T. Yamada, Inter-organ communications mediate crosstalk between glucose and energy metabolism, Diabetology International, vol.4, pp.149-155, 2013.

J. K. Nicholson, Metabolic phenotyping in clinical and surgical environments, Nature, vol.491, pp.384-392, 2012.

T. J. Wang, Metabolite profiles and the risk of developing diabetes, Nat. Med, vol.17, pp.448-453, 2011.

F. Xu, Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics, J. Clin. Endocrinol. Metab, vol.98, pp.1060-1065, 2013.

S. Polakof, Time course of molecular and metabolic events in the development of insulin resistance in fructose-fed rats, J Proteome Res, vol.15, pp.1862-1874, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01540177

S. Polakof, Metabolic adaptations to HFHS overfeeding: how whole body and tissues postprandial metabolic flexibility adapt in Yucatan mini-pigs, Eur. J. Nutr, vol.57, pp.119-135, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01525343

S. Polakof, Postprandial metabolic events in mini-pigs: new insights from a combined approach using plasma metabolomics, tissue gene expression, and enzyme activity, Metabolomics, vol.11, pp.964-979, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01123211

F. Baig, R. Pechlaner, and M. Mayr, Caveats of Untargeted Metabolomics for Biomarker Discovery, J. Am. Coll. Cardiol, vol.68, pp.1294-1296, 2016.

E. A. Mcguire, J. H. Helderman, J. D. Tobin, R. Andres, and M. Berman, Effects of arterial versus venous sampling on analysis of glucose kinetics in man, J Appl Physiol, vol.41, pp.565-573, 1976.

S. Polakof, D. Remond, J. David, D. Dardevet, and I. Savary-auzeloux, Time-course changes in circulating branched-chain amino acid levels and metabolism in obese Yucatan minipig, Nutrition, vol.50, pp.66-73, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01741289

J. Ivanisevic, Arteriovenous blood metabolomics: a readout of intra-tissue metabostasis, Sci Rep, vol.5, 2015.

I. Thiele and B. O. Palsson, A protocol for generating a high-quality genome-scale metabolic reconstruction, Nat Protoc, vol.5, pp.93-121, 2010.

A. Bordbar, A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology, BMC Syst Biol, vol.5, 2011.

C. R. Haggart, J. A. Bartell, J. J. Saucerman, and J. A. Papin, Whole-genome metabolic network reconstruction and constraint-based modeling, Methods Enzymol, vol.500, pp.411-433, 2011.

M. L. Katz and E. N. Bergman, Simultaneous measurements of hepatic and portal venous blood flow in the sheep and dog, Am J Physiol, vol.216, pp.946-952, 1969.

I. Thiele, A community-driven global reconstruction of human metabolism, Nat. Biotechnol, vol.31, pp.419-425, 2013.

A. Noronha, The Virtual Metabolic Human database: integrating human and gut microbiome metabolism with nutrition and disease, Nucleic Acids Res, vol.47, pp.614-624, 2019.

G. Bode, The utility of the minipig as an animal model in regulatory toxicology, J Pharmacol Toxicol Methods, vol.62, pp.196-220, 2010.

J. N. Davidson, Chemistry of the liver cell, Br Med Bull, vol.13, pp.77-81, 1957.

M. N. Berry, G. J. Barritt, and A. M. Edwards, Isolated hepatocytes: preparation, properties and applications: preparation, properties and applications, vol.21, 1991.

J. A. Brunton, M. P. Baldwin, R. A. Hanna, and R. F. Bertolo, Proline supplementation to parenteral nutrition results in greater rates of protein synthesis in the muscle, skin, and small intestine in neonatal Yucatan miniature piglets, J. Nutr, vol.142, pp.1004-1008, 2012.

S. Gudmundsson and I. Thiele, Computationally efficient flux variability analysis, BMC Bioinformatics, vol.11, 2010.

L. Heirendt, Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0, Nat Protoc, vol.14, pp.639-702, 2019.

L. Cottret, MetExplore: collaborative edition and exploration of metabolic networks, Nucleic Acids Res, vol.46, pp.495-502, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01886470

Y. C. Zeng, Peripheral blood mononuclear cell metabolism acutely adapted to postprandial transition and mainly reflected metabolic adipose tissue adaptations to a high-fat diet in minipigs, Nutrients, vol.10, p.1816, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01938701

B. Wang, Arteriovenous blood metabolomics: An efficient method to determine the key metabolic pathway for milk synthesis in the intra-mammary gland, Scientific Reports, vol.8, 2018.

T. Hyotylainen, Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease, Nat Commun, vol.7, 2016.

L. Rui, Energy metabolism in the liver, Compr Physiol, vol.4, pp.177-197, 2014.

J. T. Brosnan, Interorgan Amino Acid Transport and its Regulation, The Journal of Nutrition, vol.133, pp.2068-2072, 2003.

M. J. Bruins, N. E. Deutz, and P. B. Soeters, Aspects of organ protein, amino acid and glucose metabolism in a porcine model of hypermetabolic sepsis, Clin Sci (Lond), vol.104, pp.127-141, 2003.

G. Wu, Intestinal Mucosal Amino Acid Catabolism, The Journal of Nutrition, vol.128, pp.1249-1252, 1998.

G. Wu, A. G. Borbolla, and D. A. Knabe, The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs, J. Nutr, vol.124, pp.2437-2444, 1994.

