J. C. Alt, E. M. Schwarzenbach, G. L. Früh-green, W. C. Shanks, S. M. Bernasconi et al., The role of serpentinites in cycling of carbon and sulfur: Seafloor serpentinization and subduction metamorphism, Lithos, vol.178, pp.40-54, 2013.

M. Andreani, I. Daniel, and M. Pollet-villard, Aluminum speeds up the hydrothermal alteration of olivine, American Mineralogist, vol.98, pp.1738-1744, 2013.

V. E. Bean, S. Akimoto, P. M. Bell, S. Block, W. B. Holzapfel et al., Another step toward an international practical pressure scale. Phys. B+C 139-140, pp.90521-90529, 1986.

A. Benard, A. B. Woodland, R. J. Arculus, O. Nebel, and S. R. Mcalpine, Variation in sub-arc mantle oxygen fugacity during partial melting recorded in refractory peridotite xenoliths from the West Bismarck Arc, Chem. Geol, vol.486, pp.16-30, 2018.

A. J. Berry, G. A. Stewart, H. S. O'neill, G. Mallmann, and J. F. Mosselmans, 825 A re-assessment of the oxidation state of iron in MORB glasses. Earth and Planetary 826 Science Letters, vol.483, pp.114-123, 2018.

A. Bézos and E. Humler, The Fe 3+ /?Fe ratios of MORB glasses and their implications for mantle melting, Geochim. Cosmochim. Acta, vol.69, pp.711-725, 2005.

K. Bose and A. Navrotsky, Thermochemistry and phase equilibria of hydrous phases in the system MgO-SiO2-H2O: Implications for volatile transport to the mantle, J. Geophys. Res, vol.103, p.9713, 1998.

N. W. Bliss and W. H. Maclean, The paragenesis of zoned chromite from central Manitoba, Geochem. Cosmochim. Acta, vol.39, pp.973-990, 1975.

H. Bureau and H. Keppler, Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications, Earth Planet. Sci. Lett, vol.165, pp.187-196, 1999.

D. Burkhard, Accessory chromium spinels: Their coexistence and alteration in serpentinites, Geoch. Cosmoch. Acta, vol.37, p.1297406, 1993.

A. Burgisser and B. Scaillet, Redox evolution of a degassing magma rising to the surface, Nature, vol.445, pp.194-197, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00125264

A. D. Brandon and D. S. Draper, Constraints on the origin of the oxidation state of mantle overlying subduction zones: An example from Simcoe, Geochim. Cosmochim. Acta, vol.60, pp.1739-1749, 1996.

G. P. Brey and T. Köhler, Geothermobarometry in Four-phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers, J. Petrol, vol.31, pp.1353-1378, 1990.

G. D. Bromiley and A. R. Pawley, The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O (MASH): The effects of Al3+substitution on high-pressure stability, Am. Mineral, vol.88, pp.99-108, 2003.

M. N. Brounce, K. A. Kelley, and E. Cottrell, Variations in Fe3+/Sigma Fe of Mariana Arc Basalts and Mantle Wedge fO(2), J. Petrol, vol.55, pp.2513-2536, 2014.

M. Cannat, D. Bideau, and R. Hébert, Plastic deformation and magmatic impregnation in serpentinized ultramafic rocks from the Garrett transform fault, 1990.

. Sci and . Lett, , vol.101, pp.216-232

G. Capitani and M. Mellini, The modulated crystal structure of antigorite: the m = 17 polysome, Am Mineral, vol.89, pp.147-158, 2004.

I. S. Carmichael, The redox states of basic and silicic magmas: a reflection of their source regions?, Contrib. to Mineral. Petrol, vol.106, pp.129-141, 1991.

E. Cottrell and K. A. Kelley, The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle, Earth Planet. Sci. Lett, vol.305, pp.270-282, 2011.

D. L. De-faria, S. Silva, and M. T. De-oliveira, Raman micro spectroscopy of some iron oxides and oxyhydroxides, J. Raman Spectrosc, vol.28, pp.873-878, 1997.

