M. Leriche, L. Deguillaume, and N. Chaumerliac, Modeling study of strong acids formation and partitioning in a polluted cloud during wintertime, J. Geophys. Res.-Atmos, vol.108, p.4433, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00987667

B. Ervens, Modeling the processing of aerosol and trace gases in clouds and fogs, Chem. Rev, vol.115, pp.4157-4198, 2015.

A. H. Goldstein, C. D. Koven, C. L. Heald, and I. Y. Fung, Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States, Proc. Natl. Acad. Sci, vol.106, pp.8835-8840, 2009.

H. Herrmann, T. Schaefer, A. Tilgner, S. A. Styler, C. Weller et al., Tropospheric aqueous-phase chemistry: Kinetics, mechanisms, and its coupling to a changing gas phase, Chem. Rev, vol.115, pp.4259-4334, 2015.

S. O. Baek, R. A. Field, M. E. Goldstone, P. W. Kirk, J. N. Lester et al., A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate and behavior, Water Air Soil Pollut, vol.60, pp.279-300, 1991.

V. Romanazzi, M. Casazza, M. Malandrino, V. Maurino, A. Piano et al., PM10 size distribution of metals and environmental-sanitary risk analysis in the city of Torino, Chemosphere, vol.112, pp.210-216, 2014.

, World Health Organization. How Air Pollution Is Destroying Our Health, p.16, 2019.

D. Y. Chang, J. Lelieveld, H. Tost, B. Steil, A. Pozzer et al., Aerosol physicochemical effects on CCN activation simulated with the chemistry-climate model EMAC, Atmos. Environ, vol.162, pp.127-140, 2017.

J. Elm, M. Passananti, T. Kurtén, and H. Vehkamäki, Diamines can initiate new particle formation in the atmosphere, J. Phys. Chem. A, vol.121, pp.6155-6164, 2017.

K. Lehtipalo, C. Yan, L. Dada, F. Bianchi, M. Xiao et al., Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors
URL : https://hal.archives-ouvertes.fr/hal-01975898

D. Stolzenburg, L. Fischer, A. L. Vogel, M. Heinritzi, M. Schervish et al., Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range, Proc. Natl. Acad. Sci, vol.115, 2018.

J. D. Surratt, Y. Gómez-gonzález, A. W. Chan, R. Vermeylen, M. Shahgholi et al., Organosulfate formation in biogenic secondary organic aerosol, J. Phys. Chem. A, vol.112, pp.8345-8378, 2008.

A. Hodzic, P. S. Kasibhatla, D. S. Jo, C. D. Cappa, J. L. Jimenez et al., Rethinking the global secondary organic aerosol (SOA) budget: Stronger production, faster removal, shorter lifetime, Atmos. Chem. Phys, vol.16, pp.7917-7941, 2016.

L. Deguillaume, T. Charbouillot, M. Joly, M. Vaïtilingom, M. Parazols et al., Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties, Atmos. Chem. Phys, vol.14, pp.1485-1506, 2014.

P. Herckes, K. T. Valsaraj, and J. L. Collett, A review of observations of organic matter in fogs and clouds: Origin, processing and fate, Atmos. Res, pp.434-449, 2013.

D. Van-pinxteren, A. Plewka, D. Hofmann, K. Müller, H. Kramberger et al., Schmücke hill cap cloud and valley stations aerosol characterisation during FEBUKO (II): Organic compounds, Atmos. Environ, vol.39, pp.4305-4320, 2005.

A. Bianco, G. Voyard, L. Deguillaume, G. Mailhot, and M. Brigante, Improving the characterization of dissolved organic carbon in cloud water: Amino acids and their impact on the oxidant capacity, Sci. Rep, vol.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01477239

H. Herrmann, Kinetics of aqueous phase reactions relevant for atmospheric chemistry, Chem. Rev, vol.103, pp.4691-4716, 2003.

U. Pöschl, Atmospheric aerosols: Composition, transformation, climate and health effects, Angew. Chem. Int. Ed, vol.44, pp.7520-7540, 2005.

D. A. Hegg and P. V. Hobbs, Cloud water chemistry and the production of sulfates in clouds, Atmos. Environ, vol.15, pp.1597-1604, 1967.

K. C. Weathers, G. E. Likens, F. H. Bormann, S. H. Bicknell, B. T. Bormann et al., Cloudwater chemistry from ten sites in North America, Environ. Sci. Technol, vol.22, pp.1018-1026, 1988.

