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SUMMARY

The two paralogous Arabidopsis genes MAINTENANCE OF MERISTEMS (MAIN) and MAINTENANCE OF

MERISTEMS LIKE1 (MAIL1) encode a conserved retrotransposon-related plant mobile domain and are

known to be required for silencing of transposable elements (TE) and for primary root development. Loss of

function of either MAIN or MAIL1 leads to release of heterochromatic TEs, reduced condensation of pericen-

tromeric heterochromatin, cell death of meristem cells and growth arrest of the primary root soon after ger-

mination. Here, we show that they act in one protein complex that also contains the inactive isoform of

PROTEIN PHOSPHATASE 7 (PP7), which is named PROTEIN PHOSPHATASE 7-LIKE (PP7L). PP7L was previ-

ously shown to be important for chloroplast biogenesis and efficient chloroplast protein synthesis. We

show that loss of PP7L function leads to the same root growth phenotype as loss of MAIL1 or MAIN. In

addition, pp7l mutants show similar silencing defects. Double mutant analyses confirmed that the three

proteins act in the same molecular pathway. The primary root growth arrest, which is associated with cell

death of stem cells and their daughter cells, is a consequence of genome instability. Our data demonstrate

so far unrecognized functions of an inactive phosphatase isoform in a protein complex that is essential for

silencing of heterochromatic elements and for maintenance of genome stability in dividing cells.

Keywords: Arabidopsis thaliana, meristems, root growth architecture, DNA repair and processing, transcrip-

tional regulation.

INTRODUCTION

Almost all cells of the plant body descend from small pop-

ulations of self-renewing stem cells that are maintained

within meristems. The stem cell niche of the root apical

meristem (RAM) is located at the growing tip of the root

and consists of a small group of rarely dividing quiescent

centre (QC) cells, which are believed to act as organizers

and as long-term reservoirs of stem cells (Heidstra and

Sabatini, 2014). The cells directly adjacent to the QC are

named root initials and maintain a stem cell-like character.

They are able to renew themselves and to produce daugh-

ter cells, which undergo several rounds of rapid cell divi-

sions until reaching the elongation zone, in which they

gradually become differentiated (Wendrich et al., 2017a).

During cell division, the status and integrity of the DNA is

constantly monitored and detection of DNA damage leads

to activation of the two conserved checkpoint kinases

ATAXIATELANGIECTASIA MUTATED (ATM) and ATM AND

RAD3-RELATED (ATR), which are known to phosphorylate

the transcription factor SUPPRESSOR OF GAMMA-

RESPONSE 1 (SOG1) in plants (Sancar et al., 2004;

Yoshiyama et al., 2013). Once being activated, SOG1

orchestrates the DNA damage response (DDR) involving

delayed cell cycle progression by transcriptional induction

of cell cycle inhibitors and activation of DNA repair by

induction of DNA repair factors (Culligan et al., 2006;

Yoshiyama et al., 2009; Yi et al., 2014). In addition, SOG1

induces programmed cell death (PCD) specifically in root

initials to prevent accumulation and propagation of
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deleterious mutations (Furukawa et al., 2010; Johnson

et al., 2018). New pools of stem cells are then replenished

by activation of cell division in QC cells, which allows the

formation of a new stem cell niche that sustains root

growth (Heyman et al., 2013; Hu et al., 2016). Therefore,

treatment of Arabidopsis seedlings with DNA damaging

agents such as zeocin or bleomycin or with ionizing radia-

tion leads to activation of DDR, resulting in a transient

arrest of root growth and induction of cell death specifi-

cally in root initials and their immediate descendants (Ful-

cher and Sablowski, 2009; Furukawa et al., 2010). In

agreement, impaired root growth and spontaneous cell

death in the RAM was also described for mutants with

defects in DNA replication, DNA repair, or chromatin

assembly. Examples are mutants lacking components of

the mediator complex (Raya-Gonzalez et al., 2018) or with

disrupted function of the homologue of yeast DNA Replica-

tion Helicase/Nuclease 2 (Jia et al., 2016), as well as

mutants with impaired function of histone chaperone com-

plexes (Ma et al., 2018) or with defects in structural compo-

nents of the chromatin (Diaz et al., 2019).

We have previously characterized the MAINTENANCE

OF MERISTEMS (MAIN) gene family, which is defined by a

conserved amino-transferase-like plant mobile domain

(PMD) of unknown function (Uhlken et al., 2014a). Two

members of this gene family, namely MAIN and MAIN-

LIKE 1 (MAIL1) are important for maintenance of genome

stability in dividing cells of the RAM. Our published data

showed that the single loss-of-function main-2 and mail1-1

mutants displayed very strong developmental defects, in

particular a short-root phenotype due to growth arrest of

the primary root soon after germination. This phenotype

was associated with reduced cell division and precocious

differentiation in the RAM, death of stem cells and their

progenitor cells, and progressive loss of QC identity

(Wenig et al., 2013; Uhlken et al., 2014b). Moreover, gen-

ome-wide expression analyses revealed that several TE-en-

coded loci that were mainly localized in pericentromeric

heterochromatin were overexpressed in both mutants.

Constitutive heterochromatin is in all eukaryotes highly

condensed, transcriptionally inactive and enriched with dif-

ferent kinds of repeated sequences and TEs, while the

gene-rich euchromatin is more relaxed and transcription-

ally active (Fransz and de Jong, 2002). Condensation of

heterochromatin is, in most plant cells, mediated by high

levels of cytosine methylation and repressive histone mod-

ifications (Du et al., 2015). In addition, silencing is ensured

by factors that control proper chromatin condensation and

thus act independently of DNA methylation (Moissiard

et al., 2012; Feng and Michaels, 2015; Wang et al., 2017).

The overexpressed loci in main and mail1-1 exhibited no

changes in the pattern of DNA methylation and histone

modification (Uhlken et al., 2014a,b; Ikeda et al., 2017). This

suggested that they may be involved in heterochromatin

silencing by influencing chromatin structure and function

(Ikeda et al., 2017).

Apart from MAIN and MAIL1, the MAIN gene family

contains two additional members named MAIN-LIKE2

(MAIL2) and MAIN-LIKE3 (MAIL3). Whereas MAIN, MAIL1,

and MAIL2 encode very similar proteins, MAIL3 encodes a

larger protein that contains an additional phosphatase

domain. For that reason, MAIL3 also groups with the

plant-specific PP7-type family of serine/threonine phos-

phatases (Uhrig et al., 2013). In Arabidopsis, the PP7-type

subfamily has three members: the founding member PRO-

TEIN PHOSPHATASE 7 (PP7), MAIN-LIKE 3 (MAIL3), and

an inactive isoform encoded by the At5g10900 locus,

which is named PP7L (Uhrig et al., 2013) (Xu et al., 2019).