J. M. Lacey and D. W. Wilmore, Is glutamine a conditionally essential amino acid?, Nutr. Rev, vol.48, pp.297-309, 1990.

G. Den-besten, The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism, J Lipid Res, vol.54, pp.2325-2340, 2013.

J. G. Bloemen, Short chain fatty acids exchange across the gut and liver in humans measured at surgery, Clin. Nutr, vol.28, pp.657-661, 2009.

G. Den-besten, Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids, American Journal of Physiology -Gastrointestinal and Liver Physiology, vol.305, 2013.

Y. An, High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats, Journal of Proteome Research, vol.12, pp.3755-3768, 2013.

C. Demigné, C. Yacoub, and C. Rémésy, Effects of Absorption of Large Amounts of Volatile Fatty Acids on Rat Liver Metabolism, The Journal of Nutrition, vol.116, pp.77-86, 1986.

A. A. Toye, Subtle metabolic and liver gene transcriptional changes underlie diet-induced fatty liver susceptibility in insulinresistant mice, Diabetologia, vol.50, pp.1867-1879, 2007.

E. T. Heinrichsen, Metabolic and transcriptional response to a high-fat diet in Drosophila melanogaster, Molecular. Metabolism, vol.3, pp.42-54, 2014.

A. C. Ariza, P. M. Deen, and J. H. Robben, The succinate receptor as a novel therapeutic target for oxidative and metabolic stressrelated conditions, Front Endocrinol (Lausanne), vol.3, 2012.

M. Brownlee, The pathobiology of diabetic complications: a unifying mechanism, Diabetes, vol.54, pp.1615-1625, 2005.

E. L. Mills, Accumulation of succinate controls activation of adipose tissue thermogenesis, Nature, vol.560, pp.102-106, 2018.

H. Yamashita, T. Kaneyuki, and K. Tagawa, Production of acetate in the liver and its utilization in peripheral tissues, Biochim Biophys Acta, vol.1532, pp.79-87, 2001.

C. R. Scoaris, Effects of cafeteria diet on the jejunum in sedentary and physically trained rats, Nutrition, vol.26, pp.312-320, 2010.

M. Wyss and R. Kaddurah-daouk, Creatine and creatinine metabolism, Physiol Rev, vol.80, pp.1107-1213, 2000.

E. A. Sistermans, Tissue-and cell-specific distribution of creatine kinase B: a new and highly specific monoclonal antibody for use in immunohistochemistry, Cell Tissue Res, vol.280, pp.435-446, 1995.

M. Jégou, NMR-based metabolomics highlights differences in plasma metabolites in pigs exhibiting diet-induced differences in adiposity, Eur. J. Nutr, vol.55, pp.1189-1199, 2016.

C. Lee, The Effect of High-Fat Diet-Induced Pathophysiological Changes in the Gut on Obesity: What Should be the Ideal Treatment

, Clin Trans Gastroenterol 4, vol.39, 2013.

D. Remond, Cysteine fluxes across the portal-drained viscera of enterally fed minipigs: effect of an acute intestinal inflammation, Amino Acids, vol.40, pp.543-552, 2011.

B. Stoll, Intestinal uptake and metabolism of threonine: nutritional impact, Advances in Pork Production, vol.17, pp.257-263, 2006.

D. Remond, L. Bernard, I. Savary-auzeloux, and P. Noziere, Partitioning of nutrient net fluxes across the portal-drained viscera in sheep fed twice daily: effect of dietary protein degradability, Br J Nutr, vol.102, pp.370-381, 2009.

T. Barber, J. R. Vina, J. Vina, and J. Cabo, Decreased urea synthesis in cafeteria-diet-induced obesity in the rat, Biochem J, vol.230, pp.675-681, 1985.

D. Haussinger and W. Gerok, Regulation of hepatic glutamate metabolism, Eur. J. Biochem, vol.143, pp.491-497, 1984.

C. Remesy, C. Moundras, C. Morand, and C. Demigne, Glutamine or glutamate release by the liver constitutes a major mechanism for nitrogen salvage, American Journal of Physiology -Gastrointestinal and Liver Physiology, vol.272, pp.257-264, 1997.

D. Sabater, Altered nitrogen balance and decreased urea excretion in male rats fed cafeteria diet are related to arginine availability, Biomed Res Int, vol.959420, 2014.

G. Oxenkrug, Insulin resistance and dysregulation of tryptophan-kynurenine and kynurenine-nicotinamide adenine dinucleotide metabolic pathways, Mol Neurobiol, vol.48, pp.294-301, 2013.

M. Favennec, The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation, Obesity, vol.23, pp.2066-2074, 2015.

G. Oxenkrug, Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes, Mol Neurobiol, vol.52, pp.805-810, 2015.

H. Mangge, Obesity-related dysregulation of the tryptophan-kynurenine metabolism: role of age and parameters of the metabolic syndrome, Obesity (Silver Spring), vol.22, pp.195-201, 2014.

I. Wolowczuk, Tryptophan metabolism activation by indoleamine 2,3-dioxygenase in adipose tissue of obese women: an attempt to maintain immune homeostasis and vascular tone, Am J Physiol Regul Integr Comp Physiol, vol.303, pp.135-143, 2012.