S. L. Harmer, The circadian system in higher plants, Annu Rev Plant Biol, vol.60, p.19575587, 2009.

S. Khan, M. Li, S. Wang, and H. Yin, Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress, Int J Mol Sci. 31 mai, vol.19, issue.6, 2018.

J. M. Franco-zorrilla, I. Ló-pez-vidriero, J. L. Carrasco, M. Godoy, P. Vera et al., DNA-binding specificities of plant transcription factors and their potential to define target genes, Proc Natl Acad Sci, vol.111, issue.6, p.24477691, 2014.

J. L. Riechmann, J. Heard, G. Martin, L. Reuber, C. Jiang et al., Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes, Science. 15 dé c, vol.290, issue.5499, p.11118137, 2000.

V. Gahlaut, V. Jaiswal, A. Kumar, and P. K. Gupta, Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat

, Theor Appl Genet, vol.129, issue.11, p.27738714, 2016.

J. L. Riechmann and E. M. Meyerowitz, The AP2/EREBP family of plant transcription factors, Biol Chem. juin, vol.379, issue.6, p.9687012, 1998.

Y. Uno, T. Furihata, H. Abe, R. Yoshida, K. Shinozaki et al., Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions, Proc Natl Acad Sci, vol.97, issue.21, p.11005831, 2000.

M. Jakoby, B. Weisshaar, W. Drö-ge-laser, J. Vicente-carbajosa, J. Tiedemann et al., bZIP transcription factors in Arabidopsis, Trends Plant Sci. mars, vol.7, issue.3, p.11906833, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00140514

H. Abe, T. Urao, T. Ito, M. Seki, K. Shinozaki et al., Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling, The Plant Cell. 1 janv, vol.15, issue.1, p.12509522, 2003.

M. Fujita, Y. Fujita, K. Maruyama, M. Seki, K. Hiratsu et al., A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway, Plant J. sept, vol.39, issue.6, pp.863-76, 2004.

L. Tran, K. Nakashima, Y. Sakuma, S. D. Simpson, Y. Fujita et al., Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive ciselement in the early responsive to dehydration stress 1 promoter, Plant Cell. sept, vol.16, issue.9, pp.2481-98, 2004.

L. Tran, K. Nakashima, Y. Sakuma, Y. Osakabe, F. Qin et al., Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis, Plant J. janv, vol.49, issue.1, p.17233795, 2007.

C. Yanhui, Y. Xiaoyuan, H. Kun, L. Meihua, L. Jigang et al., The MYB Transcription Factor Superfamily of Arabidopsis: Expression Analysis and Phylogenetic Comparison with the Rice MYB Family, Plant Mol Biol. 1 janv, vol.60, issue.1, p.16463103, 2006.

C. Lata and M. Prasad, Role of DREBs in regulation of abiotic stress responses in plants, J Exp Bot, vol.62, issue.14, p.21737415, 2011.

X. Zhu, S. Liu, C. Meng, L. Qin, L. Kong et al., WRKY Transcription Factors in Wheat and Their Induction by Biotic and Abiotic Stress, Plant Molecular Biology Reporter, vol.31, issue.5, pp.1053-67, 2013.

Q. Huang, Y. Wang, B. Li, J. Chang, M. Chen et al., NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis, BMC Plant Biol, vol.15, p.26536863, 2015.

M. Nuruzzaman, R. Manimekalai, A. M. Sharoni, K. Satoh, H. Kondoh et al., Genome-wide analysis of NAC transcription factor family in rice, Gene, vol.465, issue.1-2, p.20600702, 2010.

G. Zhu, G. Chen, J. Zhu, Y. Zhu, X. Lu et al., Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L, PLOS ONE, vol.10, issue.10, p.26444425, 2015.

G. Pinheiro, C. Marques, M. Costa, A. B. Reis, P. Alves et al., Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response, Gene. 1 juill, vol.444, p.19497355, 2009.

M. Lu, Q. Sun, D. Zhang, T. Wang, and J. Pan, Identification of 7 stress-related NAC transcription factor members in maize (Zea mays L.) and characterization of the expression pattern of these genes, Biochem Biophys Res Commun. 26 juin, vol.462, issue.2, p.25937463, 2015.

M. N. Saidi, D. Mergby, and F. Brini, Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum), Plant Physiol Biochem. mars, vol.112, p.28064119, 2017.

E. Moyano, F. J. Martínez-rivas, R. Blanco-portales, F. J. Molina-hidalgo, R. -. Varas et al., Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits, PLOS ONE. 3 mai, vol.13, issue.5, p.29723301, 2018.

H. Ooka, K. Satoh, K. Doi, T. Nagata, Y. Otomo et al., Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana, DNA Res. 31 dé c, vol.10, issue.6, p.15029955, 2003.

I. E. Mathew, S. Das, A. Mahto, and P. Agarwal, Three Rice NAC Transcription Factors Heteromerize and Are Associated with Seed Size, Front Plant Sci, vol.7, p.27872632, 2016.

Q. Xie, G. Frugis, D. Colgan, and N. H. Chua, Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development, Genes Dev. 1 déc, vol.14, issue.23, p.11114891, 2000.

Y. Hao, W. W. Song, Q. Chen, H. Zhang, Y. Wang et al., Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants, Plant J. oct, vol.68, issue.2, p.21707801, 2011.

A. N. Olsen, H. A. Ernst, L. L. Leggio, and K. Skriver, NAC transcription factors: structurally distinct, functionally diverse, Trends Plant Sci. févr, vol.10, issue.2, p.15708345, 2005.

S. Kim, S. Lee, P. J. Seo, S. Kim, J. Kim et al., Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice, Genomics. janv, vol.95, issue.1, p.19766710, 2010.

E. Souer, A. Van-houwelingen, D. Kloos, J. Mol, and R. Koes, The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries, Cell. 19 avr, vol.85, issue.2, p.8612269, 1996.

R. W. Sablowski and E. M. Meyerowitz, A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA, Cell. 9 janv, vol.92, issue.1, p.9489703, 1998.

Y. Guo and S. Gan, AtNAP, a NAC family transcription factor, has an important role in leaf senescence, Plant J. mai, vol.46, issue.4, p.16640597, 2006.

N. Mitsuda, M. Seki, K. Shinozaki, and M. Ohme-takagi, The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell, vol.17, p.16214898, 2005.

Y. Kim, S. Kim, J. Park, H. Park, M. Lim et al., A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell, vol.18, p.17098812, 2006.

S. Kim, A. Lee, H. Yoon, and C. Park, A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination, Plant J. juill, vol.55, issue.1, p.18363782, 2008.

C. Uauy, A. Distelfeld, T. Fahima, A. Blechl, and J. Dubcovsky, A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat, Science, vol.314, issue.5803, p.17124321, 2006.

C. Liang, Y. Wang, Y. Zhu, J. Tang, B. Hu et al., OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice, Proc Natl Acad Sci, vol.111, issue.27, p.24951508, 2014.

D. Zhao, A. P. Derkx, D. Liu, P. Buchner, and M. J. Hawkesford, Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat, Plant Biol (Stuttg). juill, vol.17, issue.4, pp.904-917, 2015.

X. He, B. Qu, W. Li, X. Zhao, W. Teng et al., The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield. Plant Physiol, vol.169, p.26371233, 2015.

Q. Xie, A. P. Sanz-burgos, H. Guo, and J. A. García, Gutié rrez C. GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein, Plant Mol Biol. mars, vol.39, issue.4, p.10350080, 1999.

F. Wang, R. Lin, J. Feng, W. Chen, D. Qiu et al., TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana, Front Plant Sci, vol.6, p.25774162, 2015.

H. Hu, M. Dai, J. Yao, X. B. Li, X. Zhang et al., Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice, Proc Natl Acad Sci USA. 29 août, vol.103, issue.35, p.16924117, 2006.

X. Mao, S. Chen, A. Li, C. Zhai, and R. Jing, Novel NAC transcription factor TaNAC67 confers enhanced multiabiotic stress tolerances in Arabidopsis, PLoS ONE, vol.9, issue.1, p.24427285, 2014.

Y. Fang, K. Liao, H. Du, Y. Xu, H. Song et al., A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice, J Exp Bot, vol.66, issue.21, pp.6803-6820, 2015.

A. Haudry, A. Cenci, C. Ravel, T. Bataillon, D. Brunel et al., Grinding up wheat: a massive loss of nucleotide diversity since domestication, Mol Biol Evol. juill, vol.24, issue.7, p.17443011, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00697942

P. Borrill, S. A. Harrington, and C. Uauy, Genome-Wide Sequence and Expression Analysis of the NAC Transcription Factor Family in Polyploid Wheat. G3 (Bethesda), vol.07, pp.3019-3048, 2017.

B. J. Clavijo, L. Venturini, C. Schudoma, G. G. Accinelli, G. Kaithakottil et al., An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations, Genome Res, vol.27, issue.5, p.28420692, 2017.

R. Appels, K. Eversole, C. Feuillet, and B. Keller, Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, Consortium (IWGSC) TIWGS, Investigators IR principal, vol.361, p.30115783, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01885399

P. Borrill, R. Ramirez-gonzalez, and C. Uauy, expVIP: a Customizable RNA-seq Data Analysis and Visualization Platform, Plant Physiol, vol.170, issue.4, p.26869702, 2016.

K. Okonechnikov, O. Golosova, and M. Fursov, Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics. 15 avr, vol.28, issue.8, p.22368248, 2012.

P. Jones, D. Binns, H. Chang, M. Fraser, W. Li et al., InterProScan 5: genome-scale protein function classification, Bioinformatics. 1 mai, vol.30, issue.9, p.24451626, 2014.

R. C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, vol.26, p.20709691, 2010.

S. Kumar, G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol Biol Evol, vol.33, issue.7, p.27004904, 2016.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, issue.5, p.15034147, 2004.

L. Noé and G. Kucherov, YASS: enhancing the sensitivity of DNA similarity search, Nucleic Acids Res. 1 juill, vol.33, p.15980530, 2005.

F. Choulet, A. Alberti, S. Theil, N. Glover, V. Barbe et al., Structural and functional partitioning of bread wheat chromosome 3B, Science. 18 juill, vol.345, issue.6194, p.1249721, 2014.

Z. Liu, M. Xin, J. Qin, H. Peng, Z. Ni et al., Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.), BMC Plant Biol. 20 juin, vol.15, p.26092253, 2015.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res. 20 avr, vol.43, issue.7, p.25605792, 2015.

E. A. Howe, R. Sinha, D. Schlauch, and J. Quackenbush, RNA-Seq analysis in MeV, Bioinformatics, vol.27, issue.22, p.21976420, 2011.

R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper, vol.56, p.15

G. A. Slafer, R. Savin, and V. O. Sadras, Coarse and fine regulation of wheat yield components in response to genotype and environment, Field Crops Research. 15 févr, vol.157, pp.71-83, 2014.

D. Capron, S. Mouzeyar, A. Boulaflous, C. Girousse, C. Rustenholz et al., Transcriptional profile analysis of E3 ligase and hormone-related genes expressed during wheat grain development, BMC Plant Biol. 14 mars, vol.12, p.22416807, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01189698

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods. dé c, vol.25, issue.4, p.11846609, 2001.

Y. Tang, M. Horikoshi, and L. W. Ggfortify, Unified Interface to Visualize Statistical Results of Popular R Packages, vol.8, p.12, 2016.

M. C. Baloglu, M. T. Oz, H. A. Oktem, and M. Yucel, Expression Analysis of TaNAC69-1 and TtNAMB-2, Wheat NAC Family Transcription Factor Genes Under Abiotic Stress Conditions in Durum Wheat (Triticum turgidum), Plant Mol Biol Rep, vol.30, issue.5, pp.1246-52, 2012.

M. C. Baloglu, B. Inal, M. Kavas, and T. Unver, Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species, Gene, vol.550, issue.1, p.25130909, 2014.

X. Li, B. Feng, F. Zhang, Y. Tang, L. Zhang et al., Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response. Front Plant Sci, vol.7, p.27899926, 2016.

X. Peng, Y. Zhao, X. Li, M. Wu, W. Chai et al., Genomewide identification, classification and analysis of NAC type gene family in maize, J Genet. sept, vol.94, issue.3, pp.377-90, 2015.

N. Huo, S. Zhang, T. Zhu, L. Dong, Y. Wang et al., Gene Duplication and Evolution Dynamics in the Homeologous Regions Harboring Multiple Prolamin and Resistance Gene Families in Hexaploid Wheat. Front Plant Sci, vol.9, p.29875781, 2018.

P. Ning, C. Liu, J. Kang, and J. Lv, Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit condition, PeerJ. 4 mai, vol.5, p.28484671, 2017.

J. Salse, S. Bolot, M. Throude, V. Jouffe, B. Piegu et al., Identification and Characterization of Shared Duplications between Rice and Wheat Provide New Insight into Grass Genome Evolution, The Plant Cell. 1 janv, vol.20, issue.1, p.18178768, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00964148

T. Wicker, J. P. Buchmann, and B. Keller, Patching gaps in plant genomes results in gene movement and erosion of colinearity, Genome Res. sept, vol.20, issue.9, pp.1229-1266, 2010.

N. M. Glover, J. Daron, L. Pingault, K. Vandepoele, E. Paux et al., Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B, Genome Biol. 9 sept, vol.16, p.26353816, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01244498

S. Magadum, U. Banerjee, P. Murugan, D. Gangapur, and R. Ravikesavan, Gene duplication as a major force in evolution, Journal of Genetics. avr, vol.92, issue.1, p.23640422, 2013.

J. Brosius, Retroposons-seeds of evolution, Science. 15 fé vr, vol.251, issue.4995, 1991.

X. Mao, H. Zhang, X. Qian, A. Li, G. Zhao et al., TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis, J Exp Bot. mai, vol.63, issue.8, p.22330896, 2012.

Y. Tang, M. Liu, S. Gao, Z. Zhang, X. Zhao et al., Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco, Physiol Plant. mars, vol.144, issue.3, p.22082019, 2012.

Q. Huang and Y. Wang, Overexpression of TaNAC2D displays opposite responses to abiotic stresses between seedling and mature stage of transgenic Arabidopsis. Front. Plant Sci, vol.7, p.27933076, 2016.

D. Chen, S. Chai, C. L. Mcintyre, and G. Xue, Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance, Plant Cell Rep. fé vr, vol.37, issue.2, p.29079898, 2018.

L. Zhang, L. Zhang, C. Xia, G. Zhao, J. Jia et al., The Novel Wheat Transcription Factor TaNAC47 Enhances Multiple Abiotic Stress Tolerances in Transgenic Plants. Front Plant Sci, vol.6, p.26834757, 2016.

H. Shen, Y. Yin, F. Chen, Y. Xu, and R. A. Dixon, A Bioinformatic Analysis of NAC Genes for Plant Cell Wall Development in Relation to Lignocellulosic Bioenergy Production, BioEnergy Research. dé c, vol.2, issue.4, pp.217-249, 2009.

I. E. Mathew and P. Agarwal, May the Fittest Protein Evolve: Favoring the Plant-Specific Origin and Expansion of NAC Transcription Factors, Bioessays. 25 juin, p.29938806, 2018.

H. Pei, N. Ma, J. Tian, J. Luo, J. Chen et al., An NAC transcription factor controls ethylene-regulated cell expansion in flower petals, Plant Physiol, vol.163, issue.2, pp.775-91, 2013.

M. W. Christiansen, P. B. Holm, and P. L. Gregersen, Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both monocots and dicots, BMC Res Notes. 19 aoû t, vol.4, p.21851648, 2011.

B. Zhang, W. Li, X. Chang, R. Li, and R. Jing, Effects of Favorable Alleles for Water-Soluble Carbohydrates at Grain Filling on Grain Weight under Drought and Heat Stresses in Wheat. Ali J, é diteur, PLoS ONE. 18 juill, vol.9, issue.7, p.25036550, 2014.

G. Xue, H. M. Way, T. Richardson, J. Drenth, P. A. Joyce et al., Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat, Mol Plant. juill, vol.4, issue.4, p.21459832, 2011.

D. Chen, T. Richardson, S. Chai, L. Mcintyre, C. Rae et al., Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat, Plant Cell Physiol. oct, vol.57, issue.10, p.27440550, 2016.

J. S. Jeong, Y. S. Kim, K. H. Baek, H. Jung, S. Ha et al., Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions, Plant Physiol. mai, vol.153, issue.1, p.20335401, 2010.

C. Girousse, J. Roche, C. Guerin, L. Gouis, J. Balzegue et al., Coexpression network and phenotypic analysis identify metabolic pathways associated with the effect of warming on grain yield components in wheat, PLoS ONE, vol.13, issue.6, p.29940014, 2018.

X. Zhao, X. Yang, P. S. He, G. Wang, X. Tang et al., The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis, Gene. 15 juill, vol.586, issue.1, p.27085481, 2016.

Q. Han, J. Zhang, H. Li, Z. Luo, K. Ziaf et al., Identification and expression pattern of one stressresponsive NAC gene from Solanum lycopersicum, Mol Biol Rep. fé vr, vol.39, issue.2, p.21637957, 2012.

Y. Hong, H. Zhang, L. Huang, D. Li, and F. Song, Overexpression of a Stress-Responsive NAC Transcription Factor Gene ONAC022 Improves Drought and Salt Tolerance in Rice, Front Plant Sci, vol.7, p.26834774, 2016.

A. Conesa, S. Gö, and . Blast2go, A comprehensive suite for functional analysis in plant genomics, Int J Plant Genomics, p.18483572, 2008.

N. Xia, G. Zhang, Y. Sun, L. Zhu, L. Xu et al., TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses, Physiological and Molecular Plant Pathology. 1 sept, vol.74, issue.5, pp.394-402, 2010.

A. Macovei and N. Tuteja, microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice, Oryza sativa L.). BMC Plant Biol, vol.12, p.23043463, 2012.

H. Takasaki, K. Maruyama, S. Kidokoro, Y. Ito, Y. Fujita et al., The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice

, Mol Genet Genomics. sept, vol.284, issue.3, p.20632034, 2010.

Y. Fang, K. Xie, and L. Xiong, Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice, J Exp Bot. mai, vol.65, issue.8, p.24604734, 2014.