B. Debret, M. Andreani, M. Muñoz, N. Bolfan-casanova, J. Carlut et al., Evolution of Fe redox state in serpentine during subduction, Earth Planet. Sci, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01134258

. Lett, , vol.400, pp.206-218

B. Debret, N. Bolfan-casanova, J. A. Padrón-navarta, F. Martin-hernandez, M. Andreani et al., Redox state of iron during high-pressure serpentinite dehydration, Contrib. to Mineral. Petrol, vol.169, p.36, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01172310

B. Debret, M. Millet, M. Pons, P. Bouilhol, E. Inglis et al., Isotopic evidence for iron mobility during subduction, Geology, vol.44, pp.215-218, 2016.

B. Debret and D. A. Sverjensky, Highly oxidising fluids generated during serpentinite breakdown in subduction zones, Sci. Rep, vol.7, p.10351, 2017.

F. Deschamps, S. Guillot, M. Godard, C. Chauvel, M. Andreani et al., In situ characterization of serpentinites from forearc mantle wedges: Timing of serpentinization and behavior of fluid-mobile elements in subduction zones, Chem. Geol, vol.269, pp.262-277, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00475565

B. Evans, W. Johannes, H. Oterdoom, and V. Trommsdorff, Stability of crystotile and serpentinite in the serpentine multisystem, Schweiz. Mineral. Petrogr. Mitt, vol.56, pp.79-93, 1976.

B. W. Evans and V. Trommsdorff, Petrogenesis of garnet lherzolite, Earth Planet. Sci. Lett, vol.40, pp.333-348, 1978.

K. A. Evans, Redox decoupling and redox budgets: Conceptual tools for the study of earth systems, Geology, vol.34, pp.489-492, 2006.

K. A. Evans, The redox budget of subduction zones, Earth-Science Rev, vol.113, pp.11-32, 2012.

K. A. Evans and A. G. Tomkins, The relationship between subduction zone redox budget and arc magma fertility, Earth Planet. Sci. Lett, vol.308, pp.401-409, 2011.

K. A. Evans, S. M. Reddy, A. G. Tomkins, R. J. Crossley, and B. R. Frost, Effects of geodynamic setting on the redox state of fluids released by subducted mantle lithosphere, Lithos, pp.26-42, 2017.

K. A. Evans and R. Powell, The effect of subduction on the sulphur, carbon and redox budget of lithospheric mantle, J. Metamorph. Geol, vol.33, pp.649-670, 2015.

M. L. Frezzotti and S. Ferrando, The chemical behavior of fluids released during deep subduction based on fluid inclusions, Am. Miner, vol.100, pp.352-377, 2015.

P. Fumagalli and S. Poli, Experimentally Determined Phase Relations in Hydrous Peridotites to 6, 2005.

, GPa and their Consequences on the Dynamics of Subduction Zones, J. Petrol, vol.46, pp.555-578

G. A. Gaetani and T. L. Grove, The influence of water on melting of mantle peridotite, Contrib. to Mineral. Petrol, vol.131, pp.323-346, 1998.

C. J. Garrido, L. Sánchez-vizcaíno, V. Gómez-pugnaire, M. T. Trommsdorff, V. Alard et al., Enrichment of HFSE in chlorite-harzburgite produced by highpressure dehydration of antigorite-serpentinite: Implications for subduction magmatism, 2005.

G. Geochemistry, , vol.6

T. Gasparik, Phase Diagrams for Geoscientists: An Atlas of the Earth's Interior, 2003.

M. Gaborieau, M. Laubier, N. Bolfan-casanova, C. A. Mccammon, D. Vantelon et al., Determination of Fe 3+ /?Fe of olivine-hosted melt inclusions using Mössbauer and XANES spectroscopy, 2020.

F. Gervilla, J. A. Padrón-navarta, T. Kerestedjian, I. Sergeeva, J. M. González-jiménez et al., Formation of ferrian chromite in podiform chromitites from the Golyamo Kamenyane serpentinite, Contrib. Mineral. Petrol, vol.164, pp.643-657, 2012.

T. L. Grove, N. Chatterjee, S. W. Parman, and E. Médard, The influence of H2O on mantle wedge melting, Earth Planet. Sci. Lett, vol.249, pp.74-89, 2006.

S. Guillot, K. H. Hattori, and J. De-sigoyer, Mantle wedge serpentinization and exhumation of eclogites: Insights from eastern Ladakh, northwest Himalaya, Geology, vol.28, p.199, 2000.