The function of MAIL3 is unknown and T-DNA insertion

lines for MAIL3 are indistinguishable from wild-type

(Uhlken et al., 2014b). PP7 was identified as an important

modulator of light signalling by influencing the expression

of nuclear-encoded sigma factors (SIG), which are impor-

tant regulators of chloroplast gene expression (Moller

et al., 2003; Genoud et al., 2008; Sun et al., 2012).

Recently, T-DNA insertion mutants for PP7L have been

shown to exhibit impaired chloroplast development

specifically during young seedling development. This was

associated with impaired chloroplast ribosome accumula-

tion and reduced protein synthesis in chloroplasts. How-

ever, the mechanism by which PP7L influences

chloroplast translation is still unknown (Xu et al., 2019).

Here, we aimed at understanding the molecular mecha-

nisms of MAIN and MAIL1 action. We show that MAIN

and MAIL1 interact with each other and with PP7L. Loss-

of-function alleles for PP7L displayed the same develop-

mental defects as mail1-1 and main-2 mutants, including

growth arrest of the primary root and cell death in the

RAM. Moreover, PP7L mutant lines showed mis-expres-

sion of a subset of heterochromatic TE-encoded loci,

which are also mis-expressed in mail1-1 and main-2. Dou-

ble mutant analyses confirmed that MAIN, MAIL1 and

MIPP acted in the same pathway and suggest that MAIL3

might influence the silencing activity of this complex. In

addition, we show evidence that the primary root growth

defects in these mutants were caused by genome

instability.

RESULTS

MAIL1 interacts with MAIN and PP7L

To gain insight into molecular functions of MAIN family

proteins, we searched for proteins interacting with

MAIL1. To this aim, co-immunoprecipitation (Co-IP)

experiments were performed using mail1-1 mutant seed-

lings expressing a MAIL1–green fluorescent protein (GFP)

fusion from the endogenous MAIL1 promoter (mail1-1/

pMAIL1::MAIL1–GFP), which fully complemented the
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mutant phenotype (Uhlken et al., 2014b). MAIL1–GFP and

putative interaction partners were identified by immuno-

precipitation followed by tandem mass spectrometry (IP-

MS/MS). In parallel, two control Co-IP experiments using

a line expressing GFP (p35S::GFP) were performed. MAIN

and PROTEIN PHOSPHATASE 7-LIKE (PP7-L), which is

encoded by the At5g10900 gene, were among the pro-

teins that specifically and most abundantly co-purified

with MAIL1–GFP in each of the three experiments

(Table S1). We performed reverse Co-IP experiments to

confirm these co-purifications using seedlings expressing

PP7L–GFP from its native promoter as bait. Indeed, pep-

tides for MAIN and MAIL1 were most abundantly identi-

fied in the co-immunoprecipitates of PP7-L–GFP in the

three independent experiments (Table S1). Therefore,

MAIN, MAIL1, and PP7L belong to the same protein com-

plex in plant cells. Yeast-two-hybrid (Y2H) experiments

were performed to further address the physical interac-

tion of MAIL1 with MAIN and of MAIL1 with PP7L. A full-

length construct of MAIL1 showed strong interaction with

PP7L and weaker interaction with MAIN (Figure 1a). In

contrast, a truncated version of MAIL1, in which the non-

conserved C-terminal domain was deleted (MAIL1ΔC), did

not interact with PP7L showing that the conserved PMD

domain of MAIL1 was not sufficient for this interaction

(Figure 1a,b). To confirm the observed interactions in

planta, we performed bimolecular fluorescence comple-

mentation (BiFC) experiments using the pBiFCt-2in1 vec-

tor system in Arabidopsis leaf protoplasts (Grefen and

Blatt, 2012). Constructs harbouring full-length open read-

ing frames of MAIL1 and MAIN, MAIL1 and PP7L, or

MAIN and PP7L, which were fused at the N-terminus to

each half of the yellow fluorescent protein (YFP) resulted

in a bright YFP-derived fluorescence signal, which was

mainly seen in the nucleus (Figure 1c). No fluorescence

was detected in control experiments, in which PP7L fused

to the C-terminal half of YFP and no protein fused to the

N-terminal half of YFP was expressed (Figure 1c). We

have previously shown that GFP fusion proteins of MAIL1

or MAIN were exclusively localized to the nucleus (Wenig

et al., 2013; Uhlken et al., 2014a,b). In contrast, the PP7L–
GFP fusion protein was reported to be localized to the

nucleus and to the cytoplasm (Xu et al., 2019). We there-

fore analyzed the co-localization of PP7L–GFP and

MAIL1–mCherry in tobacco leaf epidermis cells, in which

both constructs were simultaneously expressed from

estradiol-inducible promoters. We found that the MAIL1–
GFP signal was confined to the nucleus while PP7L–
mCherry derived fluorescence accumulated in both the

nucleus and the cytoplasm (Figure 1d). Taken together,

these results showed that MAIL1 physically interacted

with MAIN and with PP7L, and that this complex local-

ized to the nucleus, while PP7L by itself accumulated also

in the cytoplasm.

Loss-of-function mutants for PP7L phenocopy mail1-1

mutants

To test the biological significance of the interaction

between MAIL1 and PP7L, we obtained T-DNA insertion

lines for PP7L from the SALK collection (Alonso et al.,

2003), which were previously characterized and named

pp7l-1 and pp7l-3 (Xu et al., 2019). Our phenotypic analysis

of seedlings revealed that homozygous pp7l-1 and pp7l-3

mutants displayed the similar primary root growth defect

as the mail1-1 and main-2 mutant (Figure 2a). By measur-

ing root length of seedlings growing for 15 days on verti-

cal agar plates, we found that growth arrest of the primary

root occurred in mail1-1, pp7l-1 and pp7l-3 at 3 days after

germination (dag), while in main-2 the primary root contin-

ued to grow, although much slower than the wild-type pri-

mary root (Figure 2b). Confocal microscopy of propidium

iodide (PI)-stained root tips of seedlings at 3 dag revealed

that the impaired growth of the primary root was associ-

ated with a reduced size of the cell division zone and early

onset of cell differentiation (Figure 2c). Furthermore, PI

staining that specifically marks dead cells due to impaired

membrane integrity demonstrated that each of these

mutant lines exhibited cell death of stem cells and their

descendants. At 3 dag, seedlings of mail1-1, pp7l-1 and

pp7l-3 were indistinguishable from each other and dis-

played numerous dead cells in the cell division zone and a

disorganized cellular pattern of the RAM. In contrast, in the

main-2 mutant, the cellular organization of the RAM was

maintained and only in about 50% of the seedlings (n = 40)

individual dead cells were observed (Figure 2c). It was pre-

viously shown that embryo development was unaltered in

the mail1-1 mutant and that the defects in the RAM

occurred only after onset of germination (Uhlken et al.,

2014b). We therefore examined embryo development of

pp7l-1 and pp7l-3 mutants and found no difference from

wild-type at any stage of development (Figure S1a,b).

