J. Bigot, C. Boyer, and P. Weiss, An analysis of block sampling strategies in compressed sensing, IEEE transactions on information theory, vol.62, pp.2125-2139, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00823711

J. D. Blanchard and J. Tanner, Gpu accelerated greedy algorithms for compressed sensing, Mathematical Programming Computation, vol.5, pp.267-304, 2013.

T. Blumensath and M. E. Davies, Iterative hard thresholding for compressed sensing, Applied and computational harmonic analysis, vol.27, pp.265-274, 2009.

E. J. Candes, The restricted isometry property and its implications for compressed sensing, Comptes rendus mathematique, vol.346, pp.589-592, 2008.

E. J. Candes and D. L. Donoho, Curvelets: A surprisingly effective nonadaptive representation for objects with edges, 2000.

E. J. Candes and Y. Plan, A probabilistic and ripless theory of compressed sensing, IEEE transactions on information theory, vol.57, pp.7235-7254, 2011.

E. J. Candès and Y. Plan, Near-ideal model selection by ? 1 minimization, The Annals of Statistics, vol.37, pp.2145-2177, 2009.

E. J. Candes, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on information theory, vol.52, pp.489-509, 2006.

E. J. Candes, J. K. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, vol.59, pp.1207-1223, 2006.

N. Chauffert, P. Ciuciu, J. Kahn, and P. Weiss, Variable density sampling with continuous trajectories, SIAM J. Imaging Sciences, vol.7, pp.1962-1992, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00908486

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park et al., Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging, Archives of ophthalmology, vol.123, pp.1715-1720, 2005.

S. Chitchian, M. Fiddy, and N. M. Fried, Wavelet denoising during optical coherence tomography of the prostate nerves using the complex wavelet transform, p.30, 2008.

, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.3016-3019

M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, Sensitivity advantage of swept source and fourier domain optical coherence tomography, Optics express, vol.11, pp.2183-2189, 2003.

S. Chrétien and S. Darses, Sparse recovery with unknown variance: a lasso-type approach, IEEE Transactions on Information Theory, vol.60, pp.3970-3988, 2014.

A. Cohen, W. Dahmen, and R. Devore, Compressed sensing and best fc-term approximation, Journal of the American mathematical society, vol.22, pp.211-231, 2009.

M. Davenport and M. Duarte, Introduction to compressed sensing. chapter 1 of compressed sensing: Theory and applications, 2012.

D. L. Donoho, Compressed sensing, IEEE Transactions on information theory, vol.52, pp.1289-1306, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00369486

W. Drexler and J. G. Fujimoto, State-of-the-art retinal optical coherence tomography, Progress in retinal and eye research, vol.27, pp.45-88, 2008.

L. A. Duflot, A. Krupa, B. Tamadazte, and N. Andreff, Shearlet transform: A good candidate for compressed sensing in optical coherence tomography, IEEE 38th Annual International Conference of the, IEEE, pp.435-438, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01355488

A. Aspremont and L. El-ghaoui, Testing the nullspace property using semidefinite programming, Mathematical programming, vol.127, pp.123-144, 2011.

Y. Fei, G. Wei, and S. Zongxi, Medical image fusion based on feature extraction and sparse representation, International journal of biomedical imaging, 2017.

S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing, 2013.

B. Basel,

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy, Neoplasia, 2000.

A. Juditsky and A. Nemirovski, On verifiable sufficient conditions for sparse signal recovery via ? 1 minimization, Mathematical programming, vol.127, pp.57-88, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00321775

P. Kittipoom, G. Kutyniok, and W. Q. Lim, Construction of compactly supported shearlet frames, Constructive Approximation, vol.35, 2012.

G. Kutyniok and D. Labate, Introduction to shearlets, pp.1-38, 2012.

G. Kutyniok, W. Q. Lim, and R. Reisenhofer, Shearlab 3d: Faithful digital shearlet transforms based on compactly supported shearlets, 2014.

D. Labate, W. Q. Lim, G. Kutyniok, and G. Weiss, Sparse multidimensional representation using shearlets, Wavelets XI, International Society for Optics and Photonics, p.59140, 2005.

X. Liu and J. U. Kang, Compressive sd-oct: the application of compressed sensing in spectral domain optical coherence tomography, Opt. Express, vol.18, pp.22010-22019, 2010.