S. R. Allen, A. Freundt, and K. Kurokawa, Characteristics of submarine, 2012.

B. Ataie-ashtiani and A. Nik-khah, Impulsive waves caused by subaerial 645 landslides, Env. Fluid Mech, vol.8, pp.263-280, 2008.

T. Bonometti, S. Balachandar, and J. Magnaudet, Wall effects in non, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00862825

H. M. Fritz, W. H. Hager, and H. Minor, , 2004.

J. Waterway, Port, Coast. Ocean Eng, vol.698, pp.287-302

L. Girolami, T. H. Druitt, O. Roche, and Z. Khrabrykh, Propagation and 700 hindered settling of laboratory ash flows, J. Geophys. Res, vol.113, p.2202, 2008.

M. Gouhier and R. Paris, SO2 and tephra emissions during the December, vol.22, p.702, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02413511

, Anak Krakatau flank-collapse eruption, vol.2, pp.91-103

N. Gravish and D. I. Goldman, Effect of volume fraction on granular 704 avalanche dynamics, Phys. Rev. E, vol.90, p.32202, 2014.

A. Grezio, A. Babeyko, M. A. Baptista, J. Behrens, A. Costa et al.,

H. Kie-thio, Probabilistic tsunami hazard analysis: Multiple sources 707 and global applications, Rev. Geophys, vol.55, pp.1158-1198, 2017.

S. T. Grilli, D. R. Tappin, S. Carey, S. F. Watt, S. N. Ward et al.,

M. Muin, lat-710 eral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Sci, 2018.

, Reports, vol.9, p.11946

C. B. Harbitz, F. Løvholt, G. Pedersen, and D. G. Masson, Mechanisms 713 of tsunami generation by submarine landslides: a short review, Nor. J. Geol, vol.714, issue.3, p.86, 2006.

P. Heinrich, Nonlinear water waves generated by submarine and aerial land-716 slides, J. Waterway, Port, Coast. Ocean Eng, vol.118, pp.249-266, 1992.

V. Heller, M. Bruggemann, J. Spinneken, and B. D. Rogers, , 2016.

, Composite 718 modelling of subaerial landslide-tsunamis in different water body geometries 719 and novel insight into slide and wave kinematics, Coast. Eng, vol.109, pp.20-41

V. Heller, F. Chen, M. Brühl, R. Gabl, X. Chen et al., , p.721, 2019.

, Large-scale experiments into the tsunamigenic potential of different 722 iceberg calving mechanisms, Sci. Rep, vol.9

V. Heller and W. H. Hager, Impulse product parameter in landslide gener-724 ated impulse waves, J. Waterway, Port, Coast. Ocean Eng, vol.136, pp.145-155, 2010.

V. Heller and W. H. Hager, Wave types of landslide generated impulse waves, 2011.

O. Eng, , vol.38, pp.630-640

V. Heller and R. D. Kinnear, Discussion of Experimental investigation of im-728 pact generated tsunami, 2010.

G. Saelevik, A. Jensen, and G. Pedersen, Coastal Eng, vol.56, pp.897-906, 2009.

. Coast,

. Eng, , vol.57, pp.773-777

V. Heller and J. Spinneken, On the effect of the water body geometry on 732 landslide-tsunamis: Physical insight from laboratory tests and 2D to 3D wave 733 parameter transformation, Coast. Eng. J, vol.104, pp.113-134, 2015.

A. J. Hogg and D. Pritchard, The effects of hydraulic resistance on dam-735 break and other shallow inertial flows, J. Fluid Mech, vol.501, pp.179-212, 2004.

A. J. Hogg and A. W. Woods, The transition from inertia-to bottom-737 drag-dominated motion of turbulent gravity currents, J. Fluid Mech, vol.449, pp.738-201, 2001.

I. M. Jánosi, D. Jan, K. G. Szabó, and T. Tél, Turbulent drag reduction in 740 dam-break flows, Exp. Fluids, vol.37, pp.219-229, 2004.

J. W. Kamphuis and R. J. Bowering, Impulse waves generated by landslides, 1970.

, Proc. of 12th Coastal Engineering Conference

B. Kneller and C. Buckee, The structure and fluid mechanics of turbidity 744 currents: a review of some recent studies and their geological implications, 2000.

, Sedimentology, vol.47, pp.62-94

J. H. Latter, Tsunamis of volcanic origin: Summary of causes, with particu-747 lar reference to Krakatoa, 1883, vol.44, pp.467-490, 1981.

