T. N. Irvine, Chrome spinel crystallization in the join Mg2SiO4-CaMgSi2O6, 1977.

. Mgcr2o4-sio2, Carnegie Inst Washington Yearb, vol.76, pp.465-472

A. J. Irving, S. M. Kuehner, R. W. Carlson, D. Rumble, A. C. Hupé et al., , p.591, 2005.

, multi-isotopic composition of olivine diogenite nwa 1877: a mantle peridotite in the proposed 592 hedo group ofmeteorites. Abstract #2188 Lunar and Planetary Science XXXVI, vol.593

A. J. Irving, T. E. Bunch, S. M. Kuehner, J. H. Wittke, and D. Rumble, Peridotites related to 594 4vesta: deep crustal igneous cumulates and mantle samples, Abstract #2466. 40th Lunar and 595 Planetary Science Conference, 2009.

M. J. Krawczynski, L. T. Elkins-tanton, and T. L. Grove, Petrology of 597 mesosiderite(?) MIL03443,9; constraints on eucrite parent body bulk composition and 598 magmatic processes, Abstract #1229, 39 th Lunar and Planetary Science Conference, 2008.

K. Lodders, An oxygen isotope mixing model for the accretion and composition of 600 rocky planets, From dust to terrestrial planets, vol.601, pp.341-354, 2000.

N. G. Lunning, H. Y. Mcsween, T. J. Tenner, N. T. Kita, and R. J. Bodnar, Olivine and pyroxene 603 from the mantle of asteroid 4 Vesta, Earth Planet Sci Lett, vol.418, pp.126-135, 2015.

B. E. Mandler and L. T. Elkins-tanton, The origin of eucrites, diogenites, and olivine 605 diogenites: magma ocean crystallization and shallow magma chamber processes on Vesta, 2013.

, Meteorit Planet Sci, vol.48, issue.11, pp.2333-2349

R. G. Mayne, H. Y. Mcsween, T. J. Mccoy, and A. Gale, Petrology of the unbrecciated eucrites, 2009.

, Geochim Cosmochim Acta, vol.73, issue.3, pp.794-819

M. F. Miller, Isotopic fractionation and the quantification of 17O anomalies in the 610 oxygen three-isotope system: an appraisal and geochemical significance, Geochim, vol.611, 2002.

, Cosmochim Acta, vol.66, issue.11, pp.1881-1889

M. F. Miller, I. A. Franchi, A. S. Sexton, and C. T. Pillinger, High-precision d17O isotope 613 measurements of oxygen from silicates and other oxides: methods and applications, 1999.

, Commun Mass Spectrom, vol.13, pp.1211-1217

D. W. Mittlefehldt, The genesis of diogenites and HED parent body petrogenesis, 1994.

, Geochim Cosmochim Acta, vol.58, issue.5, pp.1537-1552

D. W. Mittlefehldt, Petrology and geochemistry of the elephant moraine A79002 618 diogenite: a genomict breccia containing a magnesian harzburgite component, Meteorit Planet, p.619, 2000.

, Sci, vol.35, issue.5, pp.901-912

D. W. Mittlefehldt, Asteroid (4) Vesta: I. the howardite-eucritediogenite (HED) clan of 621 meteorites, Chem Erde-Geochem, vol.75, issue.2, pp.155-183, 2015.

K. Righter and M. J. Drake, A magma ocean on Vesta: core formation and petrogenesis of 623 eucrites and diogenites, Meteorit Planet Sci, vol.32, issue.6, pp.929-944, 1997.

A. Ruzicka, G. A. Snyder, and L. A. Taylor, Vesta as the howardite, eucrite and diogenite 625 parent body: implications for the size of a core and for large-scale differentiation, Planet Sci, vol.626, issue.6, pp.825-840, 1997.

R. O. Sack and M. S. Ghiorso, Chromian spinels as petrogenetic indicators: thermodynamics 628 and petrological applications, AmMineral, vol.76, pp.827-847, 1991.

C. K. Shearer, G. W. Fowler, and J. J. Papike, Petrogenetic models for magmatism on the eucrite 630 parent body: evidence from orthopyroxene in diogenites, Meteorit Planet Sci, vol.32, issue.6, pp.877-889, 1997.

C. K. Shearer, P. Burger, and J. J. Papike, Petrogenetic relationships between diogenites and 632 olivine diogenites: implications for magmatism on the HED parent body, Geochim, vol.633, 2010.

, Cosmochim Acta, vol.74, issue.16, pp.4865-4880

E. Stopler, Petrogenesis of eucrite, howardite and diogenite meteorites, Nature, vol.635, pp.220-222, 1975.

M. J. Toplis, H. Mizzon, M. Monnereau, O. Forni, H. Y. Mcsween et al., Chondritic models of 4 Vesta: implications for geochemical and geophysical 638 properties, Meteorit Planet Sci, vol.637, issue.11, pp.2300-2315, 2013.

E. Van-achterberg, C. G. Ryan, and W. L. Griffin, GLITTER version 4 user's manual on-line 640 interactive data reduction for the LA-ICPMS microprobe, p.641, 2001.

. Greenwood, using the 725 thicknesses of the various layers as given by a range of modeling studies of (Ruzicka et al. 726 1997; Righter and Drake, Mandler and Elkins-Tanton, 1997.