Skip to Main content Skip to Navigation
Journal articles

Conserved Small Nucleotidic Elements at the Origin of Concerted piRNA Biogenesis from Genes and lncRNAs

Abstract : PIWI-interacting RNAs (piRNAs) target transcripts by sequence complementarity serving as guides for RNA slicing in animal germ cells. The piRNA pathway is increasingly recognized as critical for essential cellular functions such as germline development and reproduction. In the Anopheles gambiae ovary, as much as 11% of piRNAs map to protein-coding genes. Here, we show that ovarian mRNAs and long non-coding RNAs (lncRNAs) are processed into piRNAs that can direct other transcripts into the piRNA biogenesis pathway. Targeting piRNAs fuel transcripts either into the ping-pong cycle of piRNA amplification or into the machinery of phased piRNA biogenesis, thereby creating networks of inter-regulating transcripts. RNAs of the same network share related genomic repeats. These repeats give rise to piRNAs, which target other transcripts and lead to a cascade of concerted RNA slicing. While ping-pong networks are based on repeats of several hundred nucleotides, networks that rely on phased piRNA biogenesis operate through short ~40-nucleotides long repeats, which we named snetDNAs. Interestingly, snetDNAs are recurring in evolution from insects to mammals. Our study brings to light a new type of conserved regulatory pathway, the snetDNA-pathway, by which short sequences can include independent genes and lncRNAs in the same biological pathway.
Document type :
Journal articles
Complete list of metadata
Contributor : Silke Jensen <>
Submitted on : Monday, June 7, 2021 - 2:24:47 PM
Last modification on : Tuesday, June 8, 2021 - 3:08:32 AM


Publication funded by an institution


Distributed under a Creative Commons Attribution 4.0 International License



Silke Jensen, Emilie Brasset, Elise Parey, Hugues Roest Crollius, Igor Sharakhov, et al.. Conserved Small Nucleotidic Elements at the Origin of Concerted piRNA Biogenesis from Genes and lncRNAs. Cells, MDPI, 2020, 9 (6), pp.1491. ⟨10.3390/cells9061491⟩. ⟨hal-02935810⟩



Record views


Files downloads