L. Law and A. Brebner, On water waves generated by landslides, Proc. 749 of the Third Australasian Conference on Hydraulics and Fluid Mechanics, p.750, 1968.

A. Sydney,

S. Kin, The great Sumatra-Andaman earthquake of, 2004.

, Science, vol.308, pp.1127-1133

J. G. Leal, R. M. Ferreira, and A. H. Cardoso, Dam-break wave-front veloc-755 ity, J. Hydraul. Res, vol.132, pp.69-76, 2006.

L. Méhauté and B. , An introduction to hydrodynamics and water waves, 1976.

E. K. Lindstrøm, Waves generated by subaerial slides with various porosi-759 ties, Coast. Eng. J, vol.116, pp.170-179, 2016.

F. Løvholt, G. Pedersen, C. B. Harbitz, S. Glimsdal, and J. Kim, On the 761 characteristics of landslide tsunamis, Phil. Trans. R. Soc. A, vol.373, 2015.

G. Lube, E. C. Breard, J. Jones, L. Fullard, J. Dufek et al., , p.763

, Generation of air lubrication within pyroclastic density currents, 2019.

, Nat. Geosci, vol.12, pp.381-386

F. Maeno and F. Imanura, Tsunami generation by a rapid entrance of pyro-766 clastic flow into the sea during the 1883 krakatau eruption, indonesia. J. Geo-767 phys, Res, vol.116, p.9205, 2011.

A. Mangeney, O. Roche, O. Hungr, N. Mangold, G. Faccanoni et al., Erosion and mobility in granular collapse over sloping beds, J. Geo-770 phys. Res, vol.115, p.3040, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521671

G. S. Mattioli, B. Voight, A. T. Linde, I. S. Sacks, P. Watts et al., , p.772

D. Williams, Unique and remarkable dilatometer measurements of 773 pyroclastic flow-generated tsunamis, Geology, vol.35, pp.25-28, 2007.

J. Mccowan, On the highest wave of permanent type, Philos. Mag. Series, vol.5, pp.351-358, 1894.

J. H. Michell, The highest waves in water, Philos. Mag. Series, vol.5, pp.430-777, 1893.

G. S. Miller, T. Andy, W. Mulligan, R. P. Mcdougall, and S. , Tsunamis gen-779 erated by long and thin granular landslides in a large flume, J. Geophys. Res, vol.780, pp.653-668, 2017.

F. Mohammed and H. M. Fritz, Physical modeling of tsunamis generated 782 by three-dimensional deformable granular landslides, J. Geophys. Res, vol.117, p.11015, 2012.

J. J. Monaghan, A. Kos, and N. Issa, Fluid motion generated by impact, J, p.785, 2003.

. Waterway, C. Port, and . Eng, , p.129

S. Montserrat, A. Tamburrino, O. Roche, and Y. Niño, Pore fluid pressure 787 diffusion in defluidizing granular columns, J. Geophys. Res, vol.117, p.2034, 2012.

R. P. Mulligan and W. A. Take, On the transfer of momentum from a granu-789 lar landslide to a water wave, Coast. Eng, vol.125, pp.16-22, 2017.

Y. Nishimura, M. Nakagawa, J. Kuduon, and J. Wukawa, Timing and scale 791 of tsunamis caused by the 1994 Rabaul eruption, pp.43-56, 2005.

N. Nomanbhoy and K. Satake, Generation mechanism of tsunamis from the 794 1883 Krakatau eruption, Geophys. Res. Lett, vol.22, pp.509-512, 1995.

P. Nomikou, T. H. Druitt, C. Hübscher, T. A. Mather, M. Paulatto et al., , p.796

L. M. , .. .. Parks, and M. M. , Post-eruptive flooding of Santorini caldera 797 and implications for tsunami generation, Nat. Commun, vol.7, p.13332, 2016.

R. Paris, Source mechanisms of volcanic tsunamis, Phil. Trans. R. Soc. A, vol.799, p.373, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219151

R. Paris, A. D. Switzer, M. Belousova, A. Belousov, B. Ontowirjo et al., Volcanic tsunami: a review of source mechanisms, 802 past events and hazards in Southeast Asia, p.803, 2014.

, Guinea). Nat. Hazards, vol.70, pp.447-470

R. Paris, P. Wassmer, F. Lavigne, A. Belousov, M. Belousova et al., , p.805

N. Mazzoni, Coupling eruption and tsunami records: the Krakatau, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01133616

E. Pelinovsky, N. Zahibo, P. Dunkley, M. Edmonds, R. Herd et al., , vol.808

I. Nikolkina, , 2004.

, at Montserrat, Lesser Antilles. Sci. Tsunami Hazards, vol.809, pp.44-57, 2003.

