M. Cauchie, S. Desmet, and K. Lagrou, Candida and its dual lifestyle as a commensal and a pathogen, Res Microbiol, vol.168, issue.9, pp.802-812, 2017.

D. Farmakiotis and D. P. Kontoyiannis, Epidemiology of antifungal resistance in human pathogenic yeasts: current viewpoint and practical recommendations for management, Int J Antimicrob Agents

. Sep, , vol.50, pp.318-342, 2018.

M. Sanguinetti, B. Posteraro, and C. Lass-flö-rl, Antifungal drug resistance among Candida species: Mechanisms and clinical impact, Mycoses, vol.58, issue.S2, pp.2-13, 2015.

L. Scorzoni, P. E. De, A. Silva, C. M. Marcos, P. A. Assato et al., fungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front Microbiol, vol.8, p.36, 2017.

M. L. Wheeler, J. J. Limon, A. S. Bar, C. A. Leal, M. Gargus et al., Immunological Consequences of Intestinal Fungal Dysbiosis, Cell Host Microbe [Internet], vol.19, issue.6, pp.865-73, 2016.

H. Hu, G. Zhang, Q. Zhang, S. Shakya, and Z. Li, Probiotics Prevent Candida Colonization and Invasive Fungal Sepsis in Preterm Neonates: A Systematic Review and Meta-Analysis of Randomized Controlled Trials, Pediatr Neonatol, vol.58, issue.2, pp.103-113, 2017.

V. H. Matsubara, H. Bandara, M. Mayer, and L. P. Samaranayake, Probiotics as Antifungals in Mucosal Candidiasis, 2016.

S. Agrawal, S. Rao, and S. Patole, Probiotic supplementation for preventing invasive fungal infections in preterm neonates-a systematic review and meta-analysis, Mycoses, 2015.

, , vol.58, pp.642-51

W. Fao, Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. Food Nutr Pap, 2001.

,

S. Fijan, Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature, Int J Environ Res Public Heal Int J Environ Res Public Heal Int J Environ Res Public Heal, vol.11, pp.4745-67, 2014.

B. Olle, Medicines from microbiota, Nat Biotechnol, 2013.

, , vol.31, pp.309-324

S. Coudeyras, G. Jugie, M. Vermerie, and C. Forestier, Adhesion of human probiotic Lactobacillus rhamnosus to cervical and vaginal cells and interaction with vaginosis-associated pathogens, Infect Dis Obstet Gynecol, p.549640, 2008.

S. Coudeyras, H. Marchandin, C. Fajon, and C. Forestier, Taxonomic and strain-specific identification of the probiotic strain Lactobacillus rhamnosus 35 within the Lactobacillus casei group, Appl Environ Microbiol, vol.74, issue.9, pp.2679-89, 2008.

C. Forestier, D. Champs, C. Vatoux, C. Joly, and B. , Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties, Res Microbiol, vol.152, issue.2, pp.167-73, 2001.

C. De-champs, N. Maroncle, D. Balestrino, C. Rich, and C. Forestier, Persistence of colonization of intestinal mucosa by a probiotic strain, Lactobacillus casei subsp. rhamnosus Lcr35, after oral consumption, J Clin Microbiol, vol.41, issue.3, pp.1270-1273, 2003.

L. Petricevic and A. Witt, The role of Lactobacillus casei rhamnosus Lcr35 in restoring the normal vaginal flora after antibiotic treatment of bacterial vaginosis, BJOG An Int J Obstet Gynaecol, 2008.

. Oct, , vol.115, pp.1369-74, 2016.

C. Muller, V. Mazel, C. Dausset, V. Busignies, S. Bornes et al., Study of the Lactobacillus rhamnosus Lcr35 ® properties after compression and proposition of a model to predict tablet stability, Eur J Pharm Biopharm, vol.88, issue.3, pp.787-94, 2014.

A. Nivoliez, P. Veisseire, E. Alaterre, C. Dausset, F. Baptiste et al., Influence of manufacturing processes on cell surface properties of probiotic strain Lactobacillus rhamnosus Lcr35 ®, Appl Microbiol Biotechnol, vol.99, issue.1, p.25280746, 2015.

C. Dausset, S. Patrier, P. Gajer, C. Thoral, Y. Lenglet et al., Comparative phase I randomized open-label pilot clinical trial of Gynophilus ® (Lcr regenerans ® ) immediate release capsules versus slow release muco-adhesive tablets, Eur J Clin Microbiol, vol.37, issue.10, p.30032443, 2018.

A. Nivoliez, O. Camares, M. Paquet-gachinat, S. Bornes, C. Forestier et al., Influence of manufacturing processes on in vitro properties of the probiotic strain Lactobacillus rhamnosus Lcr35 ®, J Biotechnol, vol.160, issue.3-4, pp.236-277, 2012.

E. Isolauri, P. Kirjavainen, and S. Salminen, Probiotics: a role in the treatment of intestinal infection and inflammation? Gut, vol.50, pp.54-63, 2002.

M. S. Do-carmo, S. C. Mc, J. A. Giró-n, and E. S. Fernandes, Monteiro-Neto V. Probiotics, mechanisms of action, and clinical perspectives for diarrhea management in children, Food Funct, vol.9, issue.10, pp.5074-95, 2018.