J. Collett, B. Oberholzer, and J. Staehelin, Cloud chemistry at Mt Rigi, Switzerland: Dependence on drop size and relationship to precipitation chemistry, Atmos. Environ, vol.27, pp.33-42, 1993.

A. Marinoni, P. Laj, K. Sellegri, and G. Mailhot, Cloud chemistry at the Puy de Dôme: Variability and relationships with environmental factors, Atmos. Chem. Phys, vol.4, pp.715-728, 2004.

N. Aleksic, K. Roy, G. Sistla, J. Dukett, N. Houck et al., Analysis of cloud and precipitation chemistry at Whiteface Mountain, NY, Atmos. Environ, vol.43, pp.2709-2716, 2009.

W. L. Chameides and D. D. Davis, The free radical chemistry of cloud droplets and its impact upon the composition of rain, J. Geophys. Res.-Atmos, vol.87, 1982.

B. M. Ghauri, M. Mirza, R. Richter, V. A. Dutkiewicz, A. Rusheed et al., Composition of aerosols and cloud water at a remote mountain site (2.8 kms) in Pakistan, Chemosphere, vol.3, pp.51-63, 2001.

A. K. Lee, K. L. Hayden, P. Herckes, W. R. Leaitch, J. Liggio et al., Characterization of aerosol and cloud water at a mountain site during WACS 2010: Secondary organic aerosol formation through oxidative cloud processing, Atmos. Chem. Phys, vol.12, pp.7103-7116, 2012.

L. Deguillaume, M. Leriche, K. Desboeufs, G. Mailhot, C. George et al., Transition metals in atmospheric liquid phases: Sources, reactivity, and sensitive parameters, Chem. Rev, vol.105, pp.3388-3431, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01819392

J. Schneider, S. Mertes, D. Van-pinxteren, H. Herrmann, and S. Borrmann, Uptake of nitric acid, ammonia, and organics in orographic clouds: Mass spectrometric analyses of droplet residual and interstitial aerosol particles, Atmos. Chem. Phys, vol.17, pp.1571-1593, 2017.

K. Acker, D. Möller, W. Wieprecht, D. Kalaß, and R. Auel, Investigations of ground-based clouds at the Mt. Brocken, Fresenius J. Anal. Chem, vol.361, pp.59-64, 1998.

P. Herckes, P. Mirabel, and H. Wortham, Cloud water deposition at a high-elevation site in the Vosges Mountains (France), Sci. Total Environ, vol.296, pp.59-75, 2002.

M. Löflund, A. Kasper-giebl, B. Schuster, H. Giebl, R. Hitzenberger et al., Formic, acetic, oxalic, malonic and succinic acid concentrations and their contribution to organic carbon in cloud water, Atmos. Environ, vol.36, pp.1553-1558, 2002.

K. Sellegri, P. Laj, A. Marinoni, R. Dupuy, M. Legrand et al., Contribution of gaseous and particulate species to droplet solute composition at the Puy de Dôme, France, Atmos. Chem. Phys, vol.3, pp.1509-1522, 2003.

G. J. Reyes-rodríguez, A. Gioda, O. L. Mayol-bracero, and J. Collett, Organic carbon, total nitrogen, and water-soluble ions in clouds from a tropical montane cloud forest in Puerto Rico, Atmos. Environ, vol.43, pp.4171-4177, 2009.

A. Gioda, O. L. Mayol-bracero, F. Morales-garcía, J. Collett, S. Decesari et al., Chemical composition of cloud water in the puerto rican tropical trade wind cumuli, Water Air Soil Pollut, vol.200, pp.3-14, 2009.

J. Guo, Y. Wang, X. Shen, Z. Wang, T. Lee et al., Characterization of cloud water chemistry at Mount Tai, China: Seasonal variation, anthropogenic impact, and cloud processing, Atmos. Environ, vol.60, pp.467-476, 2012.

D. Van-pinxteren, K. W. Fomba, S. Mertes, K. Müller, G. Spindler et al., Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon, Atmos. Chem. Phys, vol.16, pp.3185-3205, 2016.

J. Li, X. Wang, J. Chen, C. Zhu, W. Li et al., Chemical composition and droplet size distribution of cloud at the summit of Mount Tai, China, Atmos. Chem. Phys, vol.17, pp.9885-9896, 2017.

R. Cini, F. Prodi, G. Santachiara, F. Porcù, S. Bellandi et al., Chemical characterization of cloud episodes at a ridge site in Tuscan Appennines, Italy. Atmos. Res, vol.61, pp.311-334, 2002.

