F. Alonso, M. Latorre, N. Göransson, P. Zsigmond, and K. Wårdell, Investigation into deep brain stimulation lead designs: a patient-specific simulation study, Brain Sci, vol.6, p.39, 2016.

J. Andersson, M. Jenkinson, and S. M. Smith, Non-linear registration aka Spatial normalisation FMRIB, 2007.

J. Ashburner and K. J. Friston, Nonlinear spatial normalization using basis functions, Hum. Brain Mapp, vol.7, pp.254-266, 1999.

B. B. Avants, N. J. Tustison, G. Song, and J. C. Gee, Ants: Open-source tools for normalization and neuroanatomy, 2010.

B. B. Avants, P. Yushkevich, J. Pluta, D. Minkoff, M. Korczykowski et al., The optimal template effect in hippocampus studies of diseased populations, NeuroImage, vol.49, pp.2457-2466, 2010.

M. M. Chakravarty, G. Bertrand, C. P. Hodge, A. F. Sadikot, and D. L. Collins, The creation of a brain atlas for image guided neurosurgery using serial histological data, NeuroImage, vol.30, pp.359-376, 2006.

P. Coubes, N. Vayssiere, H. El-fertit, S. Hemm, L. Cif et al., Deep brain stimulation for dystonia, Stereotact. Funct. Neurosurg, vol.78, pp.183-191, 2002.

L. R. Dice, Measures of the amount of ecologic association between species, Ecology, vol.26, pp.297-302, 1945.

S. Ewert, A. Horn, F. Finkel, N. Li, A. A. Kühn et al., Optimization and comparative evaluation of nonlinear deformation algorithms for atlas-based segmentation of DBS target nuclei, NeuroImage, vol.184, pp.586-598, 2019.

S. Ewert, P. Plettig, N. Li, M. M. Chakravarty, D. L. Collins et al., Toward defining deep brain stimulation targets in MNI space: a subcortical atlas based on multimodal MRI, histology and structural connectivity, 2017.

V. Fonov, A. Evans, R. Mckinstry, C. Almli, and D. Collins, Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, Organization for Human Brain Mapping, Annual Meeting, vol.47, 2009.

A. Fedorov, R. Beichel, J. Kalpathy-cramer, J. Finet, J. Fillon-robin et al., 3D Slicer as an image computing platform for the Quantitative Imaging Network, Magn. Reson. Imaging, vol.30, issue.9, 2012.

V. Fonov, A. C. Evans, K. Botteron, C. R. Almli, R. C. Mckinstry et al., Unbiased average age-appropriate atlases for pediatric studies, NeuroImage, vol.54, pp.313-327, 2011.

K. Gorgolewski, C. D. Burns, C. Madison, D. Clark, Y. O. Halchenko et al., Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python, Front. Neuroinf, vol.5, 2011.

G. Grabner, A. L. Janke, M. M. Budge, D. Smith, J. Pruessner et al., Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults, Medical Image Computing and Computer-Assisted Intervention -MICCAI 2006, Lecture Notes in Computer Science. Presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.58-66, 2006.

M. Hariz, My 25 stimulating years with DBS in Parkinson's disease, J. Park. Dis, vol.7, pp.33-41, 2017.

M. Hariz, P. Blomstedt, and L. Zrinzo, Future of brain stimulation: new targets, new indications, new technology, Mov. Disord, vol.28, pp.1784-1792, 2013.

S. Hemm, D. Pison, F. Alonso, A. Shah, J. Coste et al., Patient-specific electric field simulations and acceleration measurements for objective analysis of intraoperative stimulation tests in the thalamus, Front. Hum. Neurosci, vol.10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01550215

S. Hemm and K. Wårdell, Stereotactic implantation of deep brain stimulation electrodes: a review of technical systems, methods and emerging tools, Med. Biol. Eng. Comput, vol.48, pp.611-624, 2010.

T. M. Herrington, J. J. Cheng, and E. N. Eskandar, Mechanisms of deep brain stimulation, J. Neurophysiol, vol.115, pp.19-38, 2015.

J. L. Hintze and R. D. Nelson, Violin plots: a box plot-density trace synergism, Am. Stat, vol.52, pp.181-184, 1998.

A. Horn, N. Li, T. A. Dembek, A. Kappel, C. Boulay et al., Lead-DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging, NeuroImage, vol.184, pp.293-316, 2019.

