, Earth's mantle and crust, Earth Planet. Sci. Lett, vol.398, pp.127-140

,

C. Dupuy, P. Vidal, R. C. Maury, and G. Guille, Basalts from Mururoa, Fangataufa and Gambier 575 islands, 1993.

. Sci and . Lett, , vol.117, pp.89-100

J. Farkas, V. Chrastny, M. Novak, E. Cadkova, J. Pasava et al., , p.578

L. Ackerman and T. D. Bullen, Chromium isotope variations (?53/52Cr) in mantle-derived 579 sources and their weathering products: Implications for environmental studies and the evolution of 580, 2013.

, ?53/52Cr in the Earth's mantle over geologic time, Geochim. Cosmochim. Acta, vol.123, pp.74-92

,

A. Gale, C. A. Dalton, C. H. Langmuir, Y. Su, and J. G. Schilling, The mean composition of ocean 583 ridge basalts, Geochemistry, Geophys. Geosystems, vol.14, pp.489-518, 2013.

,

H. Guillou, G. Guille, R. Brousse, and J. Bardintzeff, Evolution de basaltes tholéitiques vers des 586, 1990.

, basaltes alcalins dans le substratum volcanique de Fangataufa

B. Hanson and J. H. Jones, The systematics of Cr3+ and Cr2+ partitioning between olivine and liquid 589 in the presence of spinel, Am. Mineral, vol.83, pp.669-684, 1998.

M. M. Hirschmann and E. M. Stolper, A possible role for garnet pyroxenite in the origin of the 591 "garnet signature" in MORB, Contrib. to Mineral. Petrol, vol.124, pp.185-208, 1996.

,

A. W. Hofmann, Sampling mantle heterogeneity through oceanic basalts: isotopes and trace 594 elements, Treatise on Geochemistry, vol.2, p.595, 2007.

D. Heinrich, K. K. Holland, and . Turekian, , p.568

M. Javoy, E. Kaminski, F. Guyot, D. Andrault, C. Sanloup et al., , p.597

P. Agrinier, A. Davaille, and C. Jaupart, The chemical composition of the Earth: Enstatite 598, 2010.

, chondrite models. Earth Planet. Sci. Lett, vol.293, pp.259-268

J. Kang, D. A. Ionov, F. Liu, C. Zhang, A. V. Golovin et al., Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca 601 isotope composition of the Bulk Silicate Earth, Earth Planet. Sci. Lett, vol.600, pp.128-137, 2017.

,

S. Lambart, M. B. Baker, and E. M. Stolper, The role of pyroxenite in basalt genesis: Melt-PX, a 604 melting parametization for mantle pyroxenites between 0.9 and 5GPa, J. Geophys. Res. Solid Earth, vol.121, pp.5708-5735, 2016.

D. Laporte, M. J. Toplis, M. Seyler, and J. L. Devidal, A new experimental technique for extracting 607 liquids from peridotite at very low degrees of melting: application to partial melting of depleted 608 peridotite, Contrib. to Mineral. Petrol, vol.146, pp.463-484, 2004.

C. F. Li, L. J. Feng, X. C. Wang, Z. Y. Chu, J. H. Guo et al., Precise measurement of Cr 610 isotope ratios using a highly sensitive Nb2O5 emitter by thermal ionization mass spectrometry and 611 an improved procedure for separating Cr from geological materials, J. Anal. At. Spectrom, vol.31, pp.2375-612, 2016.

J. P. Li, H. S. O'neill, and F. Seifert, Subsolidus phase-relations in the system MgO-SiO2-CrO in 614 equilibrium with metallic Cr, and their significance for the petrochemistry of chromium, J. Petrol, vol.615, pp.107-132, 1995.

Y. Liang and D. Elthon, Evidence from chromium abundancies in mantle rocks for extraction of 617 picrate and komatiite melts, Nature, vol.343, pp.551-553, 1990.

X. Liu and H. S. O'neill, The effect of Cr2O3 on the partial melting of spinel lherzolite in the 619 system CaO-MgO-Al2O3-SiO2-Cr2O3 at 1.1 GPa, J. Petrol, vol.45, pp.2261-2286, 2004.

,

K. Lodders, Solar system abundances and condensation temperatures of the elements, Astrophys, 2003.

, J, vol.591, pp.1220-1247

G. Mallmann and H. Neill, The crystal/melt partitioning of V during mantle melting as a 624 function of oxygen fugacity compared with some other elements, p.625, 2009.