Moreover, the cellular pattern of the RAM was indistin-

guishable from wild-type in mature seeds of both pp7l-1

and pp7l-3 mutant lines (Figure S1c). In a next step, we

analyzed root tips of germinating seeds and found that

during the process of radicle emergence (growth stage

0.50; Boyes et al., 2001) numerous dead cells accumulated

in the cell division zone of the RAM in the pp7l-1, pp7l-3,

and mail1-1 mutants. In contrast, in the main-2 mutant

most of the germinating seeds examined resembled wild-

type and only in 12% of all roots (n = 35) dead cells were

detected (Figure 2d). These analyses demonstrated that

pp7l-1 and pp7l-3 showed the identical root growth defects

as mail1-1 whereas, in main-2, the same defects also

occurred, but at a later developmental stage. Despite the

growth arrest of the primary root, pp7l-1 and pp7l-3

mutant lines were able to sustain shoot growth by forming

anchor roots, which seemed to take over the function of

© 2019 The Authors.
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the primary root, as previously described for mail1-1

(Uhlken et al., 2014b). Both pp7l mutant lines formed

rosettes of smaller size than wild-type and were delayed in

development (Figure S2a) (Xu et al., 2019). They produced

the same number of rosette leaves before onset of flower-

ing as wild-type, and during shoot and flower formation

no phenotypic alterations were detected (Figure S2b,c). We

assessed the tissue-specific PP7L expression pattern in

wild-type plants and found that PP7L was ubiquitously

expressed in all tissues tested including roots (Figure S2d).

In conclusion, these analyses showed that PP7L was, like

MAIN and MAIL1, essential for primary root growth during

post-germination development in addition to its previously

established function during chloroplast development in

leaves (Xu et al., 2019).

PP7L is involved in silencing of TEs

Previously, RNA-sequencing (RNA-seq) analyses revealed

that loss of MAIL1 or MAIN induced release of silencing of

numerous TEs belonging to both DNA transposon and

retrotransposon classes. In addition, the expression of sev-

eral protein-coding genes known to be epigenetically regu-

lated was increased (Ikeda et al., 2017). To test if PP7L was

also involved in silencing of TEs, we selected six of those

loci including two CACTA-like transposase family genes

(At1g36680 and At5g33395), the Mutator-like transposable

element MULE gene At2g15810, the protein-coding gene

AT3g29639, which was shown to be epigenetically regu-

lated (Kurihara et al., 2008), the DNA/HARBINGER trans-

poson encoded gene At4g04293 (ATIS112A) and the Gypsy

Figure 1. MAIL1 interacts with PP7L and with

MAIN. (a) Yeast-two-hybrid (Y2H) assay showing

the interaction of MAIL1 with PP7L and with MAIN.

Growth of serial dilutions of yeast colonies was ver-

ified on medium without tryptophan and leucine

(+HIS) and selective medium without tryptophan,

leucine and histidine (�HIS) supplemented with 3-

amino-1,2,4-triazole (3-AT). BD, DNA-binding

domain; AD, activation domain. An empty AD-con-

taining vector was used as the control.

(b) Structure of the MAIL1 full-length protein and

the truncated version of MAIL1 (MAIl1DC) with the

plant mobile domain (PMD) highlighted in grey.

(c) BiFC assays showing that Arabidopsis leaf proto-

plasts transfected with pBiFCt-2in1-NN (MAIL1/

MAIN), pBiFCt-2in1-NN (MAIL1/PP7L) or pBiFCt-

2in1-NN (MAIN/PP7L) showed a yellow fluorescent

protein (YFP)-derived fluorescence signal in the

nucleus (arrows). Protoplasts transfected with a

control construct (pBiFCt-2in1-NN (�/PP7L)) showed

no YFP-derived fluorescence. Red: red fluorescent

protein (RFP)-derived fluorescence as a control for

successful transfection. Blue: autofluorescence of

chloroplasts. Yellow: YFP-derived fluorescence.

Scale bars, 5 µm.

(d) Representative confocal images of Nicotiana

benthamiana epidermis cells co-expressing MAIL1–
green fluorescent protein (GFP) and PP7L–mCherry

showing that MAIL1–GFP-derived fluorescence

(green) is confined to the nucleus and PP7L–
mCherry-derived fluorescence (red) is seen in the

nucleus and in the cytoplasm. Arrows point to the

nucleus. Scale bar, 25 µm.
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LTR-retrotransposon encoded locus ATHILA (At3TE58495).

In the following, we tested by RT-qPCR whether these loci

were also mis-expressed in pp7l-1 and pp7l-3. Indeed, each

of the six loci was significantly increased compared with

wild-type in seedlings of pp7l-1 and pp7l-3 and they were

expressed at similar levels when compared with mail1-1

and main-2 (Figure 3a). To ensure that the release of

silencing was due to loss of PP7L function we analyzed the

expression of these loci in a complementation line for

pp7l-1 (pp7l-1C). In this line, a construct carrying the geno-

mic sequence of PP7L fused at the C-terminus to GFP was

expressed under its native promoter on the pp7l-1 mutant

background. In pp7l-1C, the expression of each of the

tested loci was reduced to wild-type levels (Figure 3a). We

also confirmed that the primary root was fully restored in

seedlings of pp7l-1-C grown on Murashige and Skoog

plates (Figure 3b). Confocal imaging of root tips revealed

that there was no cell death in the division zone of the

RAM of pp7l-1C seedlings and a PP7L–GFP-derived signal

was observed in all cells of the root tip (Figure 3c). To fur-

ther confirm that PP7L was involved in TE silencing, we

analyzed the recently published RNA-seq dataset for pp7l-1

(Xu et al., 2019) for TE expression and found that 11 TE-en-

coded loci were among the significantly increased tran-

scripts. Notably, 10 of these loci were among the

transcripts that were also found as upregulated in the

Figure 2. pp7l-1 and pp7l-3 showed similar devel-

opmental defects as mail1-1 and main-2.

(a) Representative images of wild-type, main-2,

mail1-1, pp7l-1, and pp7l-3 seedlings at 8 days after

germination (dag). Scale bar, 0.7 cm.

(b) Wild-type and mutant seedlings were grown on

vertical plates and root lengths were measured at

indicated days after germination (dag). The mean

of the root length of three independent experiments

is shown. Graphs represent mean � SE (n = 80–
100). Asterisk indicate significant difference to wild-

type (P < 0.05).