K. W. Fomba, D. Van-pinxteren, K. Müller, Y. Iinuma, T. Lee et al., Trace metal characterization of aerosol particles and cloud water during HCCT 2010, Atmos. Chem. Phys, vol.15, pp.8751-8765, 2015.

K. Plessow, K. Acker, H. Heinrichs, and D. Möller, Time study of trace elements and major ions during two cloud events at the Mt, Brocken. Atmos. Environ, vol.35, pp.367-378, 2001.

X. Liu, K. Wai, Y. Wang, J. Zhou, P. Li et al., Evaluation of trace elements contamination in cloud/fog water at an elevated mountain site in Northern China, Chemosphere, vol.88, pp.531-541, 2012.

A. Bianco, M. Vaïtilingom, M. Bridoux, N. Chaumerliac, J. Pichon et al., Trace metals in cloud water sampled at the puy de Dôme station, vol.8, p.225, 2017.

W. Winiwarter, H. Fierlinger, H. Puxbaum, M. C. Facchini, B. G. Arends et al., Henry's law and the behavior of weak acids and bases in fog and cloud, J. Atmos. Chem, vol.19, pp.173-188, 1994.

W. C. Keene, B. W. Mosher, D. J. Jacob, J. W. Munger, R. W. Talbot et al., Carboxylic acids in clouds at a high-elevation forested site in central Virginia, J. Geophys. Res.-Atmos, vol.100, p.9345, 1995.

P. Laj, S. Fuzzi, M. C. Facchini, J. A. Lind, G. Orsi et al., Cloud processing of soluble gases, Atmos. Environ, vol.31, pp.2589-2598, 1997.

A. Bianco, M. Passananti, L. Deguillaume, G. Mailhot, and M. Brigante, Tryptophan and tryptophan-like substances in cloud water: Occurrence and photochemical fate, Atmos. Environ, vol.137, pp.53-61, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01349003

K. Acker, D. Muller, W. Wieprecht, . Naumann, . St et al., Brocken, a site for a cloud chemistry measurement programme in Central Europe, Water Air Soil Pollut, vol.85, 1979.

L. Poulain, Y. Katrib, E. Isikli, Y. Liu, H. Wortham et al., In-cloud multiphase behaviour of acetone in the troposphere: Gas uptake, Henry's law equilibrium and aqueous phase photooxidation, Chemosphere, vol.81, pp.312-320, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02308885

K. Lehtipalo, L. Rondo, J. Kontkanen, S. Schobesberger, T. Jokinen et al., The effect of acid-base clustering and ions on the growth of atmospheric nano-particles, Nat. Commun, 2016.

E. M. Dunne, H. Gordon, A. Kürten, J. Almeida, J. Duplissy et al., Global atmospheric particle formation from CERN CLOUD measurements, Science, vol.354, 1119.
URL : https://hal.archives-ouvertes.fr/hal-01397769

T. Charbouillot, S. Gorini, G. Voyard, M. Parazols, M. Brigante et al., Mechanism of carboxylic acid photooxidation in atmospheric aqueous phase: Formation, fate and reactivity, Atmos. Environ, vol.56, pp.1-8, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00694959

A. Monod, E. Chevallier, R. D. Jolibois, J. Doussin, B. Picquet-varrault et al., Photooxidation of methylhydroperoxide and ethylhydroperoxide in the aqueous phase under simulated cloud droplet conditions, Atmos. Environ, vol.41, pp.2412-2426, 2007.

D. Möller, K. Acker, and W. Wieprecht, A relationship between liquid water content and chemical composition in clouds, Atmos. Res, vol.41, pp.321-335, 1996.

N. Aleksic and J. E. Dukett, Probabilistic relationship between liquid water content and ion concentrations in cloud water, Atmos. Res, vol.98, pp.400-405, 2010.

K. Kawamura, S. Steinberg, L. Ng, and I. R. Kaplan, Wet deposition of low molecular weight mono-and di-carboxylic acids, aldehydes and inorganic species in Los Angeles, Atmos. Environ, vol.35, pp.3917-3926, 2001.

S. Wang, N. Lin, C. Ouyang, J. Wang, J. R. Campbell et al., Impact of Asian dust and continental pollutants on cloud chemistry observed in northern Taiwan during the experimental period of ABC/EAREX, J. Geophys. Res, 2005.