A. P. Keszei, B. Berkels, and T. M. Deserno, Survey of non-rigid registration tools in medicine, J. Digital Imag, 2016.

A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants et al., Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration, NeuroImage, vol.46, pp.786-802, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00360790

F. Lalys, C. Haegelen, J. Ferre, O. El-ganaoui, and P. Jannin, Construction and assessment of a 3-T MRI brain template, NeuroImage, vol.49, pp.345-354, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00546487

J. Lemaire, J. Coste, L. Ouchchane, F. Caire, C. Nuti et al., Brain mapping in stereotactic surgery: a brief overview from the probabilistic targeting to the patient-based anatomic mapping, NeuroImage, vol.37, pp.109-115, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01543112

J. Lemaire, A. De-salles, G. Coll, Y. El-ouadih, R. Chaix et al., MRI atlas of the human deep brain, Front. Neurol, vol.10, p.851, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02307526

J. Lemaire, L. Sakka, L. Ouchchane, F. Caire, J. Gabrillargues et al., Anatomy of the human thalamus based on spontaneous contrast and microscopic voxels in high-field magnetic resonance imaging, Oper. Neurosurg, vol.66, pp.161-172, 2010.

S. Lorio, S. Fresard, S. Adaszewski, F. Kherif, R. Chowdhury et al., New tissue priors for improved automated classification of subcortical brain structures on MRI, NeuroImage, vol.130, pp.157-166, 2016.

V. A. Magnotta, S. Gold, N. C. Andreasen, J. C. Ehrhardt, and W. T. Yuh, Visualization of subthalamic nuclei with cortex attenuated inversion recovery MR imaging, NeuroImage, vol.11, pp.341-346, 2000.

J. Mazziotta, A. Toga, A. Evans, P. Fox, J. Lancaster et al., A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM), Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.356, pp.1293-1322, 2001.

A. Morel, Stereotactic Atlas of the Human Thalamus and Basal Ganglia, 0 ed, 2007.

W. L. Nowinski, D. Belov, P. Pollak, and A. Benabid, Statistical analysis of 168 bilateral subthalamic nucleus implantations by means of the probabilistic functional atlas, Oper. Neurosurg, vol.57, pp.319-330, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00391064

Y. Ou, H. Akbari, M. Bilello, X. Da, and C. Davatzikos, Comparative evaluation of registration algorithms in different brain databases with varying difficulty: results and insights, IEEE Trans. Med. Imag, vol.33, pp.2039-2065, 2014.

Y. Ou, A. Sotiras, N. Paragios, and C. Davatzikos, DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting, Med. Image Anal, vol.15, pp.622-639, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00856309

A. Qiu, T. Brown, B. Fischl, J. Ma, and M. I. Miller, Atlas generation for subcortical and ventricular structures with its applications in shape analysis, IEEE Trans. Image Process, vol.19, pp.1539-1547, 2010.

G. Schaltenbrand, Atlas for Stereotaxy of the Human Brain, 1977.

A. A. Shah, Investigation of intraoperative accelerometer data recording for safer and improved target selection for deep brain stimulation, 2018.

D. W. Shattuck, M. Mirza, V. Adisetiyo, C. Hojatkashani, G. Salamon et al., Construction of a 3D probabilistic atlas of human cortical structures, NeuroImage, vol.39, pp.1064-1080, 2008.

J. Talairach and P. Tournoux, Co-Planar Stereotactic Atlas of the Human Brain, Theime Medical, 1988.

J. Tokuda, G. S. Fischer, X. Papademetris, Z. Yaniv, L. Ibanez et al., OpenIGTLink: an open network protocol for imageguided therapy environment, Int. J. Med. Robot, vol.5, pp.423-434, 2009.

T. Ungi, A. Lasso, and G. Fichtinger, Open-source platforms for navigated imageguided interventions, Med. Image Anal, vol.33, pp.181-186, 2016.

F. Vassal, J. Coste, P. Derost, V. Mendes, J. Gabrillargues et al., Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence, Brain Stimulat, vol.5, pp.625-633, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01556884

Y. Xiao, V. Fonov, M. M. Chakravarty, S. Beriault, F. Al-subaie et al., A dataset of multi-contrast population-averaged brain MRI atlases of a Parkinson???s disease cohort, Data Brief, vol.12, pp.370-379, 2017.

A. Zerroug, J. Gabrillargues, G. Coll, F. Vassal, B. Jean et al., Personalized mapping of the deep brain with a white matter attenuated inversion recovery (WAIR) sequence at 1.5-tesla: experience based on a series of 156 patients, Neurochirurgie, vol.62, pp.183-189, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01578968