(c) Confocal images of propidium iodide (PI)-

stained root tips of wild-type, mail1-1, main-2, pp7l-

1 and pp7l-3 at 3 dag showing reduced size of the

meristematic zone of the root apical meristem

(RAM) (indicated by a white line) and accumulation

of dead cells proximal to the quiescent centre (QC)

in mail1-1, main-2, pp7l-1, and pp7l-3 mutants.

Arrows point to intensely stained, dead cells; arrow-

heads mark the position of the QC. Scale bar,

25 µm.

(d) Confocal images of PI-stained root tips of germi-

nating seeds (24–48 h in light) of the indicated

genotypes showing accumulation of dead cells

around the QC (marked by arrowhead) in mail1-1,

pp7l-1 and pp7l-3 but not in wild-type or main-2.

Arrows point to intensely stained, dead cells. Scale

bars, 12.5 µm.

© 2019 The Authors.
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published RNA-seq datasets for mail1-1 and main-2 (Ikeda

et al., 2017) (Figure 3d and Table S2). It should be noted

that two of the loci that showed significant increase in both

pp7l-1 and pp7l-3 in our RT-qPCR experiments, namely

At1g6680 and At3TE58495, were not detected as signifi-

cantly upregulated in the pp7i-1 RNA-seq data. This differ-

ence might be explained by the different growth

conditions or age of the sampled seedlings: for the pp7-1

RNA-seq analysis 4-day-old seedlings were used, whereas

we used samples of 6-day-old seedlings. Taken together,

these data demonstrated that loss of PP7L function caused

not only the same root growth phenotype as loss of MAIL1

or MAIN, but that PP7L was also important for the silenc-

ing of TE-encoded transcripts that were commonly con-

trolled by MAIN and MAIL1.

MAIL1, MAIN, and PP7L function in the same molecular

pathway

To confirm that PP7L acted in the same pathway as MAIL1

and MAIN, we generated pp7l-1 mail1-1 and pp7l-1 main-2

double mutants. We found that seedlings of both double

mutant combinations showed growth arrest of the primary

root and were phenotypically indistinguishable from the

respective single mutant parents (Figure 4a). This indi-

cated that MAIL1, MAIN, and PP7L function in the same

pathway to support root growth. In a next step, we exam-

ined the expression levels of the six selected TE loci in

both double mutant combinations and compared these to

the respective single mutant parents (Figure 4b). We

found no significant increase in the expression level of

none of the tested loci in both double mutant lines com-

pared with the single mutant parents, indicating that there

was no additive effect on the strength of silencing release

in the double mutant lines. However, we found that four

loci were even significantly lower expressed in the pp7l-1

main-2 double mutant compared with pp7l-1, and one of

these was also reduced in the pp7l-1 mail1-1 double

mutant (Figure 4b). This might be explained by alternative

silencing pathways, which try to compensate for loss of

MAIN/MAIL1/PP7L activity and which might be more effec-

tive in the absence of two components of the complex.

We have previously shown that the release of silencing in

the mail1-1 and main-2 mutant was associated with

impaired heterochromatin condensation (Ikeda et al.,

2017). By measuring chromocentre area in DAPI-stained

nuclei we found a similar expansion of chromocentres in

pp7l-1 as we previously found for mail1-1 (Ikeda et al.,

2017) and this was unchanged in the pp7l-1 mail1-1 dou-

ble mutant (Figure S3). Together, our results showed that

the tested double mutant combinations had no general

additive effect on silencing release and heterochromatin

condensation, suggesting that PP7L, MAIL1, and MAIN

acted in the same silencing pathway.

MAIL3 does not affect the root growth phenotype, but

seems to influence PP7L-mediated TE silencing

The MAIL3 protein represents a long isoform of PP7. It

contains a PMD domain sharing 34% identity with the

PMD domain of MAIL1 and a PP7-like phosphatase

domain sharing 39% identity with the phosphatase

domain of PP7L (Figure 5a). In a complex with MAIL1 and/

or MAIN proteins, PP7L may therefore form a protein simi-

lar to MAIL3. In contrast with MAIL3, however, PP7L is

missing essential amino acids within its catalytic domain

(Figure S4). Consequently, it is annotated as an inactive

isoform (Farkas et al., 2007). It has been shown that inac-

tive phosphatase homologues can modulate or regulate

signalling pathways of real phosphatases by acting as

pseudophosphatases that bind to specific residues of their

substrates and, in this way, protect these from becoming

dephosphorylated by the real phosphatase (Reiterer et al.,

2014). We therefore wanted to test whether MAIL3 affects

the function of the MAIN/MAIL1/PP7L complex. For

instance, PP7L might act as a negative regulator of the

MAIL3 phosphatase by binding to its (so far unknown)

substrates and thereby preventing their de-phosphoryla-

tion. In this case, the PP7L mutant phenotype would be

due to ectopic activity of MAIL3 and should be rescued in

a mail3-2 mutant background. We therefore generated

double mutants between pp7l-3 and mail3-2 and also

between mail1-1 and mail3-2. As shown previously, the

mail3-2 mutant has, like the pp7l-3 mutant, a T-DNA inser-

tion within the phosphatase domain (Figure 5a). The

mail3-2 mutant did neither show any defect in develop-

ment nor release of gene silencing (Uhlken et al., 2014b;

Ikeda et al., 2017). We found that primary root growth

arrest in the pp7l-3 mail3-2 and in the mail3-2 mail1-1

double mutant was indistinguishable from the arrest in

pp7l-3 or in mail1-1, indicating that the absence of MAIL3

did not influence the root growth defects (Figure 5b). In a

next step, we tested whether the silencing activity of

MAIL1 or PP7L was altered in the absence of MAIL3. RT-

qPCR analyses revealed that each of the six tested loci

was still significantly increased in expression in both dou-

ble mutant combinations compared with wild-type or to

the mail3-2 single mutant (Figure 5c). However, whereas

there was no significant difference in expression level of

any of the tested loci between mail1 and mail3-2 mail1-1,

the expression level of four loci was significantly reduced

in the mail3-2 pp7l-3 double mutant compared with the

pp7l-3 single mutant (Figure 5c). This result indicated that

MAIL3 does influence silencing activity of loci that are

controlled by PP7L. Loss of MAIL3 might either allow for

more efficient residual silencing activity of MAIN and

MAIL1 in the absence of PP7L or enable alternative silenc-

ing pathways to become more effective.
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The cell death in the RAM was caused by genome

instability

Having established that MAIN, MAIL1, and PP7L acted in

the same complex to prevent primary root growth arrest,

accumulation of dead cells in the RAM, and release of TE

silencing, we next aimed at understanding the mechanisms

causing the observed mutant phenotypes. It is well estab-

lished that activation of PCD in root initials is an important

response to DNA damage (Hu et al., 2016) and that sponta-

neous cell death in the RAM is a characteristic feature of

mutants with impaired genome stability (Nisa et al., 2019).

