI 10.1016/0012-365X(90)90056-N

11. Frangioni, A., Lodi, A., Rinaldi, G.: New approaches for optimizing over the semimetric
polytope. Math. Prog. 104(2-3), 375–388 (2005)

12. Hammer, P.L.: Some Network Flow Problems Solved with Pseudo-Boolean Program-
ming. Oper. Res. (1965). DOI 10.1287/opre.13.3.388

13. Helmberg, C.: A Cutting Plane Algorithm for Large Scale Semidefinite Relaxations,
chap. 15, pp. 233–256. SIAM (2004)

14. Krislock, N., Malick, J., Roupin, F.: Improved semidefinite bounding procedure for
solving Max-Cut problems to optimality. Mathematical Programming 143(1-2), 61–
86 (2014). DOI 10.1007/s10107-012-0594-z. URL https://hal.archives-ouvertes.fr/hal-
00665968

15. Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing Exact Ground States of Hard
Ising Spin Glass Problems by Branch-and-Cut, pp. 47–69. Wiley (2005)

16. Nguyen, V.H., Minoux, M., Nguyen, D.P.: Reduced-size formulations for metric and cut
polyhedra in sparse graphs. Networks 69(1), 142–150 (2017)

17. Rendl, F., Rinaldi, G., Wiegele, A.: Solving Max-Cut to optimality by intersecting
semidefinite and polyhedral relaxations. Math. Program. 121(2), 307 (2008). DOI
10.1007/s10107-008-0235-8

18. Rinaldi, G.: Rudy, a graph generator. Tech. rep. (1998). URL http://www-user.tu-
chemnitz.de/∼helmberg/rudy.tar.gz

19. Sherali, H.D., Adams, W.P.: A Hierarchy of Relaxations between the Continuous and
Convex Hull Representations for Zero-One Programming Problems. SIAM J. Discrete
Math. (2006). DOI 10.1137/0403036

20. Wiegele, A.: Biq mac library—a collection of max-cut and quadratic 0-1 pro-
gramming instances of medium size. Tech. rep. (2007). URL http://biqmac.uni-
klu.ac.at/biqmaclib.html

Linear size MIP formulation of Max-Cut 19

A Proof of the first part of Lemma 1[16]

Let F = {f1, . . . , fp} ⊆ C be any odd subset of C. We will show that x|E satisfies

x(F)− x(C \ F) ≤ p− 1.

For brevity, we will refer to the triangle (1, i, i + 1) as “triangle i“ with 2 ≤ i ≤ k − 1. The
edges 1i, i(i+ 1), 1(i+ 1) will be respectively referred to as the left edge, middle edge, right
edge of triangle i (in the system stated just before the statement of Lemma 1, the notation
”a“ stands for ”all“, and (a,i) refers to the inequality related to triangle i for which all edges
are involved with positive coefficients; l, r, and m stand for ”left“, ”right“, and ”middle“
respectively and the inequalties are labelled (l,i), (r,i) or (m,i) depending on which edge is
involved with positive coefficient). Now, for each triangle i with 2 ≤ i ≤ k− 1, let us choose
one and exactly one of inequalities (a,i), (l,i), (r,i) and (m,i) according to the following rule:

– if the middle edge i(i + 1) is an edge fq ∈ F with q odd, choose inequality (m,i),
– if the middle edge i(i + 1) is an edge fq ∈ F with q even, choose inequality (a,i),
– if the middle edge i(i+1) ∈ C \F , then by scaning clockwise the edges of C from i(i+1)

until reaching the node 1, we may or may not meet edges in F . In the former case, let
fq ∈ F be the first edge in F that we meet.
– If fq exists and q is odd, choose inequality (r,i),
– If fq does not exist or fq exists and q is even, choose inequality (l,i).

We are going to show that the sum over i = 2, . . . , k− 1 of the inequalities chosen according
to the above rule gives inequality (13). Let us consider first any edge 1j (3 ≤ j ≤ k − 1)
which is in En \ E and show that x1j vanishes in the sum. Note that x1j appears only in
two chosen inequalities which correspond respectively to the triangles j−1 and j. There are
four possible cases:

– (j− 1)j and j(j + 1) /∈ F , hence the two chosen inequalities for the triangles j− 1 and j
are of the same type: either (l,j-1) and (l,j) or (r,j-1) and (r,j). In both cases, the signs
of x1j in these two inequalites are opposite.

– (j − 1)j is an edge fq ∈ F and j(j + 1) ∈ C \ F . If q is even, then the two chosen
inequalities are (a,j-1) and (r,j) in which the signs of x1j are opposite. If q is odd,
then the two chosen inequalities are (m,j-1) and (l,j) in which the signs of x1j are also
opposite.

– (j − 1)j ∈ C \ F and j(j + 1) is an edge fq ∈ F . If q is even, then the two chosen
inequalities are (l,j-1) and (a,j) in which the signs of x1j are opposite. If q is odd, then
the two chosen inequalities are (r,j-1) and (m,j) in which the sign of x1j are also opposite.

– both (j − 1)j and j(j + 1) are in F . Let (j − 1)j = fq ∈ F . If q is even, then the two
chosen inequalities are (a,j-1) and (m,j) in which the signs of x1j are opposite. Similarly,
if q is odd, then the two chosen inequalities are (m,j-1) and (a,j) in which the signs of
x1j are opposite.

In all cases, the signs of x1j in the two chosen inequalities containing it are opposite, thus
x1j vanishes in the sum.
For any edge e ∈ C \ {12, (k− 1)k}, xe appears only in one of the chosen inequalities which
corresponds to the triangle having e as the middle edge. The edges 12 and (k − 1)k also
appear only once, respectively in the inequalities corresponding to the triangles 2 and k−1.
It is then clear that for any edge e ∈ C the coefficient of xe in the sum is 1 if e ∈ F and −1
if e ∈ C \ F .
It remains to show that the sum of the right hand sides is p−1. We can see that the only cho-
sen inequalities with non-zero right hand side are of type (a,i), i.e., the ones corresponding

to the triangles having fq ∈ F with q even as the middle edge. There are clearly p−1
2

such in-
equalities with 2 as the right hand side. The proof of the first part of the lemma is then done.

