J. R. Jones, Review of Bioactive Glass: From Hench to Hybrids, Acta Biomaterialia, vol.2013, issue.1, pp.4457-4486

L. L. Hench, The Story of Bioglass®, J Mater Sci: Mater Med, vol.17, issue.11, pp.967-978, 2006.

W. Bae, K. Min, J. Kim, J. Kim, H. Kim et al., Odontogenic Responses of Human Dental Pulp Cells to Collagen/Nanobioactive Glass Nanocomposites, Dental Materials, vol.28, issue.12, pp.1271-1279, 2012.

B. Sarker, J. Hum, S. N. Nazhat, and A. R. Boccaccini, Combining Collagen and Bioactive Glasses for Bone Tissue Engineering: A Review, Advanced Healthcare Materials, vol.4, issue.2, pp.176-194, 2015.

J. Zamet,

U. R. Darbar, G. S. Griffiths, J. S. Bulman, U. Brägger, W. Bürgin et al., Particulate Bioglass® as a Grafting Material in the Treatment of Periodontal Intrabony Defects, Journal of Clinical Periodontology, vol.24, issue.6, pp.410-418, 1997.

A. M. Gatti, L. A. Simonetti, E. Monari, S. Guidi, and D. Greenspan, Bone Augmentation with Bioactive Glass in Three Cases of Dental Implant Placement, Journal of Biomaterials Applications, vol.20, issue.4, pp.325-339, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00570766

M. Zehnder, E. Söderling, J. Salonen, and T. Waltimo, Preliminary Evaluation of Bioactive Glass S53P4 as an Endodontic Medication In Vitro, Journal of Endodontics, vol.30, issue.4, pp.220-224, 2004.

T. Waltimo, T. J. Brunner, M. Vollenweider, W. J. Stark, and M. Zehnder, Antimicrobial Effect of Nanometric Bioactive Glass 45S5, J Dent Res, vol.86, issue.8, pp.754-757, 2007.

R. Li, A. E. Clark, and L. L. Hench, An Investigation of Bioactive Glass Powders by Sol-Gel Processing, J. App. Biomater, vol.2, issue.4, pp.231-239, 1991.

C. Vichery and J. Nedelec, Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications, Materials, vol.2016, issue.4, p.288
URL : https://hal.archives-ouvertes.fr/hal-01311764

P. Saravanapavan and L. L. Hench, Low-Temperature Synthesis, Structure, and Bioactivity of Gel-Derived Glasses in the Binary CaO-SiO2 System, Journal of Biomedical Materials Research, vol.54, issue.4, pp.608-618, 2001.

A. Martínez, I. Izquierdo-barba, and M. Vallet-regí, Bioactivit o a CaO?SiO 2 Binary Glasses System, Chemistry of Materials, vol.12, issue.10, pp.3080-3088, 2000.

J. R. Jones, L. M. Ehrenfried, and L. L. Hench, Optimising Bioactive Glass Scaffolds for Bone Tissue Engineering, Biomaterials, vol.27, issue.7, pp.964-973, 2006.

P. Sepulveda, J. R. Jones, and L. L. Hench, Bioactive Sol-Gel Foams for Tissue Repair, Journal of Biomedical Materials Research, vol.59, issue.2, pp.340-348, 2002.

E. M. Christenson, K. S. Anseth, J. J. Van-den-beucken, C. K. Chan, B. Ercan et al., Nanobiomaterial Applications in Orthopedics, J. Orthop. Res, vol.25, issue.1, pp.11-22, 2007.

C. Yao, V. Perla, J. L. Mckenzie, E. B. Slamovich, and T. J. Webster, Anodized Ti and Ti6Al4V Possessing Nanometer Surface Features Enhances Osteoblast Adhesion, Int. J. Nanomedecine, vol.2, issue.3, pp.487-492, 2007.

T. J. Webster, L. S. Schadler, R. W. Siegel, and R. Bizios, Mechanisms of Enhanced Osteoblast Adhesion on Nanophase Alumina Involve Vitronectin, Tissue Eng, vol.7, issue.3, pp.291-301, 2001.

J. P. Fan, P. Kalia, L. Di-silvio, and J. Huang, In Vitro Response of Human Osteoblasts to Multi-Step Sol-Gel Derived Bioactive Glass Nanoparticles for Bone Tissue Engineering, Materials Science and Engineering, vol.36, pp.206-214, 2014.

W. Y. Gong, Y. M. Dong, X. F. Chen, and B. Karabucak, Nano-Sized 58S Bioactive Glass Enhances Proliferation and Osteogenic Genes Expression of Osteoblast-like Cells, Chin. J. Dent. Res, vol.2012, issue.2, pp.145-152

M. Mozafari, M. Rabiee, M. Azami, and S. Maleknia, Biomimetic Formation of Apatite on the Surface of Porous Gelatin/Bioactive Glass Nanocomposite Scaffolds, Applied Surface Science, vol.257, issue.5, pp.1740-1749, 2010.

S. I. Roohani-esfahani, S. Nouri-khorasani, Z. F. Lu, R. C. Appleyard, and H. Zreiqat, Effects of Bioactive Glass Nanoparticles on the Mechanical and Biological Behavior of Composite Coated Scaffolds, Acta Biomaterialia, vol.7, issue.3, pp.1307-1318, 2011.