S. Guillot, S. Schwartz, B. Reynard, P. Agard, and C. Prigent, Tectonic significance of serpentinites, Tectonophysics, vol.646, pp.1-19, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01406783

J. Hernlund, K. Leinenweber, D. Locke, and J. A. Tyburczy, A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies, American Mineralogist, vol.91, pp.295-305, 2006.

T. J. Holland, R. Powell, E. Sciences, and C. Cb, An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol, vol.16, pp.309-343, 1998.

K. A. Kelley and E. Cottrell, The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma, Earth Planet. Sci. Lett. 329, vol.330, pp.109-121, 2012.

K. A. Kelley and E. Cottrell, Water and the oxidation state of subduction zone magmas, Science, vol.325, pp.605-607, 2009.

F. Klein, W. Bach, S. E. Humphris, W. A. Kahl, N. Jons et al., Magnetite in seafloor serpentinite--Some like it hot, Geology, vol.42, pp.135-138, 2014.

F. Klein, H. R. Marschall, S. A. Bowring, S. E. Humphris, and G. Horning, Mid-ocean Ridge Serpentinite in the Puerto Rico Trench: from Seafloor Spreading to Subduction, Journal of Petrology, vol.58, pp.1729-1754, 2017.

C. T. Lee, W. P. Leeman, D. Canil, and Z. X. Li, Similar V/Sc systematics in 935 MORB and arc basalts: Implications for the oxygen fugacities of their mantle source 936 regions, Journal of Petrology, vol.46, issue.11, pp.2313-2336, 2005.

C. T. Lee, P. Luffi, V. Le-roux, R. Dasgupta, F. Albaréde et al., The 938 redox state of arc mantle using Zn/Fe systematics, Nature, vol.468, pp.681-685, 2010.

,

J. Li, Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective, Nat. Commun, vol.11, 2020.

L. Sánchez-vizcaíno, V. Trommsdorff, V. Gómez-pugnaire, M. T. Garrido, C. J. Müntener et al., Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite, S. Spain). Contrib. to Mineral. Petrol, vol.149, pp.627-646, 2005.

B. Malvoisin, J. Carlut, and F. Brunet, Serpentinization of oceanic peridotites: 1. A high-sensitivity method to monitor magnetite production in hydrothermal experiments, J. Geophys. Res, vol.117, p.1104, 2012.
URL : https://hal.archives-ouvertes.fr/insu-01571081

C. Marcaillou, M. Munoz, O. Vidal, T. Parra, and M. Harfouche, Mineralogical evidence for H2 degassing during serpentinization at 300°C/300bar, Earth and Planetary Science Letters, vol.303, pp.281-290, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00681011

J. Maurice, N. Bolfan-casanova, J. A. Padrón-navarta, G. Manthilake, T. Hammouda et al., The stability of hydrous phases beyond antigorite breakdown for a magnetitebearing natural serpentinite between 6.5 and 11 GPa, Contrib. to Mineral. Petrol, vol.173, p.86, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01900336

M. Mellini, V. Trommsdorff, and R. Compagnoni, Antigorite polysomatism -behavior during progressive metamorphism, Contrib. Mineral. Petrol, vol.97, pp.147-155, 1987.

M. Merkulova, M. Muñoz, O. Vidal, and F. Brunet, Role of iron content on serpentinite dehydration depth in subduction zones: Experiments and thermodynamic modeling, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02128346

M. V. Merkulova, M. Muñoz, F. Brunet, O. Vidal, K. Hattori et al., Experimental insight into redox transfer by iron-and sulfur-bearing serpentinite dehydration in subduction zones, Earth Planet. Sci. Lett, vol.479, pp.133-143, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01689753

C. Mével, Serpentinization of abyssal peridotites at mid-ocean ridges, Comptes Rendus Geoscience, vol.335, pp.825-852, 2003.

L. Morten, E. ;. Puga, and J. Dostal, Blades of olivines and ortho-dissolved lithium in the oceans. Geochim. Cosmochim. pyroxenes in ultramafic rocks from the Cerro del Almirez, Spain: relics of quench-textured Strong, vol.48, pp.211-218, 1980.