J. L. Collett, A. Bator, D. E. Sherman, K. F. Moore, K. J. Hoag et al., The chemical composition of fogs and intercepted clouds in the United States, Atmos. Res, vol.64, pp.29-40, 2002.

K. Watanabe, Y. Takebe, N. Sode, Y. Igarashi, H. Takahashi et al., Fog and rain water chemistry at Mt. Fuji: A case study during the, Atmos. Res, vol.82, pp.652-662, 2002.

J. J. Schwab, P. Casson, R. Brandt, L. Husain, V. Dutkewicz et al., Atmospheric chemistry measurements at Whiteface Mountain, NY: Cloud water chemistry, precipitation chemistry, and particulate matter, Aerosol Air Qual. Res, vol.16, pp.841-854, 2016.

K. B. Budhavant, P. S. Rao, P. D. Safai, L. Granat, and H. Rodhe, Chemical composition of the inorganic fraction of cloud-water at a high altitude station in West India, Atmos. Environ, vol.88, pp.59-65, 2014.

C. Walling, Intermediates in the reactions of Fenton type reagents, Accounts Chem. Res, vol.31, pp.155-157, 1998.

S. Enami, Y. Sakamoto, and A. J. Colussi, Fenton chemistry at aqueous interfaces, Proc. Natl. Acad. Sci, vol.111, pp.623-628, 2014.

E. Perraudin, H. Budzinski, and E. Villenave, Kinetic study of the reactions of ozone with polycyclic aromatic hydrocarbons adsorbed on atmospheric model particles, J. Atmos. Chem, vol.56, pp.57-82, 2006.

K. Miet, K. Le-menach, P. M. Flaud, H. Budzinski, and E. Villenave, Heterogeneous reactions of ozone with pyrene, 1-hydroxypyrene and 1-nitropyrene adsorbed on particles, Atmos. Environ, vol.43, pp.3699-3707, 2009.

A. Monod and P. Carlier, Impact of clouds on the tropospheric ozone budget: Direct effect of multiphase photochemistry of soluble organic compounds, Atmos. Environ, vol.33, pp.4431-4446, 1999.

A. V. Ivanov, S. Trakhtenberg, A. K. Bertram, Y. M. Gershenzon, M. J. Molina et al., HO 2 , and ozone gaseous diffusion coefficients, J. Phys. Chem. A, vol.111, pp.1632-1637, 2007.

J. M. Anglada, M. Martins-costa, M. F. Ruiz-lopez, and J. S. Francisco, Spectroscopic signatures of ozone at the air-water interface and photochemistry implications, Proc. Natl. Acad. Sci, vol.111, pp.11618-11623, 2014.

B. J. Finlayson-pitts, Chemistry of the Upper and Lower Atmosphere, 2000.

R. Harris, A. E. Ervens, B. Shoemaker, R. K. Kroll, J. A. Rapf et al., Photochemical kinetics of pyruvic acid in aqueous solution, J. Phys. Chem. A, vol.118, pp.8505-8516, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01456423

R. Kaur and C. Anastasio, First measurements of organic triplet excited states in atmospheric waters, Environ. Sci. Technol, vol.52, pp.5218-5226, 2018.

B. C. Faust, Photochemistry of clouds, fogs, and aerosols, Environ. Sci. Tech, vol.28, pp.216-222, 1994.

H. Herrmann, A. Tilgner, P. Barzaghi, Z. Majdik, S. Gligorovski et al., Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0, Atmos. Environ, vol.39, pp.4351-4363, 2005.

H. Herrmann, H. Jacobi, G. Raabe, A. Reese, and R. Zellner, Laser-spectroscopic laboratory studies of atmospheric aqueous phase free radical chemistry, Fresenius J. Anal. Chem, vol.355, pp.343-344, 1996.

R. E. Huie, C. L. Clifton, and P. Neta, Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions, Radiat. Phys. Chem, vol.38, pp.477-481, 1991.

K. C. Kwong, M. M. Chim, J. F. Davies, K. R. Wilson, and M. N. Chan, Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate, Atmos. Chem. Phys, vol.18, pp.2809-2820, 2018.

X. Wang, D. J. Jacob, S. D. Eastham, M. P. Sulprizio, L. Zhu et al., The role of chlorine in global tropospheric chemistry, Atmos. Chem. Phys, vol.19, pp.3981-4003, 2019.

H. Hung and M. R. Hoffmann, Oxidation of gas-phase SO 2 on the surfaces of acidic microdroplets: Implications for sulfate and sulfate radical anion formation in the atmospheric liquid phase, Environ. Sci. Tech, vol.49, pp.13768-13776, 2015.