C. Wang, H. Shen, Y. Tian, Y. Xie, A. Li et al., Bioactive Nanoparticle-Gelatin Composite Scaffold with Mechanical Performance Comparable to Cancellous Bones, ACS Applied Materials & Interfaces, vol.6, issue.15, pp.13061-13068, 2014.

B. Lei, X. Chen, X. Han, and J. Zhou, Versatile Fabrication of Nanoscale Sol-Gel Bioactive Glass Particles for Efficient Bone Tissue Regeneration, Journal of Materials Chemistry, vol.2012, issue.33, p.16906

W. Stöber, A. Fink, and E. Bohn, Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, Journal of Colloid and Interface Science, vol.26, issue.1, pp.62-69, 1968.

S. Lin, C. Ionescu, K. J. Pike, M. E. Smith, and J. R. Jones, Nanostructure Evolution and Calcium Distribution in Sol-Gel Derived Bioactive Glass, J. Mater. Chem, vol.19, issue.9, pp.1276-1282, 2009.

A. A. El-rashidy, G. Waly, A. Gad, A. A. Hashem, P. Balasubramanian et al., Preparation and in Vitro Characterization of Silver-Doped Bioactive Glass Nanoparticles Fabricated Using a Sol-Gel Process and Modified Stöber Method, Journal of Non-Crystalline Solids, vol.483, pp.26-36, 2018.

A. A. Oliveira, D. A. Souza, L. L. Dias, S. M. Carvalho, H. S. Mansur et al., Characterization and Cytocompatibility of Spherical Bioactive Glass Nanoparticles for Potential Hard Tissue Engineering Applications, Biomed. Mater, vol.8, issue.2, p.25011, 2013.

X. Kesse, C. Vichery, and J. Nedelec, Deeper Insights into a Bioactive Glass Nanoparticle Synthesis Protocol To Control Its Morphology, Dispersibility, and Composition, ACS Omega, vol.2019, issue.3, pp.5768-5775
URL : https://hal.archives-ouvertes.fr/hal-02078624

T. Kokubo, H. Kim, and M. Kawashita, Novel Bioactive Materials with Different Mechanical Properties. Biomaterials, vol.24, issue.13, pp.2161-2175, 2003.

P. Sepulveda, J. R. Jones, and L. L. Hench, Characterization of Melt-Derived 45S5 and Sol-Gel-Derived 58S Bioactive Glasses, Journal of Biomedical Materials Research, vol.58, issue.6, pp.734-740, 2001.

E. Leonova, I. Izquierdo-barba, D. Arcos, A. López-noriega, N. Hedin et al., Multinuclear Solid-State NMR Studies of Ordered Mesoporous Bioactive Glasses, J. Phys. Chem. C, issue.14, pp.5552-5562, 2008.

K. Mackenzie and M. E. Smith, Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials, vol.6, 2002.

H. G. Lechert, D. Engelhardt-und, and . Michel, High Resolution Solid State NMR of Silicates and Zeolites, 1987.

H. Aguiar, J. Serra, P. González, and B. León, Structural Study of Sol-Gel Silicate Glasses by IR and Raman Spectroscopies, Journal of Non-Crystalline Solids, vol.355, issue.8, pp.475-480, 2009.

J. Román, S. Padilla, and M. Vallet-regí, Sol?Gel Glasses as Precursors o Bioactive Glass Ceramics, Chem. Mater, vol.15, issue.3, pp.798-806, 2003.

A. J. Salinas, M. Vallet-regi, and I. Izquierdo-barba, Biomimetic Apatite Deposition on Calcium Silicate Gel Glasses, Journal of Sol-Gel Science and Technology, vol.21, issue.1, pp.13-25, 2001.

K. Glock, O. Hirsch, P. Rehak, B. Thomas, and C. Jäger, Novel Opportunities for Studying the Short and Medium Range Order of Glasses by MAS NMR, 29Si Double Quantum NMR and IR Spectroscopies, Journal of Non-Crystalline Solids, pp.113-118, 1998.

T. Hayashi and H. Saito, Preparation of CaO-SiO 2 Glasses by the Gel Method, J Mater Sci, vol.15, issue.8, pp.1971-1977, 1980.

A. Meiszterics, L. Rosta, H. Peterlik, J. Rohonczy, S. Kubuki et al., Structural Characterization of Gel-Derived Calcium Silicate Systems, J. Phys. Chem. A, vol.2010, issue.38, pp.10403-10411

K. Zheng, A. Solodovnyk, W. Li, O. Goudouri, C. Stähli et al., Aging Time and Temperature Effects on the Structure and Bioactivity of Gel-Derived 45S5 Glass-Ceramics, J. Am. Ceram. Soc, vol.98, issue.1, pp.30-38, 2015.

F. E. Ciraldo, E. Boccardi, V. Melli, F. Westhauser, and A. R. Boccaccini, Tackling Bioactive Glass Excessive in Vitro Bioreactivity: Preconditioning Approaches for Cell Culture Tests, Acta Biomaterialia, vol.75, pp.3-10, 2018.

D. Bellucci, V. Cannillo, A. Sola, F. Chiellini, M. Gazzarri et al., Macroporous Bioglass®-Derived Scaffolds for Bone Tissue Regeneration, Ceramics International, vol.37, issue.5, pp.1575-1585, 2011.