If cell death in pp7l-1 and pp7l-3 mutants was due to

impaired genome stability, we would expect that the

expression of DDR-related genes would be increased. To

test this, we performed RT-qPCR analyses on RNA isolated

from root tips of pp7l-1 and pp7l-3 seedlings, in which cell

death was detected. Indeed, out of the four genes tested,

three showed significantly increased expression in both

mutant lines compared with wild-type (Figure 6a). These

are the DNA repair gene POLY (ADP-RIBOSE)-POLYMER-

ASE1 (PARP1), the cell cycle inhibitor SIAMESE-RELATED

(SMR7), and the ETHYLEN RESPONSE FACTOR 115

(ERF115), a transcription factor that is known to become

activated after DNA damage-induced cell death in meris-

tematic cells. The DNA repair gene RAD51 that is involved

in homologous recombination-mediated DNA repair

Figure 3. Loss of PP7L function lead to release of

transposable element (TE) silencing.

(a) RT-qPCR analysis on RNA isolated from 7 days

after germination (dag) seedlings of the indicated

genotypes for six loci that were upregulated in

mail1-1 and main-2. Transcript levels are repre-

sented relative to those in mail1-1, which were set

to 1. Values represent the mean from three biologi-

cal replicates � SE. Asterisk indicates means differ-

ing significantly from wild-type (P < 0.05).

(b) Phenotype of 10-dag seedlings of wild-type

(left), pp7l-1 (centre) and pp7l-1 mutants comple-

mented with a ProPP7L:PP7L–green fluorescent pro-

tein (GFP) construct (pp7l-1C), in which the short-

root phenotype was restored. Scale bar, 0.5 cm.

(c) Representative confocal image of a propidium

iodide (PI)-stained root tip of, pp7l-1C at 7 dag

showing that root apical meristem (RAM) organiza-

tion was restored. A faint PP7L–GFP-derived signal

(green) was seen in all cells of the root tip. Scale

bar, 25 µm.

(d) Venn diagram showing overlap of TEs that were

significantly increased in mail1-1, main-2, and pp7l-

1.
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(Amiard et al., 2013) was not increased in both mutant

lines, indicating that this repair pathway might not be acti-

vated. A similar increased expression of DDR-related genes

was previously shown to occur in root tips of main-2

(Wenig et al., 2013) and mail1-1 (Uhlken et al., 2014b) seed-

lings. The transcription factor SOG1 is an important regula-

tor of DDR and is known to be required for induction of cell

death in root initials upon DNA damage (Yoshiyama et al.,

2013). This cell-type-specific PCD is seen after a 20-h treat-

ment with the radiometric drug zeocin in wild-type, but not

in SOG1-deficient lines such as sog1-1 (Yoshiyama et al.,

2013) or sog1-7 (Figure S4) (Sjogren et al., 2015). To test

whether cell death in ppl7 mutants was caused by constitu-

tive activation of SOG1 and thus could be rescued by inac-

tivation of SOG1, we crossed the pp7l-1 mutant onto the

sog1-7 mutant background. In PI-stained root tips of 3 dag

seedlings we scored the fractions of roots showing either

no cell death, cell death exclusively in one or two root ini-

tials or cell death in many cells of the RAM (Figure 6b,c). As

expected, almost no cell death was observed in wild-type

plants and in the sog1-7 single mutants. In contrast, the

pp7l-1 mutant exhibited cell death in numerous cells across

the mitotic zone of the RAM. This cell death pattern was

almost unchanged in pp7l-1 sog1-7 double mutants, indi-

cating that cell death occurred independently of SOG1. In

parallel, we analyzed a main-2 sog1-7 double mutant.

Whereas in the main-2 single mutant the majority of seed-

lings showed no cell death or cell death confined to one or

two root initials (Figure 6b,c), the main-2 sog1-7 double

mutant displayed in almost 100% of the roots death in

Figure 4. MAIL1, MAIN, and PP7L act in the same

pathway.

(a) Representative photographs of 6 days after ger-

mination (dag) seedlings of the indicated genotypes

showed that both double mutant combinations dis-

played the same phenotype as the single mutant

parents. Scale bar, 1 mm.

(b) RT-qPCR analysis on RNA isolated from 7-dag

seedlings of the indicated genotypes for the six

selected loci showing that silencing strength was

not increased in both double mutant combinations

but at four loci reduced in pp7l-1 main-2 compared

with pp7l-1. Transcript levels are represented rela-

tive to those in mail1-1, which were set to 1. Values

represent mean from three biological repli-

cates � SE. Asterisk indicates significant difference.

(P < 0.05).
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many cells that were randomly distributed across the mito-

tic zone of the RAM (Figure 6b,c). The cell death pattern of

the main-2 sog1-7 double mutant was similar to that seen

in SOG-1 deficient lines after long-term exposure to geno-

toxic drugs (Figure S5). This SOG-1 independent cell death

was suggested to be a consequence of DNA repair pro-

cesses not being efficiently activated and thus mitosis pro-

ceeding in the presence of damaged DNA (Furukawa et al.,

2010; Johnson et al., 2018). This supported the conclusion

that the cell death was caused by genome instability. In a

next step, we tested whether main-2 and pp7l-1 were both

able to transcriptionally respond to DNA damage treat-

ment. To this end, seedlings of wild-type, main-2 and pp7l-

1 were incubated for 2 h with the DNA damaging drug zeo-

cin and used for RT-qPCR analysis of four well established

DDR genes: RAD51, BREAST CANCER SUSCEPTIBILITY1

(BRCA1), POLY (ADP-RIBOSE)-POLYMERASE2 (PARP2) and

SIAMESE-RELATED 7 (SMR7). Both mutant lines showed a

robust induction of each of these genes upon zeocin treat-

ment, indicating that DDR signalling was not impaired (Fig-

ure 6d). Taken together, these results showed that loss of

function of the MAIN/MAIL1/PP7L complex was associated

with genome instability and consequent cell death in divid-

ing cells. This cell death occurred through a pathway that

acts independent of SOG1 signalling.

DISCUSSION

MAIN, MAIL1, and PP7L act in one protein complex

MAIL1 and MAIN belong to a small protein family that is

characterized by the PMD domain, a conserved protein

motif that is also found in several different transposon

Figure 5. The phenotype of pp7l-3 was unchanged

on the mail3-2 mutant background.

(a) Architecture of the PP7 (black) and PMD (grey)

domain-containing proteins. Triangles indicate the

position of the T-DNA insertion in mail3-2 and pp7l-

3.

(b) Representative photographs of 6 days after ger-

mination (dag) seedlings of the indicated genotypes

showing that the short-root phenotype was

unchanged in both double mutant combinations

compared with the respective single mutants. Scale

bar, 1 mm.

