A. J. Bannister and T. Kouzarides, The CBP co-activator is a histone acetyltransferase, Nature, vol.384, pp.641-643, 1996.

V. V. Ogryzko, R. L. Schiltz, V. Russanova, B. H. Howard, and Y. Nakatani, The transcriptional coactivators p300 and CBP are histone acetyltransferases, Cell, vol.87, pp.953-959, 1996.

B. M. Dancy and P. A. Cole, Protein lysine acetylation by p300/CBP, Chem Rev, vol.115, pp.2419-2452, 2015.

T. P. Yao, Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300, Cell, vol.93, pp.361-372, 1998.

Y. Tanaka, Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein, Mech Dev, vol.95, pp.133-145, 2000.

Y. F. Ramos, Genome-wide assessment of differential roles for p300 and CBP in transcription regulation, Nucleic Acids Res, vol.38, pp.5396-5408, 2010.

L. H. Kasper, C. Qu, J. C. Obenauer, D. J. Mcgoldrick, and P. K. Brindle, Genome-wide and single-cell analyses reveal a context dependent relationship between CBP recruitment and gene expression, Nucleic Acids Res, vol.42, pp.11363-11382, 2014.

F. Fang, Coactivators p300 and CBP maintain the identity of mouse embryonic stem cells by mediating long-range chromatin structure, Stem Cells, vol.32, pp.1805-1816, 2014.

, SCIeNTIFIC RepoRts |, vol.8, 2018.

K. Ma, J. K. Chan, G. Zhu, and Z. Wu, Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation, Mol Cell Biol, vol.25, pp.3575-3582, 2005.

A. Polesskaya, Interaction between acetylated MyoD and the bromodomain of CBP and/or p300, Mol Cell Biol, vol.21, pp.5312-5320, 2001.

P. L. Puri, p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription, EMBO J, vol.16, pp.369-383, 1997.

V. Sartorelli, J. Huang, Y. Hamamori, and L. Kedes, Molecular mechanisms of myogenic coactivation byp300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C, Mol Cell Biol, vol.17, pp.1010-1026, 1997.

M. E. Pownall, M. K. Gustafsson, and C. P. Emerson, Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos, Annual review of cell and developmental biology, vol.18, pp.747-783, 2002.

M. Buckingham and P. W. Rigby, Gene regulatory networks and transcriptional mechanisms that control myogenesis, Dev Cell, vol.28, pp.225-238, 2014.

H. Yahi, O. Philipot, V. Guasconi, L. Fritsch, and S. Ait-si-ali, Chromatin modification and muscle differentiation, Expert opinion on therapeutic targets, vol.10, pp.923-934, 2006.

J. M. Hernandez-hernandez, E. G. Garcia-gonzalez, C. E. Brun, and M. A. Rudnicki, The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration, Seminars in cell & developmental biology, vol.72, pp.10-18, 2017.

A. Harada, Y. Ohkawa, and A. N. Imbalzano, Temporal regulation of chromatin during myoblast differentiation, Seminars in cell & developmental biology, vol.72, pp.77-86, 2017.

V. Carmignac and M. Durbeej, Cell-matrix interactions in muscle disease, J Pathol, vol.226, pp.200-218, 2012.

H. Liang and W. F. Ward, PGC-1alpha: a key regulator of energy metabolism, Adv Physiol Educ, vol.30, pp.145-151, 2006.

S. Kersten, Integrated physiology and systems biology of PPARalpha, Mol Metab, vol.3, pp.354-371, 2014.

S. Chmielewski, A. Piaszyk-borychowska, J. Wesoly, and H. A. Bluyssen, STAT1 and IRF8 in Vascular Inflammation and Cardiovascular Disease: Diagnostic and Therapeutic Potential, Int Rev Immunol, vol.35, p.1087519, 2016.

A. Kowalczyk, P. Kleniewska, M. Kolodziejczyk, B. Skibska, and A. Goraca, The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis, Arch Immunol Ther Exp (Warsz), vol.63, pp.41-52, 2015.

M. Patidar, N. Yadav, and S. K. Dalai, Interleukin 15: A key cytokine for immunotherapy, Cytokine Growth Factor Rev, vol.31, pp.49-59, 2016.

G. J. Szebeni, C. Vizler, K. Kitajka, and L. G. Puskas, Inflammation and Cancer: Extra-and Intracellular Determinants of Tumor-Associated Macrophages as Tumor Promoters, Mediators Inflamm, 2017.

C. Fazio and L. Ricciardiello, Inflammation and Notch signaling: a crosstalk with opposite effects on tumorigenesis, Cell Death Dis, vol.7, 2016.

C. Berasain, The epidermal growth factor receptor: a link between inflammation and liver cancer, Exp Biol Med (Maywood), vol.234, pp.713-725, 2009.