S. Coudeyras and C. Forestier, Microbiote et probiotiques: impact en santé humaine, Can J Microbiol, vol.56, issue.8, p.20725126, 2010.

C. Lacroix, T. De-wouters, and C. Chassard, Integrated multi-scale strategies to investigate nutritional compounds and their effect on the gut microbiota, Curr Opin Biotechnol, 2015.

, , vol.32, pp.149-55

G. Vinderola, M. Gueimonde, C. Gomez-gallego, L. Delfederico, and S. Salminen, Correlation between in vitro and in vivo assays in selection of probiotics from traditional species of bacteria. Trends Food Sci Technol, vol.68, pp.83-90, 2017.

B. P. Montoro, N. Benomar, L. L. Lerma, S. C. Gutié-rrez, A. Gálvez et al., Fermented aloreña table olives as a source of potential probiotic Lactobacillus pentosus strains, Front Microbiol, vol.7, 2016.

M. Roselli, A. Finamore, M. S. Britti, and E. Mengheri, Probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli K88, Br J Nutr [Internet], vol.95, issue.06, p.1177, 2006.

K. Papadimitriou, G. Zoumpopoulou, B. Foligné, V. Alexandraki, M. Kazou et al., Discovering probiotic microorganisms: In vitro, in vivo, genetic and omics approaches, Front Microbiol, vol.6, pp.1-28, 2015.

C. H. Lai, C. Y. Chou, . Ly, C. S. Liu, and W. Lin, Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics, Genome Res, vol.10, issue.5, pp.703-716, 2000.

R. Pukkila-worley, A. Y. Peleg, E. Tampakakis, and E. Mylonakis, Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model, Eukaryot Cell, 2009.

R. Pukkila-worley, F. M. Ausubel, and E. Mylonakis, Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses, PLoS Pathog, vol.7, issue.6, 2011.

S. Alves-v-de and E. Mylonakis, The eIF2 kinase Gcn2 modulates Candida albicans virulence to Caenorhabditis elegans, Clin Microbiol Infect Dis [Internet], vol.3, issue.2, pp.1-4, 2018.

X. Tan, B. B. Fuchs, Y. Wang, W. Chen, G. J. Yuen et al., The role of Candida albicans SPT20 in filamentation, biofilm formation and pathogenesis, PLoS One, vol.9, issue.4, pp.1-10, 2014.

P. P. De-barros, L. Scorzoni, C. Ribeiro-f-de, O. Fugisaki-lr-de, B. B. Fuchs et al., Lactobacillus paracasei 28.4 reduces in vitro hyphae formation of Candida albicans and prevents the filamentation in an experimental model of Caenorhabditis elegans, Microb Pathog [Internet], vol.117, pp.80-87, 2017.

M. Pinto, S. Robineleon, M. D. Appay, M. Kedinger, N. Triadou et al., Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture, Biol Cell, 1983.

S. Brenner, The genetics of Caenorhabditis elegans, Genetics, vol.77, issue.1, pp.71-94, 1974.

J. Hellemans, G. Mortier, A. De-paepe, F. Speleman, and J. Vandesompele, qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data, vol.8, pp.1186-25252, 2007.

J. I. Semple, R. Garcia-verdugo, and B. Lehner, Rapid selection of transgenic C. elegans using antibiotic resistance, Nat Methods, vol.7, issue.9, pp.725-732, 2010.

D. Hoogewijs, K. Houthoofd, F. Matthijssens, J. Vandesompele, and J. R. Vanfleteren, Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans, BMC Mol Biol, vol.9, issue.9, 2008.

H. Nakagawa, T. Shiozaki, E. Kobatake, T. Hosoya, T. Moriya et al., Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans, Aging Cell, vol.15, issue.2, pp.227-263, 2016.

. R-core-team, R: A language and Environment for Statistical Computing

, Austria: R Foundation for Statistical Computing, 2018.

T. M. Therneau, _A Package for Survival Analysis in S, 2015.

A. Kassambara, M. Kosinski, and . Survminer, Drawing Survival Curves using "ggplot2, 2017.

S. Fatima, R. Haque, P. Jadiya, . Shamsuzzama, L. Kumar et al., Ida-1, the Caenorhabditis elegans orthologue of mammalian diabetes autoantigen IA-2, potentially acts as a common modulator between Parkinson's disease and diabetes: Role of Daf-2/Daf-16 insulin like signalling pathway, PLoS One, vol.9, issue.12, 2014.

A. Jankowska, D. Laubitz, H. Antushevich, R. Zabielski, and E. Grzesiuk, Competition of Lactobacillus paracasei with Salmonella enterica for adhesion to Caco-2 cells, J Biomed Biotechnol, issue.1, 2008.

A. Nowak, I. Motyl, K. ?li?ewska, Z. Libudzisz, and E. Klewicka, Adherence of probiotic bacteria to human colon epithelial cells and inhibitory effect against enteric pathogens-In vitro study, Int J Dairy Technol, vol.69, issue.4, pp.532-541, 2016.