(c) RT-qPCR analysis on RNA isolated from 7-dag

seedlings of the indicated genotypes for six hete-

rochromatic loci showing that RNA levels were sig-

nificantly reduced at four loci in the pp7l-3 mail3-2

double mutant compared with pp7l-3 while there

was no significant difference between mail1-1

mail3-2 and mail1-1. Transcript levels are repre-

sented relative to those in mail1-1, which were set

to 1.

Values represent mean from three biological repli-

cates � SE. Asterisk indicates significant difference

(P < 0.05).
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encoded genes. The molecular function of this domain is

still unknown. Single loss-of-function mutations for MAIN

and MAIL1 caused similar phenotypes (Wenig et al., 2013;

Uhlken et al., 2014a,b), and these phenotypes were not

changed in main-2 mail1-1 double mutants. It was there-

fore suggested that the two proteins may act as a heterodi-

mer (Ikeda et al., 2017). Here, we showed that MAIN and

MAIL1 indeed act in the same protein complex and that

PP7L is part of this complex (Figure 1). Each of these three

proteins contains a predicted nuclear localization signal

(Kosugi et al., 2009). Interestingly, we found that PP7L

localized to the nucleus and to the cytoplasm, whereas

MAIN and MAIL1 were exclusively localized to the nucleus

(Figure 1), suggesting that interaction between the three

proteins does only occur in the nucleus. It will be interest-

ing to test how the intracellular localization of PP7L is regu-

lated and whether its cytoplasmic accumulation serves a

specific function.

PP7L is required for primary root development

PP7L belongs to the PP7-type family of serine–threonine
phosphatases, which has a characteristic organization of

its catalytic domain (Farkas et al., 2007). PP7 is known as

an important regulator of light signalling. A loss-of-func-

tion allele of PP7 displayed hypersensitivity to red light,

and this phenotype was dependent on the presence of its

interaction partner nucleotide-diphosphate kinase (NDPK2)

(Genoud et al., 2008). PP7 was also shown to positively

regulate the blue light-induced stomatal opening by inter-

acting and dephosphorylating the zinc-finger protein

HYPERSENSITIVE TO RED AND BLUE1 (HRB1). Together

PP7 and HRB1 seem to be part of a larger protein complex,

which forms in a blue light-dependent manner (Sun et al.,

2012). Recently, three T-DNA insertion lines for PP7L (pp7l-

1, pp7l-2 pp7l-3) were characterized and it was shown that

PP7L is important for chloroplast biogenesis during devel-

opment of cotyledons and the first pair of true leaves (Xu

et al., 2019). Each of these lines showed an increased accu-

mulation of anthocyanins, a reduced photosynthetic activ-

ity, and delayed chloroplast development. This was

associated with a reduced production of chloroplast pro-

teins, and it was suggested that PP7L is involved post-tran-

scriptional control of chloroplast gene expression (Xu

et al., 2019). In this study, we found that pp7l-1 andpp7l-3

mutants were also impaired in primary root development

and showed growth arrest of the primary root, associated

with cell death of dividing cells in the RAM. This cell death

occurred in pp7l-1 and pp7l-3 during the process of germi-

nation (Figure 2) and thus even before the chloroplast

development phenotype in cotyledons was observed (Xu

et al., 2019). We assume that the function of PP7L in

chloroplast development is independent from its function

in root development. However, further analyses are

required to clarify this in future. The root growth

phenotype of pp7l mutants was very similar to that of the

single mail1-1 or main-2 mutants. We conclude that the

presence of each of these three proteins is required for

the function of the MAIL1/MAIN/PP7L protein complex in

root development. Our double mutant analyses revealed

no changes in the developmental phenotype in none of the

combinations tested (mail1-1 main-2, mail1-1 pp7l-1 and

main-2 pp7l-3) (Figure 4), demonstrating that these three

proteins function in the same molecular pathway. These

analyses further confirmed that the observed phenotype is

due to loss of MAIL1/MAIN/MIPP complex activity and not

a consequence of ectopic accumulation of any of these

three proteins in the absence of one interaction partner.

Potential role of PP7L in TE silencing

PP7L loss-of-function mutants did not only show the same

root developmental defects as mail1-1 and main-2 but also

release of the same TE-encoded loci. We show that only a

subset of the loci that are commonly controlled by MAIN

and MAIL1 was also mis-expressed in pp7l-1. One model

to explain this could be that MAIL1 and MAIN act as a het-

erodimer to control silencing of heterochromatic loci. The

association of PP7L to this heterodimer might be required

for efficient silencing on a specific subset of the MAIN/

MAIL1 controlled loci. It will be interesting to test in future

experiments which domains are important for the interac-

tions between these three proteins and how PP7L associa-

tion influences the conformation of MAIN and MAIL1

proteins.

Due to mutations of essential amino acids within the ser-

ine/threonine-specific protein phosphatase signature, PP7L

is annotated as catalytically inactive isoform, whereas

MAIL3 and PP7 are both annotated as active phosphatases

(Farkas et al., 2007). It was tempting to speculate that a

phosphatase-inactive MIPP acts as a negative regulator of

MAIL3. Our double mutant analyses revealed that the root

phenotype of mail1-1 and pp7l-3 was unaltered in the

mail3-2 mutant background (Figure 5b). However, the

absence of MAIL3 did lead to a reduced expression level of

several loci in the pp7l-3 background (Figure 5c), whereas

no changes were observed in the mail1-1 background. One

interpretation could be that MAIL3 influences the silencing

efficiency of the MAIN/MAIL1 heterodimer only in the

absence of PP7, for instance by destabilizing their interac-

tion. Alternatively MAIL3 might influence the activity of

alternative silencing pathways that try to compensate for

the loss of MAIN/MAIL1/PP7L-mediated silencing.

How does the MAIL1/MAIN/PP7L complex control root

growth and TE silencing?

We found that the first defect that was observed in the

developing RAM of mail1-1, main-2, pp7l-1, and pp7l-3

mutants was cell death of root initials and their descen-

dants. This was especially obvious in the main-2 mutant,
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in which the cell death phenotype occurred at a later stage

than in mail1-1 and pp7l mutants (Figure 2). Moreover,

published data showed that growth arrest of the primary

root of main-2 and mail1-1 was associated with typical

symptoms of active DDR such as reduced cell division, pre-

cocious cell differentiation in the RAM and increased

expression of DNA repair genes (Wenig et al., 2013; Uhlken

et al., 2014a,b). SOG1 is known to be activated upon DNA

damage and on the one hand induces cell-type-specific

PCD in root initials. On the other hand, SOG1 is essential

for efficient activation of DNA repair pathways (Yoshiyama

et al., 2017). By analyzing pp7l-1 sog1-7 and main-2 sog1-7

double mutant lines (Figure 6), we established that cell

death in the RAM was not induced by the SOG1 pathway.

