P. Cannarsa, V. Komornik, and P. Loreti, One-sided and internal controllability of semilinear wave equations with infinitely iterated logarithms, Discrete & Continuous Dynamical Systems - A, vol.8, issue.3, pp.745-756, 2002.

T. Cazenave and A. Haraux, Équations d'évolution avec non linéarité logarithmique, Annales de la faculté des sciences de Toulouse Mathématiques, vol.2, issue.1, pp.21-51, 1980.

N. Cîndea, E. Fernández-cara, and A. Münch, Numerical controllability of the wave equation through primal methods and Carleman estimates, ESAIM: Control, Optimisation and Calculus of Variations, vol.19, issue.4, pp.1076-1108, 2013.

J. Coron, Control and Nonlinearity, Control and nonlinearity, vol.136, 2009.

J. Coron and E. Trélat, GLOBAL STEADY-STATE STABILIZATION AND CONTROLLABILITY OF 1D SEMILINEAR WAVE EQUATIONS, Communications in Contemporary Mathematics, vol.08, issue.04, pp.535-567, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00086370

P. Deuflhard, Newton Methods for Nonlinear Problems, Affine invariance and adaptive algorithms, vol.35, 2011.

E. Fernández-cara and A. Münch, Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods, Mathematical Control & Related Fields, vol.2, issue.3, pp.217-246, 2012.

J. Lemoine, I. Gayte, and A. Münch, Approximation of nulls controls for semilinear heat equations using a least-squares approach

J. Lemoine, A. Münch, and P. Pedregal, Analysis of Continuous $$H^{-1}$$ H - 1 -Least-Squares Methods for the Steady Navier?Stokes System, Applied Mathematics & Optimization, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01774607

J. Lemoine, A. Münch, and P. Pedregal, Analysis of Continuous $$H^{-1}$$ H - 1 -Least-Squares Methods for the Steady Navier?Stokes System, Applied Mathematics & Optimization, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01774607

L. Li and X. Zhang, Exact Controllability for Semilinear Wave Equations, Journal of Mathematical Analysis and Applications, vol.250, issue.2, pp.589-597, 2000.

J. Lions, Contrôlabilité exacte, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, vol.1, 1988.

A. Münch and P. Pedregal, Numerical null controllability of the heat equation through a least squares and variational approach, European Journal of Applied Mathematics, vol.25, issue.3, pp.277-306, 2014.

P. Saramito, A damped Newton algorithm for computing viscoplastic fluid flows, Journal of Non-Newtonian Fluid Mechanics, vol.238, pp.6-15, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01228347

X. Zhang, Explicit observability estimate for the wave equation with potential and its application, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol.456, issue.1997, pp.1101-1115, 2000.

E. Zuazua, Exact boundary controllability for the semilinear wave equation, in Nonlinear partial differential equations and their applications, Pitman Res. Notes Math. Ser., Longman Sci. Tech, vol.220, pp.357-391, 1991.

E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.10, issue.1, pp.109-129, 1993.