C. N. Allonsius, M. Van-den-broek, D. Boeck, I. Kiekens, S. Oerlemans et al., Interplay between Lactobacillus rhamnosus GG and Candida and the involvement of exopolysaccharides, Microb Biotechnol, vol.10, issue.6, pp.1753-63, 2017.

P. Ruas-madiedo, M. Gueimonde, A. Margolles, C. G. De-los-reyes-gavilan, and S. Salminen, Exopolysaccharides Produced by Probiotic Strains Modify the Adhesion of Probiotics and Enteropathogens to Human Intestinal Mucus, J Food Prot, vol.69, issue.8, pp.2011-2016, 2006.

J. E. Irazoqui, E. R. Troemel, R. L. Feinbaum, L. G. Luhachack, B. O. Cezairliyan et al., Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus, PLoS Pathog, vol.6, issue.7, pp.1-24, 2010.

K. Wu, J. Conly, J. A. Mcclure, S. Elsayed, T. Louie et al., Caenorhabditis elegans as a host model for community-associated methicillin-resistant Staphylococcus aureus, Clin Microbiol Infect, vol.16, issue.3, p.19456837, 2010.

A. Souza, B. B. Fuchs, S. Alves-v-de, E. Jayamani, A. L. Colombo et al., Pathogenesis of the Candida parapsilosis complex in the model host Caenorhabditis elegans, Genes (Basel), vol.9, issue.8, 2018.

M. R. Park, S. Ryu, B. E. Maburutse, N. S. Oh, S. H. Kim et al., Probiotic Lactobacillus fermentum strain JDFM216 stimulates the longevity and immune response of Caenorhabditis elegans through a nuclear hormone receptor, vol.8, p.7441, 2018.

Y. Kim and E. Mylonakis, Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain ncfm enhances gram-positive immune responses, Infect Immun, vol.80, issue.7, p.22585961, 2012.

T. Ikeda, C. Yasui, K. Hoshino, K. Arikawa, and Y. Nishikawa, Influence of lactic acid bacteria on longevity of Caenorhabditis elegans and host defense against Salmonella enterica serovar Enteritidis, Appl Environ Microbiol, vol.73, issue.20, pp.6404-6413, 2007.

L. Zhao, Y. Zhao, R. Liu, X. Zheng, M. Zhang et al., The transcription factor DAF-16 is essential for increased longevity in C. elegans Exposed to Bifidobacterium longum BB68, 2017.

E. Zanni, C. Laudenzi, E. Schifano, C. Palleschi, G. Perozzi et al., Impact of a complex food microbiota on energy metabolism in the model organism Caenorhabditis elegans, Biomed Res Int, 2015.

B. Guantario, P. Zinno, E. Schifano, M. Roselli, G. Perozzi et al., In Vitro and in Vivo selection of potentially probiotic lactobacilli from nocellara del belice table olives, Front Microbiol, vol.9, p.595, 2018.

J. P. Phelan and M. R. Rose, Why dietary restriction substantially increases longevity in animal models but won't in humans, Ageing Res Rev, vol.4, issue.3, pp.339-50, 2005.

E. D. Smith, T. L. Kaeberlein, B. T. Lydum, J. Sager, K. L. Welton et al., Age-and calorie-independent life span extension from dietary restriction by bacterial deprivation in Caenorhabditis elegans, BMC Dev Biol, vol.8, pp.1-13, 2008.

B. N. Heestand, Y. Shen, W. Liu, D. B. Magner, N. Storm et al., Dietary Restriction Induced Longevity Is Mediated by Nuclear Receptor NHR-62 in Caenorhabditis elegans, PLoS Genet, vol.9, issue.7, 2013.

T. Komura, T. Ikeda, C. Yasui, S. Saeki, and Y. Nishikawa, Mechanism underlying prolongevity induced by bifidobacteria in Caenorhabditis elegans, Biogerontology, vol.14, issue.1, p.23291976, 2013.

J. Tullet, DAF-16 target identification in C. elegans: past, present and future, Biogerontology, vol.16, issue.2, p.25156270, 2015.

G. Grompone, P. Martorell, S. Llopis, N. Gonzá-lez, S. Genovés et al., Anti-Inflammatory Lactobacillus rhamnosus CNCM I-3690 Strain Protects against Oxidative Stress and Increases Lifespan in Caenorhabditis elegans, PLoS One, vol.7, issue.12, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00846772

J. Breger, B. B. Fuchs, G. Aperis, T. I. Moy, F. M. Ausubel et al., Antifungal chemical compounds identified using a C. elegans pathogenicity assay, PLoS Pathog, vol.3, issue.2, pp.168-78, 2007.

B. Evrard, S. Coudeyras, A. Dosgilbert, N. Charbonnel, J. Alamé et al., Dose-dependent immunomodulation of human dendritic cells by the probiotic Lactobacillus rhamnosus Lcr35, PLoS One, vol.6, issue.4, pp.1-12, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00841317

V. Singh and A. Aballay, Regulation of DAF-16-mediated Innate Immunity in Caenorhabditis elegans, J Biol Chem, vol.284, issue.51, pp.35580-35587, 2009.