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Growth of analytic functions in an ultrametric open disk and

branched values

by Kamal Boussaf and Alain Escassut

Abstract Let D be the open unit disk |x| < R of a complete ultrametric algebraically
closed field IK. We define the growth order ρ(f), the growth type σ(f) and the cotype
ψ(f) of an analytic function in D and we show that, denoting by q(f, r) the number of
zeros of f in the disk |x| ≤ r and putting |f |(r) = sup|x|≤r |f(x)|, the infimum θ(f) of the
s such that lim

r→R−
q(f, r)(R− r)s = 0 satisfies θ(f) − 1 ≤ ρ(f) ≤ θ(f) and the infimum of

the s such that lim
r→R−

log(|f |(r))(R− r)s = 0 is equal to ρ(f). Moreover, if 0 < ρ(f) < +∞
and 0 < ψ(f) < +∞, then θ(f) = ρ(f) and σ(f) = 0. In residue characteristic zero, then
ρ(f ′) = ρ(f), σ(f ′) = σ(f), ψ(f ′) = ψ(f). Suppose IK has characteristic zero. Consider

two unbounded analytic functions f, g in D. If ρ(f) 6= ρ(g), then
f

g
has at most two

perfectly branched values and if ρ(f) = ρ(g) but σ(f) 6= σ(g), then
f

g
has at most three

perfectly branched values; moreover, if 2σ(g) < σ(f), then
f

g
has at most two perfectly

branched values.

Subject Classification: 12J25; 30D35; 30G06
Keywords: P-adic analytic functions in disks, order, type and cotype of growth, branched
values.

Introduction and main theorems

Let IK be an algebraically closed field complete with respect to an ultrametric absolute
value. In [2] and [3] we defined the order of growth and the type of growth for entire
functions in IK in a similar way as it is known for complex entire functions [11] and we
also defined a cotype of growth strongly linked to the order and the type: in most of the
cases the cotype is the product of the order of growth by the type of growth.

Here we consider analytic functions in an ”open” disk.

Notations and definitions: For every r > 0, we denote by d(0, r−) the disk {x ∈
IK | |x| < r} and by d(0, r) the disk {x ∈ IK | |x| ≤ r}. Throughout the paper, we fix
R > 0 and we put D = d(0, R−). We denote by A(D) the IK-algebra of analytic functions

in D i.e. the power series
∞∑
n=0

anx
n converging in the disk D, which are the power series

such that lim sup
n→+∞

n
√
|an| ≤

1
R

, and we denote by M(D) the field of fractions of A(D) also

called the meromorphic functions in D [1], [7], [8], [10].
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Let f =
∞∑
n=0

anx
n ∈ A(D). Given r ∈]0, R[, we put |f |(r) = sup

n∈IN
{|an|rn}. Then we

know that |f |(r) = sup|x|=r |f(x)|, that | . | is an ultrametric absolute value on A(D) and
that a function f ∈ A(D) is unbounded if and only if lim

r→R−
|f |(r) = +∞ [7], [8].

We denote by log the Neperian Logarithm. In order to define a growth order similarly
as it was done in the algebra of entire functions in IK [2], [3], we can define in A(D) a
growth order in the following way: given r ∈]0, R[, as it was done in complex analysis
[5], [6], [9], given an unbounded function f ∈ A(D), when r is close enough to R, we put

ρ(f, r) =
log(log(|f |(r)))
− log(R− r)

and ρ(f) = lim sup
r→R−

ρ(f, r), hence ρ(f) = lim sup
r→R−

log(log(|f |(r)))
− log(R− r)

.

Then ρ(f) is called the order of growth of f .
On the other hand, for every r ∈]0, R[, we denote by q(f, r) the number of ze-

ros of f in d(0, r), taking multiplicity into account. If the set of the s > 0 such that
lim
r→R−

q(f, r)(R− r)s = 0 is empty, we put θ(f) = +∞. Else, we then denote by θ(f) the

lowest bound of the s > 0 such that lim
r→R−

q(f, r)(R− r)s = 0. Similarly, if the set of the

s > 0 such that lim
r→R−

log(|f |(r))(R− r)s = 0 is empty, we put λ(f) = +∞. Else, we

denote by λ(f) the lowest bound of the s > 0 such that lim
r→R−

log(|f |(r))(R− r)s = 0.