Moreover, the finding that the main-2 sog1-7 double

mutant showed more cell death than the main-2 single

mutant suggests that SOG1-mediated activation of DNA

repair pathways is essential for cell survival during the first

days after germination. We thus suggest that loss of func-

tion of MAIN and of its interaction partners MAIL1 and

Figure 6. Analysis of DNA damage response (DDR)

signalling and cell death in pp7l mutants.

(a) RT-qPCR analysis on RNA from root tips of 3

days after germination (dag) seedlings showed

increased expression of DDR-related genes in pp7l-

1 and pp7l-3. Transcript levels are represented rela-

tive to those in wild-type, which were set to 1.

Values represent mean from three biological repli-

cates � SE. Asterisk indicates significant difference

from wild-type (P < 0.05).

(b) Representative confocal images of propidium

iodide (PI)-stained root tips of 3 dag seedlings of

the indicated genotypes. Arrows point to dead cells,

arrowheads indicate the quiescent centre (QC).

Scale bar, 25 µm.

(c) Quantification of roots of 3 dag seedlings show-

ing no cell death, cell death in one or two root ini-

tials or cell death in many cells of the root apical

meristem (RAM) of the indicated genotypes. Values

represent mean from at least four biological repli-

cates (n = 40–50).
(d) RT-qPCR analysis of DDR-related genes in 7-dag

seedlings of the indicated genotypes with or with-

out 2 h of zeocin (100 µM) treatment showed a

robust transcriptional response to DNA damage in

main-2 and pp7l-1. Transcript levels are represented

relative to those in wild-type without treatment,

which were set to 1.

Values represent the mean from three biological

replicates � SE. Asterisk indicate means differing

significantly from the respective control without

zeocin treatment (P < 0.05).
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MIPP leads to genome instability and constitutive DNA

damage resulting in root growth arrest. Recently, it was

shown that in parallel to SOG1 another pathway involving

the E2F transcription factors and RETINOBLASTOMA

RELATED 1 (RBR1) controls the transcriptional response to

DNA damage and the induction of cell death (Horvath

et al., 2017; Nisa et al., 2019). It will be interesting to test

whether this pathway is involved in the induction of cell

death in the mutants described here. The next obvious

question is how genome instability and the consequent

defects in the RAM are connected with release of TE silenc-

ing. So far, release of TE silencing has not been associated

with specific defects in the RAM. For instance loss of func-

tion of the chromatin remodelling factor DECREASED IN

DNA METHYLATION (DDM1), which leads to high expres-

sion of numerous TEs due to loss of DNA methylation, is

associated with accumulation of additional mutations in

ddm1-1 inbred lines (Tsukahara et al., 2009). However, the

ddm1-1 mutant does not show any specific defects in root

growth when grown under standard conditions (Choi

et al., 2019). One explanation could be that reduced com-

paction of pericentromeric heterochromatin, which was

observed in mail1-1, main-2, and pp7l-1 nuclei (Figure S3)

and which was proposed to be responsible for release of

silencing of pericentromeric heterochromatin (Ikeda et al.,

2017), might also lead to defects in chromatin integrity dur-

ing cell divisions in the RAM. However, the fact that the

severity of the root phenotype does not correlate with the

release of silencing phenotype, for instance the pp7l-1

mutant lines show a stronger cell death phenotype but a

weaker silencing defect compared with main-2, suggests

that this is not the case. It seems more likely that the

MAIN/MAIL1/PP7L complex functions in several different

pathways and that the silencing defects occur indepen-

dently from the meristem defects.

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

Arabidopsis thaliana accession Columbia (Col) was used as the
wild-type and all mutants are on the Col background. Plants were
grown either in potting soil or on a solid medium containing half-
strength Murashige and Skoog salts, 1% sucrose and 1% (w/v)
agar in growth chambers (16 h light, 22°C/8 h dark, 18°C cycles).
The T-DNA insertion lines SALK_018295 (mipp-1) and
SALK_022053 were obtained through the Nottingham Arabidopsis
Stock Centre. Primer pairs for genotyping are described in
Table S2 (Alonso et al., 2003). The T-DNA insertion lines for MAIN
and MAIL1 and the sog1-7 mutant have been described previously
(Wenig et al., 2013; Uhlken et al., 2014a,b; Sjogren et al., 2015;
Ikeda et al., 2017).

Co-immunoprecipitation

Transgenic seedlings expressing MAIL1–GFP, MIPP–GFP or GFP
were grown for 6 days and 3 g material was used for each GFP
pull down. MS analysis was performed on a Q-Exactive Orbitrap

and quantitative analysis was carried out using MAXQUANT and PER-

SEUS software. Protocols are described in Wendrich et al. (2017b).

Plasmid construction

To create the complementation construct for mipp-1 the genomic
fragment of MIPP including the putative promoter sequence
(310 bp upstream of Start-ATG) and excluding the STOP codon
was amplified by PCR from genomic DNA and cloned into the
pENTR-D-TOPO plasmid (www.thermofisher.com/) and sequenced.
By LR recombination reaction, the fragment was inserted into the
destination vector pMDC107 (Curtis and Grossniklaus, 2003) yield-
ing ProPP7L-PP7L–GFP. For subcellular localization analysis, the
full-length coding sequence (CDS) of MIPP and MAIL1 excluding
the STOP codon was amplified by PCR and cloned into pDONR221,
followed by LR recombination reaction with the destination vector
pABindGFP (Bleckmann et al., 2010). For Y2H assays, the full-length
CDS of MAIN, MAIL1 and PP7L and the truncated version of MAIL1
(MAIL1ΔC) were amplified by PCR and cloned into pENTR-D-TOPO
and the fragments were recombined into Gateway-compatible ver-
sions of the GAL4 DNA-binding domain vector pGBT-9 (Bleckmann
et al., 2010) and the activation domain vector pGAD424 (Clontech,
www.takarabio.com) by LR recombination reaction. For BiFC analy-
sis the full-length CDS of MAIN, MAIL1 and PP7L were amplified
with primers adding recombination sites and cloned into
pDONR221L1L4 or pDONR221L3L2 (Grefen and Blatt, 2012) and
subsequently, by LR recombination reactions, inserted into BiFCt-
2in1-NN. All primers are listed in Table S2.

Transgenic plants and transient expression in leaves

The constructs were transformed into Agrobacterium tumefaciens
C58C1. To generate transgenic plants Agrobacterium was resus-
pended in 3 ml of transformation buffer containing 5% sucrose
and 0.05% silwet L-77, and used for plant transformation by the
floral dip method (Clough and Bent, 1998). For transient expres-
sion, the plasmid-containing agrobacteria were cultivated over-
night at 28°C, harvested by centrifugation, and the pellet was
resuspended in sterile water to a final OD600 of 1. The Agrobac-
terium suspension was infiltrated into leaves of 4- to 6-week-old
Nicotiana benthamiana plants using a needleless 2-ml syringe.