H. Herrmann, D. Hoffmann, T. Schaefer, P. Bräuer, and A. Tilgner, Tropospheric aqueous-phase free-radical chemistry: Radical sources, spectra, reaction kinetics and prediction tools, ChemPhysChem, vol.11, pp.3796-3822, 2010.

C. Anastasio, B. C. Faust, and J. M. Allen, Aqueous phase photochemical formation of hydrogen peroxide in authentic cloud waters, J. Geophys. Res.-Atmos, vol.99, pp.8231-8248, 1994.

C. Mouchel-vallon, L. Deguillaume, A. Monod, H. Perroux, C. Rose et al., CLEPS 1.0: A new protocol for cloud aqueous phase oxidation of VOC mechanisms, Geosci. Model. Dev, vol.10, pp.1339-1362, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01819360

M. Leriche, J. Pinty, C. Mari, and D. Gazen, A cloud chemistry module for the 3-D cloud-resolving mesoscale model Meso-NH with application to idealized cases, Geosci. Model Dev, vol.6, pp.1275-1298, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00857404

Y. Zuo and J. Hoigne, Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes, Environ. Sci. Technol, vol.26, pp.1014-1022, 1992.

T. Arakaki and B. C. Faust, Sources, sinks, and mechanisms of hydroxyl radical (?OH) photoproduction and consumption in authentic acidic continental cloud waters from Whiteface Mountain, J. Geophys. Res.-Atmos, vol.103, pp.3487-3504, 1998.

T. Arakaki, C. Anastasio, P. G. Shu, and B. C. Faust, Aqueous-phase photoproduction of hydrogen peroxide in authentic cloud waters: Wavelength dependence, and the effects of filtration and freeze-thaw cycles, Atmos. Environ, vol.29, pp.1697-1703, 1995.

B. C. Faust, K. Powell, C. J. Rao, and C. Anastasio, Aqueous-phase photolysis of biacetyl (an ?-dicarbonyl compound): A sink for biacetyl, and a source of acetic acid, peroxyacetic acid, hydrogen peroxide, and the highly oxidizing acetylperoxyl radical in aqueous aerosols, fogs, and clouds, Atmos. Environ, vol.31, pp.497-510, 1997.

Y. Zuo and Y. Deng, Evidence for the production of hydrogen peroxide in rainwater by lightning during thunderstorms, Geochim. Cosmochim. Acta, vol.63, pp.3451-3455, 1999.

W. Hua, Z. M. Chen, C. Y. Jie, Y. Kondo, A. Hofzumahaus et al., Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: Their concentration, formation mechanism and contribution to secondary aerosols, Atmos. Chem. Phys, vol.8, pp.6755-6773, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00304223

M. Lee, B. G. Heikes, and D. W. O'sullivan, Hydrogen peroxide and organic hydroperoxide in the troposphere: A review, Atmos. Environ, vol.34, pp.3475-3494, 2000.

D. Möller, Atmospheric hydrogen peroxide: Evidence for aqueous-phase formation from a historic perspective and a one-year measurement campaign, Atmos. Environ, vol.43, pp.5923-5936, 2009.

A. Marinoni, M. Parazols, M. Brigante, L. Deguillaume, P. Amato et al., Hydrogen peroxide in natural cloud water: Sources and photoreactivity, Atmos. Res, vol.101, pp.256-263, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00598498

L. W. Richards, J. A. Anderson, D. L. Blumenthal, J. A. Mcdonald, G. L. Kok et al., Hydrogen peroxide and sulfur (IV) in Los Angeles cloud water, Atmos. Environ, vol.17, pp.911-914, 1983.

A. Bianco, M. Passananti, H. Perroux, G. Voyard, C. Mouchel-vallon et al., A better understanding of hydroxyl radical photochemical sources in cloud waters collected at the puy de Dôme station-Experimental versus modelled formation rates, Atmos. Chem. Phys, vol.15, pp.9191-9202, 2015.

G. L. Vaghjiani, A. A. Turnipseed, R. F. Warren, and A. Ravishankara, Photodissociation of H2O2 at 193 and 222 nm: Products and quantum yields, J. Chem. Phys, vol.96, pp.5878-5886, 1992.

A. M. Hough, Development of a two-dimensional global tropospheric model: Model chemistry, J. Geophys. Res.-Atmos, vol.96, pp.7325-7362, 1991.