, Zr and Nb), J. Petrol, vol.50, pp.1765-1794

A. K. Matzen, B. J. Wood, M. B. Baker, and E. M. Stolper, The temperature and pressure dependence 627 of nickel partitioning between olivine and silicate melt, J. Petrol, vol.54, issue.12, pp.2521-2545, 2013.

W. F. Mcdonough, Compositional Model for the Earth's Core, 2013.

W. F. Mcdonough and S. S. Sun, The composition of the Earth, Chem. Geol, vol.120, pp.223-253, 1995.

, , pp.140-144

D. Mckenzie and R. K. O'nions, The source regions of ocean island basalts, J. Petrol, vol.36, pp.133-159, 1995.

,

B. Murck and I. H. Campbell, The effects of temperature, oxygen fgacity and melt composition 635 on the behaviour of chromium in basic and ultrabasic melts, Geochim. Cosmochim. Acta, vol.50, pp.1871-636, 1986.

O. Nebel, I. H. Campbell, P. Sossi, and M. J. Van-kranendonk, , p.638, 2014.

, Archean komatiites record a plume-driven convection cycle in the Hadean Earth, Earth Planet. Sci

. Lett, , vol.397, pp.111-120

H. Palme and H. Neill, Cosmochemical Estimates of Mantle Composition, Treatise on 641 Geochemistry: Second Edition, vol.3, pp.1-39, 2013.

J. J. Papike, J. M. Karner, and C. K. Shearer, Comparative planetary mineralogy: Valence state 643 partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from 644 planetary basalts, Am. Mineral, vol.90, pp.277-290, 2005.

J. Prytulak and T. Elliott, TiO2 enrichment in ocean island basalts, Earth Planet. Sci. Lett, vol.263, pp.388-646, 2007.

K. Putirka, F. J. Ryerson, M. Perfit, and W. I. Ridley, Mineralogy and composition of the oceanic 648 mantle, J. Petrol, vol.52, pp.279-313, 2011.

P. L. Roeder and I. Reynolds, Crystallization of chromite and chromium solubility in basaltic melts, 1991.

, J. Petrol, vol.32, pp.909-934

P. Schiano, G. Guille, C. Léotot, and R. Brousse, Mise en évidence de cycles dans les produits 652 volcaniques aériens et sub-aériens de l'atoll de Fangataufa (Plynésie francaise), C.R. Acad. Sci, 1990.

. Paris, Série II, vol.311, pp.1521-1527

P. Schiano, B. Dupré, and E. Lewin, Application of element concentration variability to the study 655 of basalt alteration (Fangataufa atoll, French Polynesia), Chem. Geol, vol.104, pp.99-124, 1993.

, , pp.90145-90154

R. Schoenberg, A. Merdian, C. Holmden, I. C. Kleinhanns, K. Haßler et al., , 2016.

, The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

, Cosmochim. Acta, vol.183, pp.14-30

R. Schoenberg, S. Zink, M. Staubwasser, and F. Von-blanckenburg, The stable Cr isotope inventory 661 of solid Earth reservoirs determined by double spike MC-ICP-MS, Chem. Geol, vol.249, pp.294-306, 2008.

,

J. Shen, L. Qin, Z. Fang, Y. Zhang, J. Liu et al., High-664 temperature inter-mineral Cr isotope fractionation: A comparison of ionic model predictions and 665 experimental investigations of mantle xenoliths from the North China Craton, Earth Planet. Sci. Lett, vol.666, pp.278-290, 2018.

J. Siebert, A. Corgne, and F. J. Ryerson, Systematics of metal-silicate partitioning for many 668 siderophile elements applied to Earth's core formation, Geochim. Cosmochim. Acta, vol.75, pp.1451-1489, 2011.

,

P. A. Sossi, H. O'neill, and . C. St, The effect of bonding environment on iron isotope fractionation 671 between minerals at high temperature, Geochim. Cosmochim. Acta, vol.196, pp.121-143, 2017.

P. A. Sossi, F. Moynier, and K. Van-zuilen, Volatile loss following cooling and accretion of the 673, 2018.

, Moon revealed by chromium isotopes, Proc. Natl. Acad. Sci. U. S. A, vol.115, pp.10920-10925

,

F. Teng, N. Dauphas, and R. T. Helz, Iron Isotope Fractionation in Kilauea Iki Lava Lake, Science, vol.676, issue.320, pp.1620-1622, 2008.