M. Presta, G. Andres, D. Leali, P. Dell'era, and R. Ronca, Inflammatory cells and chemokines sustain FGF2-induced angiogenesis, Eur Cytokine Netw, vol.20, pp.39-50, 2009.

D. Ramnath, E. E. Powell, G. M. Scholz, and M. J. Sweet, The toll-like receptor 3 pathway in homeostasis, responses to injury and wound repair, Seminars in cell & developmental biology, vol.61, pp.22-30, 2017.

W. Zhang, Transcription factor EGR1 promotes differentiation of bovine skeletal muscle satellite cells by regulating MyoG gene expression, Journal of cellular physiology, vol.233, pp.350-362, 2018.

M. Gawor and T. J. Proszynski, The molecular cross talk of the dystrophin-glycoprotein complex, Ann N Y Acad Sci, 2017.

R. Blum, V. Vethantham, C. Bowman, M. Rudnicki, and B. D. Dynlacht, Genome-wide identification of enhancers in skeletal muscle: the role of MyoD1, Genes Dev, vol.26, pp.2763-2779, 2012.

H. Ogiwara, Targeting p300 Addiction in CBP-Deficient Cancers Causes Synthetic Lethality by Apoptotic Cell Death due to Abrogation of MYC Expression, Cancer Discov, vol.6, pp.430-445, 2016.

S. Ray, C. T. Sherman, M. Lu, and A. R. Brasier, Angiotensinogen gene expression is dependent on signal transducer and activator of transcription 3-mediated p300/cAMP response element binding protein-binding protein coactivator recruitment and histone acetyltransferase activity, Molecular endocrinology, vol.16, pp.824-836, 2002.

J. Pawlowski and A. S. Kraft, Bax-induced apoptotic cell death, Proc Natl Acad Sci, vol.97, pp.529-531, 2000.

X. J. Li, Z. J. Ren, and J. H. Tang, MicroRNA-34a: a potential therapeutic target in human cancer, Cell Death Dis, vol.5, 1327.

C. Brodie and P. M. Blumberg, Regulation of cell apoptosis by protein kinase c delta, Apoptosis, vol.8, pp.19-27, 2003.

F. Nomura, T. Kawai, K. Nakanishi, and S. Akira, NF-kappaB activation through IKK-i-dependent I-TRAF/TANK phosphorylation, Genes Cells, vol.5, pp.191-202, 2000.

C. Y. Ko, W. C. Chang, and J. Wang, Biological roles of CCAAT/Enhancer-binding protein delta during inflammation, J Biomed Sci, vol.22, 2015.

J. Y. Chuang and J. J. Hung, Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway, Biochem Biophys Res Commun, vol.407, pp.587-592, 2011.

M. R. Shakespear, M. A. Halili, K. M. Irvine, D. P. Fairlie, and M. J. Sweet, Histone deacetylases as regulators of inflammation and immunity, Trends Immunol, vol.32, pp.335-343, 2011.

P. W. Ingham, The power of the zebrafish for disease analysis, Hum Mol Genet, vol.18, pp.107-112, 2009.

T. E. Sztal, C. Sonntag, T. E. Hall, and P. D. Currie, Epistatic dissection of laminin-receptor interactions in dystrophic zebrafish muscle, Hum Mol Genet, vol.21, pp.4718-4731, 2012.

G. Kawahara, Drug screening in a zebrafish model of Duchenne muscular dystrophy, Proc Natl Acad Sci, vol.108, pp.5331-5336, 2011.

E. M. Bowers, Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor, Chem Biol, vol.17, pp.471-482, 2010.

Q. Jin, Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation, EMBO J, vol.30, pp.249-262, 2011.

G. H. Ha, Mitotic catastrophe is the predominant response to histone acetyltransferase depletion, Cell Death Differ, vol.16, pp.483-497, 2009.

Z. Arany, W. R. Sellers, D. M. Livingston, and R. Eckner, E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators, Cell, vol.77, pp.799-800, 1994.

, SCIeNTIFIC RepoRts |, vol.8, 2018.

J. F. Roth, Differential role of p300 and CBP acetyltransferase during myogenesis: p300 acts upstream of MyoD and Myf5, EMBO J, vol.22, pp.5186-5196, 2003.

L. H. Kasper, CBP/p300 double null cells reveal effect of coactivator level and diversity on CREB transactivation, EMBO J, vol.29, pp.3660-3672, 2010.

J. A. Harton, E. Zika, and J. P. Ting, The histone acetyltransferase domains of CREB-binding protein (CBP) and p300/CBP-associated factor are not necessary for cooperativity with the class II transactivator, J Biol Chem, vol.276, pp.38715-38720, 2001.

E. Meadows, J. H. Cho, J. M. Flynn, and W. H. Klein, Myogenin regulates a distinct genetic program in adult muscle stem cells, Developmental biology, vol.322, pp.406-414, 2008.

D. Stauffer, B. Chang, J. Huang, A. Dunn, and M. Thayer, p300/CREB-binding protein interacts with ATR and is required for the DNA replication checkpoint, J Biol Chem, vol.282, pp.9678-9687, 2007.

A. and S. , CBP/p300 histone acetyl-transferase activity is important for the G1/S transition, Oncogene, vol.19, pp.2430-2437, 2000.

G. Yan, Selective inhibition of p300 HAT blocks cell cycle progression, induces cellular senescence, and inhibits the DNA damage response in melanoma cells, J Invest Dermatol, vol.133, pp.2444-2452, 2013.

A. Mal, M. Sturniolo, R. L. Schiltz, M. K. Ghosh, and M. L. Harter, A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program, EMBO J, vol.20, pp.1739-1753, 2001.

P. L. Puri, Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis, Mol Cell, vol.8, pp.885-897, 2001.

S. Bindu, SIRT3 blocks myofibroblast differentiation and pulmonary fibrosis by preventing mitochondrial DNA damage, Am J Physiol Lung Cell Mol Physiol, vol.312, pp.68-78, 2017.

B. M. Ling, Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation, Proc Natl Acad Sci, vol.109, pp.841-846, 2012.

V. Battisti, Unexpected Distinct Roles of the Related Histone H3 Lysine 9 Methyltransferases G9a and G9a-Like Protein in Myoblasts, J Mol Biol, vol.428, pp.2329-2343, 2016.

V. K. Rao, G9a promotes proliferation and inhibits cell cycle exit during myogenic differentiation, Nucleic Acids Res, vol.44, pp.8129-8143, 2016.

R. V. Lenth, Quick and Easy Analysis of Unreplicated Factorials, Technometrics, vol.31, p.10488595, 1989.

I. Dalkilic and L. M. Kunkel, Muscular dystrophies: genes to pathogenesis. Current opinion in genetics & development, vol.13, pp.231-238, 2003.

R. D. Cohn and K. P. Campbell, Molecular basis of muscular dystrophies, Muscle Nerve, vol.23, pp.1456-1471, 2000.

Y. K. Hayashi, Mutations in the integrin alpha7 gene cause congenital myopathy, Nat Genet, vol.19, pp.94-97, 1998.

A. Helbling-leclerc, Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy, Nat Genet, vol.11, pp.216-218, 1995.

J. D. Porter, A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice, Hum Mol Genet, vol.11, pp.263-272, 2002.

F. Bajanca and L. Vandel, Epigenetic Regulators Modulate Muscle Damage in Duchenne Muscular Dystrophy Model, PLoS Curr, vol.9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01950434

M. C. Sincennes, C. E. Brun, and M. A. Rudnicki, Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease, Stem Cells Transl Med, vol.5, pp.282-290, 2016.

S. Iezzi, Deacetylase inhibitors increase muscle cell size by promoting myoblast recruitment and fusion through induction of follistatin, Dev Cell, vol.6, pp.673-684, 2004.

C. Mozzetta, Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice, EMBO Mol Med, vol.5, pp.626-639, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01549090

S. Chatterjee, A novel activator of CBP/p300 acetyltransferases promotes neurogenesis and extends memory duration in adult mice, J Neurosci, vol.33, pp.10698-10712, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02106635

M. Kitzmann, Inhibition of Notch signaling induces myotube hypertrophy by recruiting a subpopulation of reserve cells, Journal of cellular physiology, vol.208, pp.538-548, 2006.

A. I. Saeed, TM4: a free, open-source system for microarray data management and analysis, Biotechniques, vol.34, pp.374-378, 2003.

P. Shannon, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, pp.2498-2504, 2003.

S. Elworthy, M. Hargrave, R. Knight, K. Mebus, and P. W. Ingham, Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity, Development, vol.135, pp.2115-2126, 2008.

M. Westerfield, A Guide for the Laboratory Use of Zefrafish (Danio rerio), 1995.

M. I. Aladjem, Replication in context: dynamic regulation of DNA replication patterns in metazoans, Nat Rev Genet, vol.8, pp.588-600, 2007.

S. Lim, P. Kaldis, and . Cdks, cyclins and CKIs: roles beyond cell cycle regulation, Development, vol.140, pp.3079-3093, 2013.

F. Rahimov and L. M. Kunkel, The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy, J Cell Biol, vol.201, pp.499-510, 2013.

J. Kirschner and C. G. Bonnemann, The congenital and limb-girdle muscular dystrophies: sharpening the focus, blurring the boundaries, Arch Neurol, vol.61, pp.189-199, 2004.

A. Nedergaard, M. A. Karsdal, S. Sun, and K. Henriksen, Serological muscle loss biomarkers: an overview of current concepts and future possibilities, J Cachexia Sarcopenia Muscle, vol.4, pp.1-17, 2013.