S. Kunen, A. Lazrus, G. Kok, and B. Heikes, Aqueous oxidation of SO2 by hydrogen peroxide, J. Geophys. Res.-Oceans, vol.88, pp.3671-3674, 1983.

S. Penkett, B. Jones, K. Brich, and A. E. Eggleton, The importance of atmospheric ozone and hydrogen peroxide in oxidising sulphur dioxide in cloud and rainwater, Atmos. Environ, vol.13, pp.123-137, 1979.

L. R. Martin and D. E. Damschen, Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH, Atmos. Environ, vol.15, pp.1615-1621, 1981.

J. Mack and J. R. Bolton, Photochemistry of nitrite and nitrate in aqueous solution: A review, J. Photochem. Photobiol. A, vol.128, pp.1-13, 1999.

G. Mark, H. Korth, H. Schuchmann, and C. Sonntag, The photochemistry of aqueous nitrate ion revisited, J. Photochem. Photobiol. A, vol.101, pp.89-103, 1996.

N. L. Ng, S. S. Brown, A. T. Archibald, E. Atlas, R. C. Cohen et al., Nitrate radicals and biogenic volatile organic compounds: Oxidation, mechanisms, and organic aerosol, vol.17, pp.2103-2162, 2017.

R. P. Wayne, I. Barnes, P. Biggs, J. Burrows, C. Canosa-mas et al., The nitrate radical: Physics, chemistry, and the atmosphere, Atmos. Environ, vol.25, pp.1-203, 1991.

K. Thomas, A. Volz-thomas, D. Mihelcic, H. G. Smit, and D. Kley, On the exchange of NO 3 radicals with aqueous solutions: Solubility and sticking coefficient, J. Atmos. Chem, vol.29, pp.17-43, 1998.

R. Sander, Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys, vol.15, pp.4399-4981, 2015.

M. Kanakidou, J. H. Seinfeld, S. N. Pandis, I. Barnes, F. J. Dentener et al., Organic aerosol and global climate modelling: A review, Atmos. Chem. Phys, vol.5, pp.1053-1123, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00327914

B. Ervens, B. J. Turpin, and R. J. Weber, Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies, Atmos. Chem. Phys, vol.11, pp.11069-11102, 2011.

D. Jacob, Heterogeneous chemistry and tropospheric ozone, Atmos. Environ, vol.34, pp.2131-2159, 2000.

M. C. Barth, Summary of the cloud chemistry modeling intercomparison: Photochemical box model simulation, J. Geophys. Res.-Atmos, vol.108, 2003.

J. A. Williams, W. J. Cooper, S. P. Mezyk, and D. M. Bartels, Absolute rate constants for the reaction of the hydrated electron, hydroxyl radical and hydrogen atom with chloroacetones in water, Radiat. Phys. Chem, vol.65, pp.327-334, 2002.

D. R. Hanson, J. B. Burkholder, C. J. Howard, and A. R. Ravishankara, Measurement of hydroxyl and hydroperoxy radical uptake coefficients on water and sulfuric acid surfaces, J. Phys. Chem, vol.96, pp.4979-4985, 1992.

B. C. Faust, C. Anastasio, J. M. Allen, and T. Arakaki, Aqueous-phase photochemical formation of peroxides in authentic cloud and fog waters, Science, vol.260, pp.73-75, 1993.

K. G. Mcgregor and C. Anastasio, Chemistry of fog waters in California's Central Valley: 2. Photochemical transformations of amino acids and alkyl amines, Atmos. Environ, vol.35, pp.1091-1104, 2001.

R. Kaur and C. Anastasio, Light absorption and the photoformation of hydroxyl radical and singlet oxygen in fog waters, Atmos. Environ, vol.164, pp.387-397, 2017.

L. Sun and J. R. Bolton, Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO 2 suspensions, J. Phys. Chem, vol.100, pp.4127-4134, 1996.

X. Yu and J. R. Barker, hydrogen peroxide photolysis in acidic aqueous solutions containing chloride ions. I. Chemical mechanism, J. Phys. Chem. A, vol.107, pp.1313-1324, 2003.

L. Chu and C. Anastasio, Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide, J. Phys. Chem. A, vol.109, pp.6264-6271, 2005.

Y. Nie, C. Hu, J. Qu, and X. Hu, Efficient photodegradation of Acid Red B by immobilized ferrocene in the presence of UVA and H2O2, J. Hazard. Mat, vol.154, pp.146-152, 2008.