Transformation of yeast cells

Transformation of the yeast strain AH109 was carried out accord-
ing to (Gietz et al., 1997). In brief, the binding and activation
domain vectors were transformed simultaneously and the cells
were spread on yeast minimal medium (SD medium: 0.66% yeast
nitrogen base without amino acids, 0.066% amino acid mix, 2%
glucose) lacking leucine and tryptophan (SD�L�W). After 3 d of
incubation at 29°C, overnight cultures of single colonies were
grown in double dropout medium (SD�L�W) under continuous
shaking for 24 h at 29°C. The optical density was set to an OD600

of 4 and a dilution series from 10�1 to 10�3 was dripped on selec-
tion agar plates lacking histidine (SD�L�W�H) and containing
0.5 mM 3-amino-1,2,4-triazole (3-AT) as well as on SD�L�W med-
ium as a control.

Protoplast isolation and transformation

Protoplast isolation was carried out as previously described with
minor changes (Drechsel et al., 2011). Mesophyll protoplasts were
isolated from leaves of 6-week-old plants in protoplasting buffer
(500 mM sorbitol, 1 mM CaCl2, 0.25% macerozym R10, 1% cellulase
R10, 10 mM MES-KOH, pH 5.7). The protoplast transformation was
performed with 150 ll protoplasts, 20 lg plasmid DNA and 165 ll
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PEG-Ca buffer (40% PEG 4000, 200 mM sorbitol, 100 mM CaCl2).
The transformation sample was mixed completely by gently rotat-
ing the tube and was incubated for 30 min at room temperature in
the dark. To stop this process, the sample was diluted with W5
buffer (154 mM NaCl, 125 mM CaCl2, 5 mM KCl, 5 mM glucose,
2 mM MES, pH 5.7) in three steps of 500 ll, 1 ml and 1.5 ml. The
sample was centrifuged at 60 g for 3 min (without brake) and was
washed with 3 ml W5 buffer twice. The protoplasts were incu-
bated for 24 h at room temperature in the dark and fluorescence
signals were analyzed by confocal laser scanning microscopy.

Root growth assay and propidium iodide staining

For the analysis of root growth, plants were germinated and
grown on vertical plates. The plates were scanned every 3 days
and measurement of root length was carried out using IMAGEJ soft-
ware (http://imagej.nih.gov/ij/). The final values were calculated by
determining the arithmetic mean of the root length values of three
biological replicates, which were themselves the average of at
least 20–30 plants. For treatment with zeocin, seedlings were
transferred to liquid medium containing zeocin or, as control, no
zeocin and incubated for the indicated time. Staining of cell wall
and dead cells was performed by submerging seedling for 1 min
in a 10 lg/ml PI/water solution and imaging was carried out using
confocal microscopy.

Analysis of embryos and mature seeds

For analysis of embryonic development, seeds were excised from
green siliques and cleared in Hoyer’s solution (100 g chloral
hydrate, 5 ml glycerol, 30 ml H2O, 7.5 g gum arabic) overnight.
Embryos were examined by confocal laser scanning microscopy
using a differential interference contrast filter. For mPS-PI staining
of mature seeds, dry seeds were incubated in water overnight and
seeds with an opened seed coat were selected for further treat-
ment. The seeds were treated as described in Truernit et al.
(2008). In short, seeds were fixed (50% methanol, 10% acetic acid)
at 4°C overnight, followed by an overnight treatment with 1% SDS
and 0.2 N NaOH at RT. After bleaching using sodium hypochlorite
solution (2.5% active chloride) for 5 min, seeds were treated with
1% periodic acid for 40 min at RT, and then stained with Schiff’s
reagent containing 100 µg/ml PI for 2 h. After two washing steps,
seeds were destained in a chloral hydrate solution (4 g chloral
hydrate, 1 ml glycerol, 2 ml water), covered with Hoyer’s solution
and incubated for 3 days before imaging by confocal microscopy.

Confocal laser scanning microscopy

To detect fluorescence of YFP, GFP or red fluorescent protein
(RFP) confocal laser scanning microscopy was applied using the
Leica TCS SP8 Confocal Platform (Leica Microsystems, Wetzlar,
Germany). For excitation of YFP and GFP, laser light of 488 nm
and for RFP of 561 nm was used. The detection windows ranged
from 520 to 540 nm (YFP), 496–511 nm (GFP), 569–591 nm (RFP)
and 690–708 nm for detection of chlorophyll auto-fluorescence.

Cytological analysis of nuclei

Determination of chromocentre area was performed on DAPI-
stained nuclei from 4-week-old rosette leaves, as previously
described (Ikeda et al., 2017).

Expression analysis

Total RNA was extracted from Arabidopsis seedlings or inflores-
cence material using the innuPREP Plant RNA kit (Analytik Jena

BioSolutions, www.analytik-jena.de). cDNA synthesis was per-
formed using a QuantiTect� Reverse Transcription Kit (QIAGEN,
http://www.qiagen.com). The cDNA was used either for semiquanti-
tative PCR experiments or for quantitative PCR using a RotorGene
2000 (Corbett Research, http://www.corbettlifescience.com). Target-
specific efficiencies were calculated as the mean of all reaction-
specific efficiencies for a given target. Data were quality-controlled,
normalized against two reference genes, and statistically evaluated
using QBASEPLUS 3.0 (Hellemans et al., 2007). Primers used for
genotyping, semiquantitative reverse transcriptase polymerase
chain reaction (RT-PCR) and qRT-PCR are listed in Table S3.

RNA-seq analysis

Previously published RNA-seq data of pp7l-1 mutants (4-day-old
seedlings, three replicates; (Xu et al., 2019)), mail1-1 and main
mutants (3-week-old seedlings, two replicates; (Ikeda et al., 2017)),
and corresponding wild-types were mapped on the Arabidopsis
thaliana genome (TAIR10) using STAR (Dobin et al., 2013) allowing
multimapping reads. Read counting was performed with fea-
tureCounts (Liao et al., 2014) on ‘transposable element’ TAIR10
annotations. Differentially expressed TEs (Benjamini–Hochberg
adjusted P-values < 0.05) were subsequently identified using DESEQ2
(Love et al., 2014). TEs with ≥10% of the sequence overlapping a
protein-coding gene annotation were not considered in the analysis.
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Figure S4. PP7L is an inactive phosphatase.

Figure S5. Cell death pattern in the RAM of wild-type and sog1-7
after zeocin treatment.

Table S1. Number of peptides identified by LC-MS/MS for co-im-
munoprecipitating proteins.

Table S2. Gene lists used to generate the diagram in Figure 3(d).

Table S3. Primer list.
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