O. Pouliquen, Scaling laws in granular flows down rough inclined planes, 1999.

, Phys. Fluids, vol.11, pp.542-548

A. Ritter, Die fortpflanzung der wasserwellen, Z. Verein Deutch. Ing, vol.36, pp.813-947, 1892.

O. Roche, Depositional processes and gas pore pressure in pyroclastic flows: 815 an experimental perspective, vol.74, pp.1807-1820, 2012.

O. Roche, M. Attali, A. Mangeney, and A. Lucas, On the run-out distance 817 of geophysical gravitational flows: Insight from fluidized granular collapse 818 experiments, Earth Planet. Sci. Lett, vol.311, pp.375-385, 2011.

O. Roche, M. Gilbertson, J. C. Phillips, and R. S. Sparks, Experiments on 820 deaerating granular flows and implications for pyroclastic flow mobility. Geo-821 phys, Res. Lett, vol.29, p.1792, 2002.

O. Roche, S. Montserrat, Y. Niño, and A. Tamburrino, Experimental 823 observations of water-like behavior of initially fluidized, dam break granular 824 flows and their relevance for the propagation of ash-rich pyroclastic flows, 2008.

, Geophys. Res, vol.113, p.12203

P. J. Rowley, O. Roche, T. H. Druitt, and R. A. Cas, Experimental study 827 of dense pyroclastic density currents using sustained, gas-fluidized granular 828 flows, vol.76, p.855, 2014.

G. M. Smith, R. Williams, P. J. Rowley, and D. R. Parsons, Investigation 830 of variable aeration of monodisperse mixtures: Implications for pyroclastic 831 density currents, vol.80, p.67, 2018.

C. Soria-hoyo, J. M. Valverde, and O. Roche, A laboratory-scale study on 833 the role of mechanical vibrations in pore pressure generation in pyroclastic 834 materials: Implications for pyroclastic flows, Bull. Volcanol, vol.81, p.12, 2019.

R. S. Sparks, Grain size variations in ignimbrites and implications for the 836 transport of pyroclastic flows, Sedimentology, vol.23, pp.147-188, 1976.

J. Tanguy, C. Ribière, A. Scarth, and W. S. Tjetjep, Victims from vol-838 canic eruptions: a revised database, Bull. Volcanol, vol.60, pp.137-144, 1998.

J. M. Valverde and C. Soria-hoyo, Vibration-induced dynamical weakening of 840 pyroclastic flows: Insights from rotating drum experiments, J. Geophys. Res, vol.841, issue.120, pp.6182-6190, 2015.

R. D. Verbeek, Krakatau. Imprimerie de l'Etat, 1886.

S. Viroulet, D. Cébron, O. Kimmoun, and C. Kharif, Shallow water waves 844 generated by subaerial solid landslides, Geophys. J. Int, vol.193, pp.747-762, 2013.

S. Viroulet, A. Sauret, and O. Kimmoun, Tsunami generated by a granular 846 collapse down a rough inclined plane, EPL, p.34004, 2014.

J. S. Walder, P. Watts, O. E. Sorensen, and K. Janssen, Tsunamis generated 848 by subaerial mass flows, J. Geophys. Res, p.108, 2003.

P. Watts and C. F. Waythomas, Theoretical analysis of tsunami generation 850 by pyroclastic flows, J. Geophys. Res, vol.108, p.2563, 2003.

C. J. Wilson, The role of fluidization in the emplacement of pyroclastic 852 claws: An experimental approach, J. Volcanol. Geotherm. Res, vol.8, pp.231-249, 1980.

K. Wünnemann and R. Weiss, The meteorite impact-induced tsunami haz-854 ard, Phil. Trans. R. Soc. A, vol.373, 2015.

S. Yavari-ramshe and B. Ataie-ashtiani, Numerical modeling of subaerial 856 and submarine landslide-generated tsunami waves-recent advances and future 857 challenges. Landslides, vol.13, pp.1325-1368, 2016.

I. Yokoyama, A scenario of the 1883 krakatau tsunami, 1987.

J. Volcanol,

G. Zitti, C. Ancey, M. Postacchini, and M. Brocchini, Impulse waves gen-861 erated by snow avalanches: Momentum and energy transfer to a water body, 2016.

, Geophys. Res, vol.121, pp.2399-2423

A. Zweifel, H. Hager, and H. Minor, Plane impulse waves in reservoirs, J, vol.864, 2006.

. Waterway, C. Port, and . Eng, , vol.132, pp.356-368