T. E. Graedel, M. L. Mandich, and C. J. Weschler, Kinetic model studies of atmospheric droplet chemistry: 2. Homogeneous transition metal chemistry in raindrops, J. Geophys. Res.-Atmos, vol.91, p.5205, 1986.

W. Li, Y. Wang, J. L. Collett, J. Chen, X. Zhang et al., Microscopic evaluation of trace metals in cloud droplets in an acid precipitation region, Environ. Sci. Technol, vol.47, pp.4172-4180, 2013.

Y. Long, T. Charbouillot, M. Brigante, G. Mailhot, A. Delort et al., Evaluation of modeled cloud chemistry mechanism against laboratory irradiation experiments: The H x O y /iron/carboxylic acid chemical system, Atmos. Environ, vol.77, pp.686-695, 2013.

E. Bjergbakke, K. Sehested, and O. L. Rasmussen, The reaction mechanism and rate constants in the radiolysis of Fe 2+ -Cu 2+ solutions, Radiat. Res, vol.66, p.433, 1976.

A. Tilgner, P. Bräuer, R. Wolke, and H. Herrmann, Modelling multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0i, J. Atmos. Chem, vol.70, pp.221-256, 2013.

K. Hirose, Metal-organic matter interaction: Ecological roles of ligands in oceanic DOM, Appl. Geochem, vol.22, pp.1636-1645, 2007.

S. O. Pehkonen, R. Siefert, Y. Erel, S. Webb, and M. R. Hoffmann, Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds, Environ. Sci. Technol, vol.27, pp.2056-2062, 1993.

C. Weller, A. Tilgner, P. Bräuer, and H. Herrmann, Modeling the impact of iron-carboxylate photochemistry on radical budget and carboxylate degradation in cloud droplets and particles, Environ. Sci. Technol, vol.48, pp.5652-5659, 2014.

L. G. Sillen, A. E. Martell, and J. Bjerrum, Stability Constants of Metal-Ion Complexes, p.754, 1964.

R. C. Hider and X. Kong, Chemistry and biology of siderophores, Nat. Prod. Rep, vol.27, pp.637-657, 2010.

V. Vinatier, N. Wirgot, M. Joly, M. Sancelme, M. Abrantes et al., Siderophores in cloud waters and potential impact on atmospheric chemistry: Production by microorganisms isolated at the puy de Dôme station, Environ. Sci. Technol, vol.50, pp.9315-9323, 2016.

M. Cheize, G. Sarthou, P. L. Croot, E. Bucciarelli, A. Baudoux et al., Iron organic speciation determination in rainwater using cathodic stripping voltammetry, Anal. Chim. Acta, vol.736, pp.45-54, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00733008

M. Passananti, V. Vinatier, A. Delort, G. Mailhot, and M. Brigante, Siderophores in cloud waters and potential impact on atmospheric chemistry: Photoreactivity of iron complexes under sun-simulated conditions, Environ. Sci. Technol, vol.50, pp.9324-9332, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01362554

O. C. Zafiriou and M. B. True, Nitrate photolysis in seawater by sunlight, Mar. Chem, vol.8, pp.33-42, 1979.

P. Warneck and C. Wurzinger, Product quantum yields for the 305-nm photodecomposition of nitrate in aqueous solution, J. Phys. Chem, vol.92, pp.6278-6283, 1988.

K. B. Benedict, A. S. Mcfall, and C. Anastasio, Quantum yield of nitrite from the photolysis of aqueous nitrate above 300 nm, Environ. Sci. Technol, vol.51, pp.4387-4395, 2017.

L. Tinel, S. Rossignol, A. Bianco, M. Passananti, S. Perrier et al., Mechanistic insights on the photosensitized chemistry of a fatty acid at the air/water interface, Environ. Sci. Technol, vol.50, pp.11041-11048, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01476237

A. Monod, A. Chebbi, R. Durand-jolibois, and P. Carlier, Oxidation of methanol by hydroxyl radicals in aqueous solution under simulated cloud droplet conditions, Atmos. Environ, vol.34, pp.5283-5294, 2000.

E. Bothe, M. N. Schuchmann, D. Schulte-frohlinde, and C. Sonntag, HO 2 elimination from ?-hydroxyalkylperoxyl radicals in aqueous solution, J. Photochem. Photobiol, vol.28, pp.639-643, 1978.

C. Von-sonntag, P. Dowideit, X. Fang, R. Mertens, X. Pan et al., The fate of peroxyl radicals in aqueous solution, Water Sci. Technol, vol.35, pp.9-15, 1997.