A. Trinquier, J. L. Birck, and C. J. Allègre, High-precision analysis of chromium isotopes in 678 terrestrial and meteorite samples by thermal ionization mass spectrometry, J. Anal. At. Spectrom, vol.679, pp.1565-1574, 2008.

A. Trinquier, T. Elliott, D. Ulfbeck, C. Coath, A. N. Krot et al., , p.681, 2009.

, Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk. Science (80-. ), vol.324, pp.374-682

B. Villemant, H. Jaffrezic, J. Joron, and M. Treuil, Distribution coefficients of major and trace 684 elements; fractional crystallization in the alkali basalt series of Chaine des Puys, p.685, 1981.

. France, Geochim. Cosmochim. Acta, vol.45, pp.1997-2016

X. Wang, C. T. Reinhard, N. J. Planavsky, J. D. Owens, T. W. Lyons et al., , 2016.

, Sedimentary chromium isotopic compositions across the Cretaceous OAE2 at Demerara Rise Site 688 1258, Chem. Geol, vol.429, pp.85-92

D. Weis, B. Kieffer, C. Maerschalk, J. Barling, J. De-jong et al., , p.690

W. Mattielli, N. Scoates, J. S. Goolaerts, A. Friedman, R. M. Mahoney et al., High-691 precision isotopic characterization of USGS reference materials by, 2006.

G. Geochemistry and . Geosystems,

B. J. Wood, J. Wade, and M. R. Kilburn, Core formation and the oxidation state of the Earth: 694 Additional constraints from Nb, V and Cr partitioning, Geochim. Cosmochim. Acta, vol.72, pp.1415-1426, 2008.

,

J. Xia, L. Qin, J. Shen, R. W. Carlson, D. A. Ionov et al., Chromium isotope 697 heterogeneity in the mantle, Earth Planet. Sci. Lett, vol.464, pp.103-115, 2017.

,

J. M. Zhu, G. Wu, X. Wang, G. Han, and L. Zhang, An improved method of Cr purification for 700 high precision measurement of Cr isotopes by double spike MC-ICP-MS, J. Anal. At. Spectrom, vol.33, pp.809-821, 2018.

K. Zhu, P. A. Sossi, J. Siebert, and F. Moynier, Tracking the volatile and magmatic history of Vesta 703 from chromium stable isotope variations in eucrite and diogenite meteorites, 2019.

. Acta,

J. Benbakkar, This 711 project has received funding from the European Research Council (ERC) under the European Union's 712 Horizon 2020 research and innovation programme (Grant Agreement No 682778 -ISOREE) and from 713 the Clervolc Labex

, SiO2 and (b) MgO concentrations in the samples analysed in this study. The 723 colours are for the two series (red for high-K and blue for low-K) observed in the Fangataufa samples, Figure 1: K2O vs (a), vol.724

, Figure 2: MgO vs La/Yb ratios for the samples analysed in this study. Colours defined in Fig, vol.1

, Figure 3: ?NdCHUR versus Sr isotopic composition for Ocean Island basalts. The blue and red circles are 766 the data from this study (colours defined in Figure 1). The black squares are Fangataufa samples from 767

. Bardintzeff, The grey circles are OIB samples from the literature, p.768, 1994.

, Cr versus Nd isotopic compositions for the Fangataufa basalts. The colour coding is defined, Figure, vol.5

, Figure 8: ? 53 Cr versus the amount of Cr left (F) in the melt during fractional crystallisation for the 857

F. Bonnand, F was 858 calculated using the equation: F = Crsample / Crmax, where Crmax is the highest, p.859, 2016.

L. Fangataufa and . Basalts, The grey horizontal bars are the current estimates of the BSE (dark grey, p.860

. Sossi, The dotted line is a Rayleigh fractionation model 861 for lunar basalts. The blue and red shaded areas are the fractional models for the low-K and high-K 862 suites, respectively. The isotopic fractionation (? 53 Cr) used for Fangataufa basalts, 2008.

, For the lunar basalts, the fractionation factor is 864 -0.07 ? (see text for details). Error bars are the external reproducibility reported in each study

S. Figure, Chondrite normalised REE patterns for Fangataufa basalts. The OIB data is from Sun and 963

;. Mcdonough and . Gale, The chondrite values 964 used for normalisation is from, The colour coding is defined in Figure S1, 1989.