And if 0 < ρ(f) < +∞, we put σ(f, r) = log(|f |(r))(R−r)ρ(f), σ(f) = lim sup
r→R−

σ(f, r),

ψ(f, r) = q(f, r)(R− r)ρ(f) and ψ(f) = lim sup
r→R−

ψ(f, r). We call σ(f) the type of growth of

f and ψ(f) the cotype of growth of f .
Let us recall that, as far as ultrametric entire functions are concerned, the order

of growth is equal to the lowest bound of the s > 0 such that lim
r→+∞

log(|f |(r))
rs

= 0

and to the lowest bound of the s > 0 such that lim
r→+∞

q(f, r)
rs

= 0. Here we will try to

prove similar results. This paper is aimed at showing relations between these expressions
ρ(f), σ(f), ψ(f).

Notation: We will denote by A∗(D) the set of unbounded functions f ∈ A(D) such that
0 < ρ(f) < +∞.

Theorems 1 and 2 are easy and don’t need any proof:

Theorem 1: Let f, g ∈ A∗(D). Then ρ(f + g) ≤ max(ρ(f), ρ(g)) and
ρ(fg) = max(ρ(f), ρ(g)).

Corollary 1.1: Let f, g ∈ A∗(D). Then ρ(fn) = ρ(f) ∀n ∈ IN∗. If ρ(f) > ρ(g), then
ρ(f + g) = ρ(f).

Theorem 2: Let f ∈ A∗(D) and let P ∈ IK[x] be non-constant. Then ρ(P ◦ f) = ρ(f).
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Theorem 3: Let f, g ∈ A∗(D). Then ψ(fg) ≤ ψ(f) + ψ(g). Moreover, if ρ(f) = ρ(g)
then max(ψ(f), ψ(g)) ≤ ψ(fg).

Remark 2: Let f ∈ A∗(D). If s > θ(f), then by definition, lim
r→R−

q(f, r)(R− r)s = 0.

But if s < θ(f) then lim sup
r→R−

q(f, r)(R− r)s = +∞ because if lim sup
r→R−

q(f, r)(R− r)s < +∞,

we can find s′ ∈]s, θ(f)[ and then we can check that lim
r→R−

q(f, r)(R− r)s
′

= 0, a contra-

diction.

Thanks to the classical inequality |f ′|(r) ≤ |f |(r)
r

[7], the following Theorem 4 is then
immediate:

Theorem 4: Suppose IK has characteristic 0. Let f ∈ A∗(D). Then ρ(f ′) ≤ ρ(f).

Remark 3: In a field of characteristic p 6= 0, certain analytic functions have a null
derivative. This is why we must suppose that IK has characteristic 0 in all statement
involving derivatives.

In complex analysis, many estimates were given concerning the growth order of solu-
tions of linear differential equations [5], [6], [9]. Here, by Corollary 1.1 and Theorem 4 we
can immediately obtain Corollary 4.1 which is similar but more general than Theorem C
in [5]:

Corollary 4.1: Suppose IK has characteristic 0. Consider the differential equation

(E) f (n) + an−1(x)f (n−1)(x) + ...+ a0(x)f(x) = 0

with aj ∈ A∗(D), j = 0, ..., n−1 and ρ(aj) < ρ(a0) ∀j = 1, ..., n−1. Then every non-trivial
solution f of (E) satisfies ρ(f) ≥ ρ(a0).

Theorem 5: Let f ∈ A∗(D). Then λ(f) = ρ(f).

Remark 4: Similar results to Corollary 4.1 and Theorem 5 hold for entire functions
thanks to results of [2] but were not stated in [2] and [3].

Theorem 6: Let f, g ∈ A∗(D). Then σ(fg) ≤ σ(f) + σ(g). If ρ(f) ≥ ρ(g), then
σ(f) ≤ σ(fg). If ρ(f) = ρ(g), then max(σ(f), σ(g)) ≤ σ(fg).

If ρ(f) = ρ(g) and σ(f) > σ(g) then σ(f + g) ≥ σ(f). If ρ(f + g) = ρ(f) ≥ ρ(g) then
σ(f + g) ≤ max(σ(f), σ(g)).

Corollary 6.1: Let f, g ∈ A∗(D) be such that ρ(f) 6= ρ(g). Then

σ(f + g) ≤ max(σ(f), σ(g)).
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Theorem 7: Let f ∈ A∗(D). Then θ(f) − 1 ≤ ρ(f) ≤ θ(f). Moreover, if ψ(f) < ∞,
then ρ(f) = θ(f).

Theorem 7 obviously suggests the following conjecture:

Conjecture: Let f ∈ A∗(D). Then ρ(f) = θ(f).

Concerning relations between ρ, σ and ψ, we dont have all relations obtained when f
is an entire function. However, we can obtain this theorem:

Theorem 8: Let f ∈ A∗(D). If ψ(f) < +∞, then σ(f) = 0.

Theorem 9: Suppose IK has residue characteristic 0. Then for every f ∈ A∗(D) we
have ρ(f ′) = ρ(f), θ(f ′) = θ(f), σ(f ′) = σ(f) and ψ(f ′) = ψ(f).

Remark 5: Theorem 9 does not hold in residue characteristic p > 0 because there exist
functions f ∈ A∗(D) such that ρ(f) > 0 and that f ′ is bounded, as shows the following

example with R = 1: g(x) =
∞∑
m=0

xp
m

pm
. We can see that g′(x) =

∞∑
n=0

xp
m−1 hence g′ is

bounded and therefore ρ(g′) = 0. However, consider the sequence (rm)m∈IN defined as

rm = 1− 1
pm

. We can check that |g|(rm) ≥ pm(rm)p
m

, hence

log(|g|(rm)) ≥ m+ pm log(rm) = m+ pm log
(
1− 1

pm
)
.

When m is big enough, we have log
(
1− 1

pm

)
≥ −2

pm , hence

log
(
|g|(rm)) ≥ m− pm

( 2
pm

)
= m− 2.

Therefore, when m is big enough, we have

log
(

log(|g|(rm)))
− log(rm)

≥ log(m− 2)
− log(1− 1

pm )
>

log(m− 2)
2
pm

=
pm

2
log(m− 2).

Thus, we have ρ(g) = +∞.

Remark 6: Theorem 9 applies for instance to the complex Levi-Civita field whose residue
characteristic is 0 [12].

In [4], relations were examined between growth of entire functions and perfectly
branched values. Now, we can look at possible similar relations.

Definition: Let f ∈M(D). A value b ∈ IK is called perfectly branched value for f if all
zeros of f − b but finitely many are multiple.
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Now, we must recall the notations of Nevanlinna’s functions.

Notation: Let f ∈ M(D) be such that f(0) 6= 0 and f(0) 6= ∞. We denote by Z(r, f)
the counting function of zeros of f in D in the following way. Let (an), 1 ≤ n ≤ u(r) be
the finite sequence of zeros of f such that 0 < |an| ≤ r, of respective order sn.

We set Z(r, f) =
u(r)∑
n=1

sn(log r − log |an|) and so, Z(r, f) is called the counting function

of zeros of f in D, counting multiplicity.

Next, we denote by Z(r, f) the counting function of zeros of f without multiplicity:

Z(r, f) =
u(r)∑
n=1

(log r − log |an|) and so, Z(r, f) is called the counting function of zeros of f

in D ignoring multiplicity.

In the same way, we put N(r, f) = Z(r,
1
f

) and N(r, f) = Z(r,
1
f

).

Now we can define the characteristic Nevanlinna function of f in ]0, R[ as T (r, f) =
max(Z(r, f), N(r, f)).

Remark 7: If we change the origin, the functions Z, N, T are not changed, up to an
additive constant.

Theorem 10 was already stated in Theorem 3 of [4]. Here we just complete the proof.

Theorem 10: Suppose IK has characteristic 0. Let f, g ∈ A∗(D) be such that

lim sup
r→R−

T (r, f)
T (r, g)

> 2. Then both
f

g
and

g

f
have at most two perfectly branched values.

We can easily obtain Theorem 11:

Theorem 11: Suppose IK has characteristic 0. Let f, g ∈ A∗(D) be such that ρ(f) >
ρ(g). Then

lim inf
r→R−

T (r, g)
T (r, f)

= 0.

By Theorem 11 and Remark 8, we can now derive Corollary 11.1:

Corollary 11.1: Let f, g ∈ A∗(D) be such that ρ(f) 6= ρ(g). Then both
f

g
and

g

f
have

at most two perfectly branched values.

Now, when ρ(f) = ρ(g), we can still give some precisions.

Theorem 12: Suppose IK has characteristic 0. Let f, g ∈ A∗(D) and suppose that

ρ(f) = ρ(g) and σ(f) 6= σ(g). Then both
f

g
and

g

f
have at most three perfectly branched
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values. Moreover, if 2σ(g) < σ(f) or if 2σ(f) < σ(g) then
f

g
and

g

f
have at most two

perfectly branched values.

By Theorems 10 and 11, we can derive Corollary 12.1:

Corollary 12.1: Suppose IK has characteristic 0. Let f, g ∈ A∗(D) be such that
f

g
admits four distinct perfectly branched values. Then ρ(f) = ρ(g) and σ(f) = σ(g).

The proofs

The proofs of Theorems 1 and 2 are immediate. The proof of Theorem 4, is also

immediate thanks to the property |f ′|(r) ≤ |f |(r)
r

for functions having a zero at 0, what

we can suppose without loss of generality [7], [8].

In the proofs of Theorem 3, 5, 6, 7, 8 we can suppose that R belongs to |IK| by sending
our ground field into a field admitting a value group equal to IR+. Therefore we can assume
R = 1 without loss of generality, through an obvious change of variable.

Proof of Theorem 3. Set ρ(f) = s, ρ(g) = t. Without loss of generality we can
assume s ≥ t. By Theorem 1, we have ρ(f.g) = ρ(f) = s. Now, for each r > 0, we have
q(f.g, r) = q(f, r) + q(g, r) hence

ψ(fg) = lim sup
r→R−

(q(f, r) + q(g, r))(R− r)s ≤ lim sup
r→R−

q(f, r)(R− r)s + lim sup
r→R−

q(g, r)(R− r)t

hence ψ(fg) ≤ ψ(f) + ψ(g).

Now, suppose s = t. Then

ψ(fg) = lim sup
r→R−

(q(f, r) + q(g, r))(R− r)s ≥ lim sup
r→R−

max(q(f, r), q(g, r))(R− r)s

= max(ψ(f), ψ(g)),

which ends the proof.

Proof of Theorem 5: First we will prove that ρ(f) ≤ λ(f). Obviously, we can assume
that λ(f) < +∞. Let s be such that lim

r→R−
log(|f |(r))(R− r)s = 0. Let us fix ε > 0. For r

close enough to R, we have log(|f |(r))(R−r)s ≤ ε, hence log(|f |(r)) ≤ ε

(R− r)s
, therefore

log(log(|f |(r))) ≤ log ε− s log(R− r) hence

log(log(|f |(r)))
(− log(R− r))

≤ log(ε)
(− log(R− r))

+ s,
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and hence

lim sup
r→R−

log(log(|f |(r)))
(− log(R− r))

≤ s

i.e. ρ(f) ≤ s. This is true for every s such that lim
r→R−

log(|f |(r))(R− r)s = 0 and hence

ρ(f) ≤ λ(f).
On the other hand, we notice that, by definition of λ(f), either λ(f) = 0 and then

λ(f) ≤ ρ(f), or

λ(f) = sup{s ∈]0,+∞[ | lim sup
r→R−

log(|f |(r))(R− r)s > 0}.

Thus, suppose that λ(f) > 0. Let us take s ∈]0, λ(f)[. We have a number b > 0 such that

lim sup
r→R−

(log(|f |(r)(R− r)s) ≥ b > 0.

Let us fix ε ∈]0, b[. There exists a sequence (rn)n∈IN in ]0, R[ such that lim
n→+∞

rn = R and

such that, when n is big enough, we have b− ε ≤ log(|f |(rn))(R− rn)s, hence
−s log(R− rn) + log(b− ε) < log(log(|f |(rn))) therefore

s+
log(b− ε)

(− log(R− rn))
≤ log(log(|f |(rn))

(− log(R− rn))
.

Consequently, lim sup
n→+∞

log(log(|f |(rn))
(− log(R− rn))

≥ s, therefore ρ(f) ≥ s. But this holds for every

s < λ(f). Thus, ρ(f) ≥ λ(f) and finally, ρ(f) = λ(f).

Proof of Theorem 6: Let s = ρ(f), t = ρ(g) and suppose s ≥ t. When r is close
enough to R, we have max(log(|f |(r)), log(|g|(r)) ≤ log(|f.g|(r)) = log(|f |(r)) + log(|g|(r))
and by Theorem 1, we have ρ(fg) = s. Therefore

σ(fg) = lim sup
r→R−

(
log(|f.g|(r))(R− r)s

)
≤ lim sup

r→R−

(
log(|f |(r))(R− r)s

)
+ lim sup

r→R−

(
log(|g|(r))(R− r)t

)
= σ(f) + σ(g).

On the other hand,

σ(f) = lim sup
r→R−

log(|f |(r))(R− r)s ≤ lim sup
r→+R−

(log(|fg|(r))(R− r)s.

But ρ(fg) = s, hence σ(f) ≤ σ(fg). Particularly, if ρ(f) = ρ(g), then max(σ(f), σ(g)) ≤
σ(fg).

Now, suppose again that ρ(f) = ρ(g) = s and suppose σ(f) > σ(g). Let s = ρ(f), b =
σ(f). Then b > 0. Let (rn)n∈IN be a sequence such that limn→+∞ rn = R and
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lim
n→+∞

(log(|f |(rn))(R− rn)s) = b. Since σ(g) < σ(f), we notice that when n is big enough

we have |g|(rn) < |f |(rn). Consequently, when n is big enough, we have |f+g|(rn) = |f |(rn)
and hence

(1) lim
n→+∞

(log(|f + g|(rn)))(R− rn)s) = b.

By definition of σ we have σ(f +g) ≥ lim
n→+∞

(log(|f + g|(rn)))(R− rn)ρ(f+g). By Theorem

1, we have ρ(f + g) ≤ s, hence

σ(f + g) ≥ lim
n→+∞

(log(|f + g|(rn)))(R− rn)ρ(f+g) ≥ lim
n→+∞

(log(|f + g|(rn)))(R− rn)s

= lim
n→+∞

log(|f |(rn))(R− rn)s = σ(f)

therefore by (1), σ(f + g) ≥ σ(f).
Finally, suppose now that ρ(f + g) = ρ(f) ≥ ρ(g). Let s = ρ(f) and t = ρ(g). Then,

σ(f + g) = lim sup
r→R−

(log(|f + g|(r)))(R− r)s

≤ max
(

lim sup
r→R−

(log(|f |(r)))(R− r)s, lim sup
r→R−

(log(|g|(r)))(R− r)s
)

≤ max
(

lim sup
r→R−

(log(|f |(r)))(R− r)s, lim sup
r→R−

(log(|g|(r)))(R− r)t
)

= max(σ(f), σ(g))

which ends the proof.

In the proof of Theorem 11, we will use the following Lemma G and in the proof of
of Theorem 10 we will use the following Lemmas J:

Lemma G: Let f ∈ A(D). The following three statements are equivalent:
1) f ∈ A∗(D),
2) lim

r→R−
|f |(r) = +∞

3) lim
r→R−

T (r, f) = +∞.

In the proof of Theorem 7 we will need the basic Lemma L due to the concavity of
Logarithm and the classical Theorem T ( Corollary 22.27 in [8]):

Lemma L: Let a ∈ [1,+∞[ and b ∈ [0,+∞[. Then log(a+ b) ≤ log(a) + log(b+ 1).

Proof: Indeed, since a ≥ 1, we have log(a+ b) ≤ log(a(b+ 1)) = log(a) + log(b+ 1).

Theorem T:[8], (Theorem 22.26) Let f ∈ A∗(D) be such that f(0) 6= 0 and let
(an)n∈IN be the sequence of zeros of f , of respective multiplicity order wn, with |an| ≤
|an+1|. Let cn = |an|, n ∈ IN. Suppose cn ≤ r < cn+1. Then

log(|f |(r) = log |f(0)|+
k∑

n=0

wn(log(r)− log(cn))

8



.

Corollary T.1: Let f ∈ A∗(D) and let r1, r2 ∈]0, R[ with r1 < r2. Then(r2
r1

)q(f,r1)
≤ |f |(r2)
|f |(r1)

≤
(r2
r1

)q(f,r2)
.

Proof of Theorem 7: We will denote by | . |∞ the Archimedean absolute value of IR. Let
us first choose s > θ(f). Then lim

r→R−
q(f, r)(R− r)s = 0. Now, since lim

r→R−
|f |(r) = +∞,

we can take ` ∈]0, R[ such that |f |(`) > e. Then we can take b > 0 such that

q(f, r) ≤ b(R− r)−s ∀r ∈ [`, R[.

Now, taking r ∈ [`, R[, by Theorem T, we have log(|f |(r)) ≤ log(|f |(`))) + q(f, r)(log(
r

`
))

which leads to
log(|f |(r)) ≤ log(|f |(`))) + b(R− r)−s(log(

r

`
))

hence
log(log(|f |(r))) ≤ log

(
log(|f |(`))) + b(R− r)−s(log(

r

`
))
)

therefore, by Lemma L, we can derive

(1) log(log(|f |(r))) ≤ log(log(|f |(`))) + log
(
b(R− r)−s(log(

r

`
)) + 1

)
.

Now, since s > 0, there obviously exists h ∈ [`, R[ such that b(R − r)−s ≥ 1 ∀r ∈ [h,R−[,
therefore by Lemma L again,

log(log(|f |(r))) ≤ log(log(|f |(`))) + log
(
b(R− r)−s(log(

r

`
)
)

+ log(1 + 1)

i.e.

(2) log(log(|f |(r))) ≤ log(log(|f |(`))) + log(b)− s log(R− r) + log((log(
r

`
)) + log(2)

Consequently, by (2), we obtain

log(log(|f |(r)))
− log(R− r)

≤ log(log(|f |(`)))
− log(R− r)

+
log(b)

− log(R− r)
+ s+

log(log( r` )) + log(2)
− log(R− r)

.

We can check that

lim
r→R−

log(log(|f |(`))) + log(b)
− log(R− r)

= lim
r→R−

log(log( r` ) + log(2)
− log(R− r)

= 0

9



and hence lim sup
r→R−

log(log(|f |(r)))
− log(R− r)

≤ s. Consequently, choosing ε > 0, there exists u ∈ [`, R[

such that
log(log(|f |(r)))
− log(R− r)

≤ s+ ε ∀r ∈ [u,R[ and hence ρ(f) ≤ s+ ε. But since that holds

for every s > θ(f) and for every ε > 0, we have ρ(f) ≤ s and hence ρ(f) ≤ θ(f).

Let us now show that ρ(f) ≥ θ(f)− 1. By Corollary T.1, we have

(3) log(|f |(r))− log(|f |(r
2

R
)) ≥ q(f, r

2

R
)(log(r)− log(

r2

R
)) = q(f,

r2

R
)(log(R)− log(r)).

Consider now a number s < θ(f) and a sequence (rn)n∈IN of ]0, R[ such that lim
n→+∞

rn = R

and such that lim sup
n→+∞

q(f, rn)(R− rn)s ≥ b > 0. Then by (3) we have

log(|f |(rn)) ≥ b(log(R)− log(rn))(
R− r2n

R

)s
Consequently,

log(log(|f |(rn))) ≥ log(b)+log(log(R)− log(rn)))−s
(

log(R−rn)+log(R+rn)
)

+s log(R)

and therefore

log(log(|f |(rn)))
− log(R− rn)

≥ log(b)
− log(R− rn)

+
log(log(R)− log(rn))
− log(R− rn)

+ s
(
1 +

log(R+ rn) + log(R)
− log(R− rn)

)
.

Clearly,

lim
n→+∞

( log(b)
log(R− rn)

)
= lim
n→+∞

log(R+ rn) + log(R)
log(R− rn)

= 0

and by elementary reasonings, we can check that

lim
t→R−

log(log(R)− log(t))
log(R− t)

= 1,

therefore

lim
n→+∞

log(log(R)− log(rn))
log(R− rn)

= 1.

Consequently,

lim sup
n→+∞

log(log(|f |(rn)))
− log(R− rn)

≥ s− 1

and therefore

lim sup
r→R−

log(log(|f |(r)))
− log(R− r)

≥ s− 1.
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That holds for every s < θ(f) and shows that if θ(f) < +∞, then ρ(f) ≥ θ(f)− 1. Next,
if θ(f) = +∞, then we would have ρ(f) = +∞, which is excluded by hypothesis since
f ∈ A∗(D). Consequently, the inequality ρ(f) ≥ θ(f)− 1 is established.

Without loss of generality, we can assume that f(0) 6= 0. Let us now show that ρ(f) ≥
θ(f) when ψ(f) < +∞. Suppose θ(f) > ρ(f) and let s ∈]ρ(f), θ(f)[. Then by Remark 2 we
have lim sup

r→R−
q(f, r)(R− r)s = +∞, but then lim sup

r→R−
q(f, r)(R− r)ρ(f) = +∞, i.e. ψ(f) =

+∞, a contradiction. Therefore θ(f) ≤ ρ(f) and hence whenever ψ(f) < +∞, we have
θ(f) = ρ(f).

Proof of Theorem 8: Let us fix ε > 0 and let R′ be such that log(R) − log(R′) = ε.
Leq (an)n∈IN be the sequence of zeros of f , for each n ∈ IN, let wn be the order of an and
let rn = |an|. Now, let u be the biggest integer n such that rn < R′ and for each r > 0,
let m(r) be the biggest integer n such that rn ≤ r

Let Au =
∑u
n=0 wn and let Bu = log(|f(0)|) +

∑u
n=0 wn(log(R′) − log(rn)). Let us

take r ∈]R′, R[. Now,we can write

σ(r, f)
ψ(r, f)

=
Bu +

∑m(r)
n=u+1 wn(log(r)− log(rn))

Au +
∑m(r)
n=u+1 wn

.

But by hypothesis, log(r)− log(rn) ≤ ε ∀n ≥ u, hence

σ(r, f)
ψ(r, f)

≤
Bu + ε

∑m(r)
n=u+1 wn

Au +
∑m(r)
n=u+1 wn

.

Let us put φ(r) =
∑m(r)
n=u+1 wn. Thus

σ(f, r)
ψ(f, r)

≤ Bu + εφ(r)
Au + φ(r)

.

But since f belongs to A∗(D), it has infinitely many zeros in D, hence φ(r) is an increasing
unbounded function tending to +∞ when r tends to R. Consequently, it is obvious that

lim
r→R

σ(r, f)
ψ(r, f)

= 0.

Therefore, if lim supr→R− ψ(r, f) < +∞, then σ(f) = 0.

Proof of Theorem 9: Without loss of generality, we can assume that f(0) = 0. Then,
since IK has residue characteristic 0, we have q(f ′, r) = q(f, r)− 1 ∀r ∈]0, R[ and |f ′|(r) =
|f |(r)
r
∀r ∈]0, R[ [7], [8], and therefore we can easily check that

log
(

log(|f |(r))− log(r)
)

− log(R− r)
=

log(log(|f ′|(r)))
− log(R− r)

11



Now take ε > 0. There obviously exists r0 ∈]0, R[ such that

log(|f |(r)− ε ≤ log(|f |(r)− log(r) ∀r ∈ [r0, R[,

hence log(|f |(r)− ε ≤ log(|f ′|(r) ≤ log(|f |(r) ∀r ∈ [r0, R[, therefore

log(log(|f |(r))− ε)
− log(R− r)

<
log(log(|f ′|(r)))
− log(R− r)

<
log(log(|f |(r)))
− log(R− r)

.

Consequently, since lim
r→R−

|f |(r) = +∞, we have lim sup
r→R−

ρ(f ′, r) = lim sup
r→R−

ρ(f, r), which

shows that ρ(f) = ρ(f ′).
Next, we have

σ(f ′, r) =
(

log(|f |(r))− log(r)
)

(R− r)ρ(f) = σ(f, r)− (log(r))(R− r)ρ(f)

and then

lim sup
r→R−

(
log(|f |(r))− log(r)

)
(R− r)ρ(f) = lim sup

r→R−

(
log(|f |(r))

)
(R− r)ρ(f)

i.e. σ(f ′) = σ(f). In the same way, then ψ(f ′) = ψ(f).

Lemma J: Suppose IK has characteristic 0. Let φ =
f

g
∈ M(D) with f, g ∈ A∗(D)

having no common zero. Then, given b ∈ IK, we have Z(r, φ − b) = Z(r, f − bg) ≤
max(T (r, f), T (r, g)) +O(1) = T (r, φ) +O(1).

From Theorem N2 [3] or Theorem 40.24 in [8], we can extract the following statement:

Theorem N [3], [8] Suppose IK has characteristic 0. Let f ∈M(D) and let b1, ..., bq ∈
IK. Then

(q − 1)T (r, f) ≤
q∑
j=1

Z(r, f − bj) +N(r, f) +O(1)

Proof of Theorem 10: Without loss of generality, we can place ourselves in an alge-
braically closed spherically complete extension to obtain the same conclusion because the
Nevanlinna functions are the same in such an extension. Then, by Lazard’s Theorem (The-
orem 29.6 in [8]) we can suppose that f and g have no common zeros. Next, we can suppose

that f(0) = g(0) 6= 0 and set φ =
f

g
. We have T (r, φ) = max(T (r, f), T (r, g)). Now, by

hypothesis, there exists γ <
1
2

and a sequence (rn)n∈IN in ]0, R[ such that lim
n→+∞

rn = R

and such that

(1) T (rn, g) ≤ γT (rn, f) ∀n ∈ IN.
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Suppose that φ has 3 perfectly branched values bj , j = 1, 2, 3. Applying Theorem
N we have

(2) 2T (r, φ) ≤
3∑
j=1

Z(r, φ− bj) +N(r, φ) +O(1).

But here, for each j = 1, 2, 3, we notice that Z(r, φ− bj) ≤
Z(r, φ− bj)

2
+ qj log(r) with

qj ∈ IN and by Lemma J, Z(r, φ− bj) = Z(r, f − bjg) ≤ max(T (r, f), T (r, g)) +O(1). But
since T (rn, f) > T (rn, g), we have T (rn, φ − bj) ≤ T (rn, f) + O(1), hence Z(r, φ − bj) ≤
T (rn,f)

2 + qj log(rn) +O(1). Then, putting q = q1 + q2 + q3, by (2) we obtain

2T (rn, f) ≤ 3T (rn, f)
2

+ T (rn, g) + q log(rn) +O(1)

hence by (1),

T (rn, f) ≤ (
1
2

+ γ)T (rn, f) +O(1),

with γ <
1
2

a contradiction since, by Lemma G, we have lim
r→R−

T (r, f) = +∞. Similarly,

considering
1
φ

, we can see that
g

f
has at most two branched values.

Proof of Theorem 11: Let γ =
ρ(g)
ρ(f)

and let (rn)n∈IN be a sequence in ]0, R[ such that

lim
n→+∞

rn = R and lim
n→+∞

log(log(|f |(rn)))
− log(R− rn)

= ρ(f). By hypothesis, we have

lim
n→+∞

log(log(|g|(rn)))
log(log(|f |(rn)))

≤ γ

hence

lim
n→+∞

log(T (rn, g))
log(T (rn, f))

≤ γ.

Take β ∈]γ, 1[. Then when n is big enough, we can get

T (rn, g)
T (rn, f)

≤ (T (rn, f))β−1.

But since β < 1 and since, by Lemma G, lim
n→∞

T (rn, f) = +∞, one sees that

lim
n→∞

(T (rn, f))β−1 = 0, which ends the proof.

Proof of Theorem 12: Without loss of generality, we can suppose that σ(f) > σ(g)
and, as explained in the proof of Theorem 10, we can suppose that f and g have no

13



common zero and satisfy f(0) = g(0) 6= 0. Put φ =
f

g
. Then we have T (r, φ) =

max(T (r, f), T (r, g)), r > 0. Put ρ(f) = t. There exist γ > 0 and a sequence (rn)n∈IN in
]0, R[ such that lim

n→+∞
rn = R and

log(|f |(rn))(R− rn)t ≥ log(|g|(rn))(R− rn)t + γ, ∀n ∈ IN

hence
log(|f |(rn)) ≥ γ(R− rn)−t + log(|g|(rn)), ∀n ∈ IN

consequently,

(1) T (rn, f) ≥ γ(R− rn)−t + T (rn, g), ∀n ∈ IN.

Consequently,

(2) T (rn, φ) = T (rn, f)

when n is big enough. Suppose now that φ admits 4 perfectly branched values bj , j =
1, 2, 3, 4 and let q be the total number of zeros of order 1 of the φ− bj , j = 1, 2, 3, 4.
Applying Theorem N to φ, we have

3T (rn, φ) ≤
4∑
j=1

Z(rn, φ− bj) +N(rn, φ)) +O(1)

(3) ≤ 4T (rn, f)
2

+ q log(rn) + T (rn, g) +O(1)

hence by (1),

3T (rn, f) ≤ 2T (rn, f) + T (rn, f) + q log(rn)− γ(R− rn)−t +O(1)

therefore
3T (rn, f) ≤ 2T (rn, f) + T (rn, f)− γ(R− rn)−t +O(1)

Clearly lim
n→+∞

+q log(rn)− γ(R− rn)−t = −∞ and hence that inequality is absurd

when n is big enough, which ends the proof of the first claim.

Suppose now that 2σ(g) < σ(f) and set β =
σ(f)

2
− σ(g). So, there exists a sequence

(rn)n∈IN in ]0, R[ such that lim
n→+∞

rn = R and

2T (rn, g)(R− rn)t + 2β ≤ T (rn, f)(R− rn)t

hence

14



(4) T (rn, g) ≤ T (rn, f)
2

− β(R− rn)−t ∀n ∈ IN.

Suppose now that φ has three perfectly branched values bj , j = 1, 2, 3. Similarly to (3),
thanks to (4) now we can get

2T (rn, φ) = 2T (rn, f) ≤
3∑
j=1

Z(rn, φ− bj) + Z(rn, g) +O(1)

≤ 3T (rn, f)
2

+
T (rn, f)

2
− β(R− rn)−t +O(1)).

Since lim
n→+∞

−β(R− rn)−t = −∞, we see a contradiction which finishes the proof.
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Université Clermont Auvergne, CNRS, UMR 6620, LMBP
F 63000 Clermont-Ferrand
FRANCE

16