M. N. Schuchmann, H. Zegota, and C. Von-sonntag, Acetate Peroxyl Radicals,· O2CH2 CO2-: A study on the ?-radiolysis and pulse radiolysis of acetate in oxygenated aqueous solutions, Z. Naturforsch. Pt. B, vol.40, pp.215-221, 1985.

K. Stemmler and U. Von-gunten, OH radical-initiated oxidation of organic compounds in atmospheric water phases: Part 1. Reactions of peroxyl radicals derived from 2-butoxyethanol in water, Atmos. Environ, vol.34, pp.4241-4252, 2000.

D. P. Decosta and J. Pincock, Control of product distribution by Marcus type electron-transfer rates for the radical pair generated in benzylic ester photochemistry, J. Am. Chem. Soc, vol.111, pp.8948-8950, 1989.

J. W. Hilborn and J. A. Pincock, Rates of decarboxylation of acyloxy radicals formed in the photocleavage of substituted 1-naphthylmethyl alkanoates, J. Am. Chem. Soc, vol.113, pp.2683-2686, 1991.

A. G. Carlton, B. J. Turpin, K. E. Altieri, S. Seitzinger, A. Reff et al., Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments, Atmos. Environ, vol.41, pp.7588-7602, 2007.

Y. Lim, Y. Tan, and B. Turpin, Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase, Atmos. Chem. Phys, vol.13, pp.8651-8667, 2013.

Y. Liu, I. E. Haddad, M. Scarfogliero, L. Nieto-gligorovski, B. Temime-roussel et al., Picquet-Varrault, B.; Monod, A. In-cloud processes of methacrolein under simulated conditions-Part 1: Aqueous phase photooxidation, Atmos. Chem. Phys, vol.9, pp.5093-5105, 2009.

L. Schöne, J. Schindelka, E. Szeremeta, T. Schaefer, D. Hoffmann et al., Atmospheric aqueous phase radical chemistry of the isoprene oxidation products methacrolein, methyl vinyl ketone, methacrylic acid and acrylic acid-kinetics and product studies, Phys. Chem. Chem. Phys, vol.16, pp.6257-6272, 2014.

A. Marion, M. Brigante, and G. Mailhot, A new source of ammonia and carboxylic acids in cloud water: The first evidence of photochemical process involving an iron-amino acid complex, Atmos. Environ, vol.195, pp.179-186, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01985904

D. Vione, V. Maurino, C. Minero, M. Duncianu, R. Olariu et al., Assessing the transformation kinetics of 2-and 4-nitrophenol in the atmospheric aqueous phase. Implications for the distribution of both nitroisomers in the atmosphere, Atmos. Environ, vol.43, pp.2321-2327, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00398838

A. K. Lee, P. Herckes, W. R. Leaitch, A. M. Macdonald, and J. P. Abbatt, Aqueous OH oxidation of ambient organic aerosol and cloud water organics: Formation of highly oxidized products, J. Geophys. Res. Let, vol.38, 2011.

R. Zhao, A. K. Lee, L. Huang, X. Li, F. Yang et al., Photochemical processing of aqueous atmospheric brown carbon, Atmos. Chem. Phys, vol.15, pp.6087-6100, 2015.

J. Lüttke, V. Scheer, K. Levsen, G. Wünsch, J. Neil-cape et al., Occurrence and formation of nitrated phenols in and out of cloud, Atmos. Environ, vol.31, pp.2637-2648, 1997.

T. Arakaki, C. Anastasio, Y. Kuroki, H. Nakajima, K. Okada et al., A general scavenging rate constant for reaction of hydroxyl radical with organic carbon in atmospheric waters, Environ. Sci. Technol, vol.47, pp.8196-8203, 2013.

B. Ervens, A. Sorooshian, Y. B. Lim, and B. J. Turpin, Key parameters controlling OH-initiated formation of secondary organic aerosol in the aqueous phase (aqSOA), J. Geophys. Res.-Atmos, vol.119, pp.3997-4016, 2014.

A. Tilgner and H. Herrmann, Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM, Atmos. Environ, vol.44, pp.5415-5422, 2010.

A. Lallement, V. Vinatier, M. Brigante, L. Deguillaume, A. M. Delort et al., First evaluation of the effect of microorganisms on steady state hydroxyl radical concentrations in atmospheric waters, Chemosphere, vol.212, pp.715-722, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874247

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI