C. Fleischmann, A. Scherag, and N. K. Adhikari, Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations, American Journal of Respiratory and Critical Care Medicine, vol.193, issue.3, pp.259-272, 2016.

A. Schmid, J. Pugin, and J. C. Chevrolet, Burden of illness imposed by severe sepsis in Switzerland, Swiss Medical Weekly, vol.134, issue.7-8, pp.97-102, 2004.

R. C. Bone, Sepsis, the sepsis syndrome, multi-organ failure: a plea for comparable definitions, Annals of Internal Medicine, vol.114, issue.4, pp.332-333, 1991.

J. P. Quenot, A. Pavon, I. Fournel, S. D. Barbar, and R. Bruyère, Septic shock in adult in France: 20 years of epidemiological data, Réanimation, vol.24, issue.3, pp.303-309, 2015.

L. Smeding, F. B. Plötz, A. B. Groeneveld, and M. C. Kneyber, Structural changes of the heart during severe sepsis or septic shock, Shock, vol.37, issue.5, pp.449-456, 2012.

W. K. Cheung, L. S. Chau, I. I. Mak, M. Y. Wong, S. L. Wong et al., Clinical management for patients admitted to a critical care unit with severe sepsis or septic shock, Intensive and Critical Care Nursing, vol.31, issue.6, pp.359-365, 2015.

A. Flynn, B. C. Mani, and P. J. Mather, Sepsisinduced cardiomyopathy: a review of pathophysiologic mechanisms, Heart Failure Reviews, vol.15, issue.6, pp.605-611, 2010.

J. D. Hunter and M. Doddi, Sepsis and the heart, British Journal of Anaesthesia, vol.104, issue.1, pp.3-11, 2010.

M. Bujak and N. G. Frangogiannis, The role of IL-1 in the pathogenesis of heart disease, Archivum Immunologiae et Therapiae Experimentalis, vol.57, issue.3, pp.165-176, 2009.

K. E. Mason and D. A. Stofan, Endotoxin challenge reduces aconitase activity in myocardial tissue, Archives of Biochemistry and Biophysics, vol.469, pp.151-156, 2008.

M. J. Lopez-armada, R. R. Riveiro-naveira, C. Vaamondegarcia, and M. N. Valcarcel-ares, Mitochondrial dysfunction and the inflammatory response, vol.13, pp.106-118, 2013.

I. A. Hobai, J. Edgecomb, K. Labarge, and W. S. Colucci, Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy, Shock, vol.43, issue.1, pp.3-15, 2015.

R. Lohner, M. Schwederski, and C. Narath, Toll-like receptor 9 promotes cardiac inflammation and heart failure during polymicrobial sepsis, Mediators of Inflammation, vol.2013, 2013.

R. R. Bartz, H. B. Suliman, and C. A. Piantadosi, Redox mechanisms of cardiomyocyte mitochondrial protection, Frontiers in Physiology, vol.6, p.291, 2015.

V. M. Victor, J. V. Esplugues, A. Hernandez-mijares, and M. Rocha, Oxidative stress and mitochondrial dysfunction in sepsis: a potential therapy with mitochondria-targeted antioxidants, Infectious Disorders -Drug Targets, vol.9, issue.4, pp.376-389, 2009.

S. Alvarez, T. Vico, and V. Vanasco, Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: interrelated aspects in endotoxemia and sepsis, The International Journal of Biochemistry & Cell Biology, vol.81, pp.307-314, 2016.

L. Demaison, D. Moreau, F. Clauw, C. Vergely, and L. Rochette, Mitochondrial basis of the anti-arrhythmic action of lidocaine and modulation by the n-6 to n-3 PUFA ratio of cardiac phospholipids, Fundamental & Clinical Pharmacology, vol.27, issue.4, pp.373-386, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00697056

L. Demaison, J. P. Sergiel, D. Moreau, and A. Grynberg, Influence of the phospholipid n-6/n-3 polyunsaturated fatty acid ratio on the mitochondrial oxidative metabolism before and after myocardial ischemia, Biochimica et Biophysica Acta, vol.1227, issue.1-2, pp.53-59, 1994.

, Oxidative Medicine and Cellular Longevity

P. L. Mclennan, M. Y. Abeywardena, J. A. Dallimore, and D. Raederstorff, Dietary fish oil preserves cardiac function in the hypertrophied rat heart, The British Journal of Nutrition, vol.108, issue.4, pp.645-654, 2012.

J. S. Charnock, K. Sundram, M. Y. Abeywardena, P. L. Mclennan, and D. T. Tan, Dietary fats and oils in cardiac arrythmia in rats, The American Journal of Clinical Nutrition, vol.53, issue.4, pp.1047-1049, 1991.

J. A. Eclov, Q. Qian, and R. Redetzke, EPA, not DHA, prevents fibrosis in pressure overload-induced heart failure: potential role of free fatty acid receptor 4, Journal of Lipid Research, vol.56, issue.12, pp.2297-2308, 2015.

Y. Nasa, M. Hayashi, H. Sasaki, J. Hayashi, and S. Takeo, Long-term supplementation with eicosapentaenoic acid salvages cardiomyocytes from hypoxia/reoxygenation-induced injury in rats fed with fish-oil-deprived diet, Japanese Journal of Pharmacology, vol.77, issue.2, pp.137-146, 1998.

Y. Duan, F. Li, L. Li, J. Fan, X. Sun et al., n-6:n-3 PUFA ratio is involved in regulating lipid metabolism and inflammation in pigs, The British Journal of Nutrition, vol.111, issue.3, pp.445-451, 2014.

O. Haworth and B. D. Levy, Endogenous lipid mediators in the resolution of airway inflammation, The European Respiratory Journal, vol.30, pp.980-992, 2007.

N. Khaper, S. Bryan, and S. Dhingra, Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure, Antioxidants & Redox Signaling, vol.13, issue.7, pp.1033-1049, 2010.

H. Seki, K. Fukunaga, and M. Arita, The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury, The Journal of Immunology, vol.184, issue.2, pp.836-843, 2010.

C. Kilkenny and D. G. Altman, Improving bioscience research reporting: ARRIVE-ing at a solution, Laboratory Animals, vol.44, issue.4, pp.377-378, 2010.

M. G. Toscano, D. Ganea, and A. M. Gamero, Cecal ligation puncture procedure, Journal of Visualized Experiments, vol.2860, issue.51, 2011.

J. E. Schneider, Assessment of global cardiac function, Methods in Molecular Biology, vol.771, pp.387-405, 2011.

E. Heiberg, J. Sjögren, M. Ugander, M. Carlsson, H. Engblom et al., Design and validation of segment -freely available software for cardiovascular image analysis, BMC Medical Imaging, vol.10, issue.1, p.1, 2010.

J. Riegler, K. K. Cheung, Y. F. Man, J. O. Cleary, A. N. Price et al., Comparison of segmentation methods for MRI measurement of cardiac function in rats, Journal of Magnetic Resonance Imaging, vol.32, issue.4, pp.869-877, 2010.

J. Folch, M. Lees, and S. G. Sloane, A simple method for the isolation and purification of total lipides from animal tissues, The Journal of Biological Chemistry, vol.226, issue.1, pp.497-509, 1957.

F. Capel, C. Acquaviva, and E. Pitois, DHA at nutritional doses restores insulin sensitivity in skeletal muscle by preventing lipotoxicity and inflammation, The Journal of Nutritional Biochemistry, vol.26, issue.9, pp.949-959, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01850491

N. Fillmore and G. D. Lopaschuk, Targeting mitochondrial oxidative metabolism as an approach to treat heart failure, Biochimica et Biophysica Acta, vol.1833, issue.4, pp.857-865, 2013.

J. S. Jaswal, W. Keung, W. Wang, J. R. Ussher, and G. D. Lopaschuk, Targeting fatty acid and carbohydrate oxidation-a novel therapeutic intervention in the ischemic and failing heart, Biochimica et Biophysica Acta, vol.1813, issue.7, pp.1333-1350, 2011.

O. Pougovkina, H. Brinke, and R. Ofman, Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation, Human Molecular Genetics, vol.23, issue.13, pp.3513-3522, 2014.

E. L. Bell, B. M. Emerling, S. J. Ricoult, and L. Guarente, SirT3 suppresses hypoxia inducible factor 1? and tumor growth by inhibiting mitochondrial ROS production, Oncogene, vol.30, issue.26, pp.2986-2996, 2011.

E. Barreiro, C. Garcia-martínez, and S. Mas, UCP3 overexpression neutralizes oxidative stress rather than nitrosative stress in mouse myotubes, FEBS Letters, vol.583, issue.2, pp.350-356, 2009.

D. W. Ma, J. Seo, and K. C. Switzer, n?3 PUFA and membrane microdomains: a new frontier in bioactive lipid research, vol.15, pp.700-706, 2004.

T. Léger, A. Charrier, and C. Moreau, Early sepsis does not stimulate reactive oxygen species production and does not reduce cardiac function despite an increased inflammation status, Physiological Reports, vol.5, issue.13, p.13231, 2017.

J. Izawa, T. Kitamura, and T. Iwami, Early-phase cumulative hypotension duration and severe-stage progression in oliguric acute kidney injury with and without sepsis: an observational study, Critical Care, vol.20, issue.1, p.405, 2016.

J. I. Granger, P. L. Ratti, S. C. Datta, R. M. Raymond, and M. R. Opp, Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain, Psychoneuroendocrinology, vol.38, issue.7, pp.1047-1057, 2013.

N. H. Gehring, M. W. Hentze, and K. Pantopoulos, Inactivation of both RNA binding and aconitase activities of iron regulatory protein-1 by quinone-induced oxidative stress, The Journal of Biological Chemistry, vol.274, issue.10, pp.6219-6225, 1999.

L. K. Seidlmayer, V. V. Juettner, S. Kettlewell, E. V. Pavlov, L. A. Blatter et al., Distinct mPTP activation mechanisms in ischaemia-reperfusion: contributions of Ca 2+ , ROS, pH, and inorganic polyphosphate, Cardiovascular Research, vol.106, issue.2, pp.237-248, 2015.

Q. Deng, J. Xu, and B. Yu, Effect of dietary tea polyphenols on growth performance and cell-mediated immune response of post-weaning piglets under oxidative stress, Archives of Animal Nutrition, vol.64, issue.1, pp.12-21, 2010.

P. C. Calder, n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases, The American Journal of Clinical Nutrition, vol.83, issue.6, pp.1505-1519, 2006.

M. A. Al-biltagi, A. A. Abo-elezz, M. A. Abd-elhafez, M. M. Mabrouk, and G. A. Suliman, Beneficial effects of omega-3 supplement to the enteral feeding in children with mild to moderate sepsis, Journal of Intensive Care Medicine, vol.32, issue.3, pp.212-217, 2017.

V. M. Barbosa, E. A. Miles, C. Calhau, E. Lafuente, and P. C. Calder, Effects of a fish oil containing lipid emulsion on plasma phospholipid fatty acids, inflammatory markers, and clinical outcomes in septic patients: a randomized, controlled clinical trial, Critical Care, vol.14, issue.1, p.5, 2010.

R. J. Beale, T. Sherry, and K. Lei, Early enteral supplementation with key pharmaconutrients improves sequential organ failure assessment score in critically ill patients with sepsis: outcome of a randomized, controlled, double-blind trial, Critical Care Medicine, vol.36, issue.1, pp.131-144, 2008.

H. Chen, W. Wang, and C. Hong, Omega-3 fish oil reduces mortality due to severe sepsis with acute gastrointestinal injury grade III, Pharmacognosy Magazine, vol.13, issue.51, pp.407-412, 2017.

H. Chen, W. Wang, Y. Hong, H. Zhang, C. Hong et al., Single-blinded, randomized, and controlled clinical trial evaluating the effects of omega-3 fatty acids among septic patients with intestinal dysfunction: a pilot study, Experimental and Therapeutic Medicine, vol.14, issue.2, pp.1505-1511, 2017.

C. Galbán, J. C. Montejo, and A. Mesejo, An immuneenhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients, Critical Care Medicine, vol.28, issue.3, pp.643-648, 2000.

D. K. Heyland, F. Novak, J. W. Drover, M. Jain, X. Su et al., Should immunonutrition become routine in critically ill patients? A systematic review of the evidence, JAMA, vol.286, issue.8, pp.944-953, 2001.

S. D. Heys, L. G. Walker, I. Smith, and O. Eremin, Enteral nutritional supplementation with key nutrients in patients with critical illness and cancer: a meta-analysis of randomized controlled clinical trials, Annals of Surgery, vol.229, issue.4, pp.467-477, 1999.

B. S. Khor, S. J. Liaw, H. C. Shih, and L. S. Wang, Randomized, double blind, placebo-controlled trial of fish-oil-based lipid emulsion infusion for treatment of critically ill patients with severe sepsis, Asian Journal of Surgery, vol.34, issue.1, pp.1-10, 2011.

W. Manzanares, R. Dhaliwal, B. Jurewitsch, R. D. Stapleton, K. N. Jeejeebhoy et al., Parenteral fish oil lipid emulsions in the critically ill: a systematic review and metaanalysis, Journal of Parenteral and Enteral Nutrition, vol.38, issue.1, pp.20-28, 2014.

W. Manzanares, P. L. Langlois, R. Dhaliwal, M. Lemieux, and D. K. Heyland, Intravenous fish oil lipid emulsions in critically ill patients: an updated systematic review and metaanalysis, Critical Care, vol.19, issue.1, p.167, 2015.

B. Michaeli, M. M. Berger, J. P. Revelly, L. Tappy, and R. Chioléro, Effects of fish oil on the neuro-endocrine responses to an endotoxin challenge in healthy volunteers, Clinical Nutrition, vol.26, issue.1, pp.70-77, 2007.

T. T. Pluess, D. Hayoz, and M. M. Berger, Intravenous fish oil blunts the physiological response to endotoxin in healthy subjects, Intensive Care Medicine, vol.33, issue.5, pp.789-797, 2007.

A. Pontes-arruda, A. M. Aragão, and J. D. Albuquerque, Effects of enteral feeding with eicosapentaenoic acid, ?-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock, Critical Care Medicine, vol.34, issue.9, pp.2325-2333, 2006.

A. Pontes-arruda, S. Demichele, A. Seth, and P. Singer, The use of an inflammation-modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a metaanalysis of outcome data, Journal of Parenteral and Enteral Nutrition, vol.32, issue.6, pp.596-605, 2008.

P. Singer, M. Theilla, H. Fisher, L. Gibstein, E. Grozovski et al., Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury, Critical Care Medicine, vol.34, issue.4, pp.1033-1038, 2006.

J. E. Gadek, S. J. Demichele, and M. D. Karlstad, Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group, Critical Care Medicine, vol.27, issue.8, pp.1409-1420, 1999.

A. J. Palmer, C. K. Ho, O. Ajibola, and A. Avenell, The role of ?-3 fatty acid supplemented parenteral nutrition in critical illness in adults: a systematic review and meta-analysis, Critical Care Medicine, vol.41, issue.1, pp.307-316, 2013.

T. W. Rice, A. P. Wheeler, and B. T. Thompson, Enteral omega-3 fatty acid, ?-linolenic acid, and antioxidant supplementation in acute lung injury, JAMA, vol.306, issue.14, pp.1574-1581, 2011.

A. R. Van-zanten, F. Sztark, and U. X. Kaisers, Highprotein enteral nutrition enriched with immune-modulating nutrients vs standard high-protein enteral nutrition and nosocomial infections in the ICU: a randomized clinical trial, JAMA, vol.312, issue.5, pp.514-524, 2014.

M. S. Lee, I. H. Kim, and Y. Kim, Effects of eicosapentaenoic acid and docosahexaenoic acid on uncoupling protein 3 gene expression in C 2 C 12 muscle cells, Nutrients, vol.5, issue.5, pp.1660-1671, 2013.

F. Villarroya, R. Iglesias, and M. Giralt, PPARs in the control of uncoupling proteins gene expression, PPAR Research, vol.74364, 2007.

J. Himms-hagen and M. E. Harper, Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis, Experimental Biology and Medicine, vol.226, issue.2, pp.78-84, 2001.

S. Cortassa, S. J. Sollott, and M. A. Aon, Mitochondrial respiration and ROS emission during ?-oxidation in the heart: an experimental-computational study, PLoS Computational Biology, vol.13, issue.6, p.1005588, 2017.

M. B. Scher, A. Vaquero, and D. Reinberg, SirT3 is a nuclear NAD + -dependent histone deacetylase that translocates to the mitochondria upon cellular stress, Genes & Development, vol.21, issue.8, pp.920-928, 2007.

C. J. Chen, Y. C. Fu, W. Yu, and W. Wang, SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-?B, Biochemical and Biophysical Research Communications, vol.430, issue.2, pp.798-803, 2013.

M. D. Hirschey, T. Shimazu, and E. Jing, SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome, Molecular Cell, vol.44, issue.2, pp.177-190, 2011.

S. H. Park, O. Ozden, and H. Jiang, Sirt3, mitochondrial ROS, ageing, and carcinogenesis, International Journal of Molecular Sciences, vol.12, issue.9, pp.6226-6239, 2011.

J. Baeza, M. J. Smallegan, and J. M. Denu, Mechanisms and dynamics of protein acetylation in mitochondria, Trends in Biochemical Sciences, vol.41, issue.3, pp.231-244, 2016.

S. Zhao, W. Xu, and W. Jiang, Regulation of cellular metabolism by protein lysine acetylation, Science, vol.327, issue.5968, pp.1000-1004, 2010.

M. D. Hirschey, T. Shimazu, and E. Goetzman, SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation, Nature, vol.464, issue.7285, pp.121-125, 2010.

E. J. Anderson, K. A. Thayne, and M. Harris, Do fish oil omega-3 fatty acids enhance antioxidant capacity and 20 Oxidative Medicine and Cellular Longevity mitochondrial fatty acid oxidation in human atrial myocardium via PPAR? activation?, Antioxidants & Redox Signaling, vol.21, issue.8, pp.1156-1163, 2014.

Q. Li, Q. Yu, R. Na, and B. Liu, Omega-3 polyunsaturated fatty acids prevent murine dilated cardiomyopathy by reducing oxidative stress and cardiomyocyte apoptosis, Experimental and Therapeutic Medicine, vol.14, issue.6, pp.6152-6158, 2017.

E. F. Wiest, M. T. Walsh-wilcox, and M. K. Walker, Omega-3 polyunsaturated fatty acids protect against cigarette smokeinduced oxidative stress and vascular dysfunction, Toxicological Sciences, vol.156, issue.1, pp.300-310, 2017.

O. Firuzi, N. Shakibazad, and H. Amoozgar, Effects of omega-3 polyunsaturated fatty acids on heart function and oxidative stress biomarkers in pediatric patients with dilated cardiomyopathy, International Cardiovascular Research Journal, vol.7, issue.1, pp.8-14, 2013.

, Oxidative Medicine and Cellular Longevity