K. Niida and D. H. Green, Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions, Contrib. to Mineral. Petrol, vol.135, 1999.

U. Nitsan, Stability field of olivine qwith respect to oxidation and reduction, Journal of Geophysical Research, vol.79, pp.706-711, 1974.

O. Stc, The quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energies of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4), Am Mineral, vol.72, pp.67-74, 1987.

O. Oufi, M. Cannat, and H. Horen, Magnetic properties of variably serpentinized abyssal peridotites, J. Geophys. Res, vol.107, p.381, 2002.
URL : https://hal.archives-ouvertes.fr/insu-02177970

J. A. Padrón-navarta, J. Hermann, C. J. Garrido, L. Sánchez-vizcaíno, V. Gómez-pugnaire et al., An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite, Contrib. to Mineral. Petrol, vol.159, pp.25-42, 2010.

J. A. Padrón-navarta, L. Sanchez-vizcaino, V. Garrido, C. J. Gomez-pugnaire, and M. T. , Metamorphic Record of High-pressure Dehydration of Antigorite Serpentinite to Chlorite Harzburgite in a Subduction Setting (Cerro del Almirez, Nevado-Filabride Complex, Southern Spain), J. Petrol, vol.52, pp.2047-2078, 2011.

J. A. Padrón-navarta, L. Sánchez-vizcaíno, V. Garrido, C. J. Gómez-pugnaire, M. T. Jabaloy et al., Highly ordered antigorite from Cerro del Almirez HP-HT serpentinites, Contributions to Mineralogy and Petrology, vol.156, issue.5, pp.679-688, 2008.

J. A. Padrón-navarta, A. Tommasi, C. J. Garrido, V. L. Sanchez-vizcaino, M. T. Gomez-pugnaire et al., Fluid transfer into the wedge controlled by high-pressure hydrofracturing in the cold top-slab mantle, Earth Planet. Sci. Lett, vol.297, pp.271-286, 2010.

J. A. Padrón-navarta, V. L. Sánchez-vizcaíno, J. Hermann, J. Connolly, C. J. Garrido et al., Tschermak's substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites, Lithos, vol.178, pp.186-196, 2013.

I. J. Parkinson and R. J. Arculus, The redox state of subduction zones: insights from arc-peridotites, 1999.

, Chem. Geol, vol.160, pp.409-423

P. Philippot and J. Selverstone, Trace-element-rich brines in eclogitic veins -Implications for fluid composition and transport during subduction, Contrib. Mineral. Petrol, vol.106, pp.417-430, 1991.

T. Plank and C. H. Langmuir, The chemical composition of subducting sediment and its consequences for the crust and mantle, Chem. Geol, vol.145, pp.325-394, 1998.

C. R. Ranero, J. P. Morgan, K. Mcintosh, and C. Reichert, Bending-related faulting and mantle serpentinization at the Middle America trench, Nature, vol.425, pp.367-373, 2003.

B. Reynard, Serpentine in active subduction zones, Lithos, vol.178, pp.171-185, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02108176

M. Scambelluri, T. Pettke, E. Rampone, M. Godard, and E. Reusser, Petrology and trace element budgets of high-pressure peridotites indicate subduction dehydration of serpentinized mantle, Journal of Petrology, vol.55, pp.459-498, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01054319

M. W. Schmidt and S. Poli, Devolatization during subduction. In: Rudnick RL (ed) The crust. Treatise on geochemistry, pp.669-70, 2014.

S. Schwartz, S. Guillot, B. Reynard, R. Lafay, B. Debret et al., Pressure-temperature estimates of the lizardite/antigorite transition in high pressure olivine and orthopyroxene at 1173, 1273 and 1423 K and 1.6 GPa, Contrib. to Mineral. Petrol, vol.113, pp.196-207, 2013.

D. L. Whitney and B. W. Evans, Abbreviations for names of rock-forming minerals, American Mineralogist, vol.95, pp.185-187, 2009.

B. Wunder and W. Schreyer, Antigorite: High-pressure stability in the system MgO-SiO2-H2O (MSH), Lithos, vol.41, pp.213-227, 1997.

J. Zhang, B. Li, W. Utsumi, and R. Liebermann, In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics, Phys. Chem. Miner, vol.23, pp.1-10, 1996.