M. Bierhaus, K. Wünnemann, and B. A. Ivanov, Affect of core rheology on shock wave 839 propagation in planetary scale impacts, 43rd Lunar and Planetary Science Conference, Abstract #, vol.840, p.2174, 2013.

M. D. Bjorkman and K. A. Holsapple, Velocity scaling impact melt volume, Int. J. Eng, vol.5, pp.155-163, 1987.

W. F. Bottke, M. C. Nolan, R. Greenberg, and R. A. Kolvoord, Collisional lifetimes and 844 impact statistics of near-Earth asteroids, Hazards due to comets and asteroids, p.845, 1994.

T. Gehrels and A. Tucson, The University of Arizona Press, pp.337-357

J. E. Chambers and G. W. Wetherill, Making the terrestrial planets: N-body integrations of 847 planetary embryos in three dimensions, Icarus, vol.136, pp.304-327, 1998.

J. E. Chambers, Planetary accretion in the inner Solar System, Earth Planet. Sci. Lett, vol.849, pp.241-252, 2004.

J. E. Chambers, Late-stage planetary accretion including hit-and-run collisions and 851 fragmentation, Icarus, vol.224, pp.43-56, 2013.

G. S. Collins and H. J. Melosh, Improvements to ANEOS for multiple phase transitions, p.45, 2014.

, Lunar and Planetary Science Conference, 2664.

D. R. Curran, D. A. Shockey, L. Seaman, and M. Austin, Mechanics and models of 855 cratering in earth media, Impact and Explosion Cratering, pp.1057-1087, 1977.

H. Frey, Ages of very large impact basins on Mars: Implications for the late heavy 858 bombardment in the inner Solar System, Geophys. Res. Lett, vol.35, p.13203, 2008.

D. E. Gault and E. Heitowit, The partition of energy for hypervelocity impact craters 860 formed in rock, Proceedings of the 6th Hypervelocity Impact Symposium, vol.2, pp.419-456, 1963.

B. A. Ivanov, H. J. Melosh, and E. Pierazzo, Basin-forming impacts: Reconnaissance 869 modeling, Special Paper, vol.465, pp.29-49, 2010.

W. M. Kaula, Thermal evolution of Earth and Moon growing by planetesimal impacts, 1979.

, Geophys. Res, vol.84, pp.999-1008

J. D. Kendall and H. J. Melosh, Differentiated planetesimal impacts into a terrestrial magma 873 ocean: fate of the iron core, Earth Planet. Sci. Lett, vol.448, pp.24-33, 2016.

E. Kokubo and H. Genda, Formation of the terrestrial planets form protoplanets under a 875 realistic accretion condition, Astrophys. J. Lett, vol.714, pp.21-25, 2010.

E. Kokubo and S. Ida, Formation of protoplanets from planetesimals in the solar nebula, vol.877, 2000.

, Icarus, vol.143, pp.15-27

R. G. Kraus, L. E. Senft, and S. T. Stewart, Impacts onto H2O ice: Scaling laws for melting, 879 vaporization, excavation, and final crater size, Icarus, vol.214, pp.724-738, 2011.

Z. M. Leinhardt and S. T. Stewart, Full numerical simulations of catastrophic small body 881 collisions, Icarus, vol.199, pp.542-559, 2009.

K. L. Louzada and S. T. Stewart, Effects of planet curvature and crust on the shock 883 pressure field around impact basins, Geophys. Res. Letter, vol.36, p.15203, 2009.

H. J. Melosh, Impact Cratering: A Geologic Process, 1989.

N. K. Mitani, Numerical simulations of shock attenuation in solids and reevaluation of 886 scaling law, J. Geophys. Res, vol.108, issue.E1, p.5003, 2003.

J. Monteux and J. Arkani-hamed, Consequences of giant impacts in early Mars: Core merging 888 and Martian dynamo evolution, J Geophys Res, vol.119, pp.480-505, 2014.

J. Monteux, G. Tobie, G. Choblet, and M. Le-feuvre, Can large icy moons accrete 890 undifferentiated?, Icarus, vol.237, pp.377-387, 2014.

J. Monteux and J. Arkani-hamed, Scaling laws of impact induced shock pressure and 892 particle velocity in planetary mantle, Icarus, vol.264, pp.246-256, 2016.

E. Pierazzo, A. M. Vickery, and H. J. Melosh, A re evaluation of impact melt 900 production, Icarus, vol.127, pp.408-423, 1997.

E. Pierazzo and H. J. Melosh, Melt Production in Oblique Impacts, Icarus, vol.145, pp.252-902, 2000.

E. Pierazzo and H. J. Melosh, Understanding oblique impacts from experiments, 904 observations, and modeling, Annu. Rev. Earth Planet. Sci, vol.28, pp.141-167, 2000.

E. Pierazzo, Validation of numerical codes for impact and explosion cratering: 906 Impacts on strengthless and metal targets, Meteorit. Planet. Sci, vol.43, issue.12, pp.1917-1938, 2008.

R. W. Potter, Constraining the size of the South Pole-Aitken basin impact, Icarus, vol.908, issue.220, pp.730-743, 2012.

R. R. Rafikov, The growth of planetary embryos: Orderly, runaway, or oligarchic, 2003.

, Astron. J, vol.125, pp.942-961

S. N. Raymond, T. Quinn, and J. I. Lunine, High-resolution simulations of the final 912 assembly of Earth-like planets, Terrestrial accretion and dynamics, Icarus, vol.183, pp.265-282, 2006.

Y. Ricard, D. Bercovici, and F. Albarède, Thermal evolution of planetesimals during 914 accretion, Icarus, vol.285, pp.103-117, 2017.

Y. Ricard, O. Srámek, and F. Dubuffet, A multi-phase model of runaway core-mantle 916 segregation in planetary embryos, Earth Planet Sci. Lett, vol.284, pp.144-150, 2009.

A. Rivoldini, T. Van-hoolst, O. Verhoeven, A. Mocquet, and V. Dehant, Geodesy 918 constraints on the interior structure and composition of Mars, Icarus, vol.213, pp.451-472, 2011.

S. J. Robbins, B. M. Hynek, R. J. Lillis, and W. F. Bottke, Large impact crater histories of 920 Mars: the effect of different model crater age techniques, Icarus, vol.225, pp.173-184, 2013.

J. H. Roberts, J. Arkani-hamed, ;. R. Housen, and K. R. , Some recent advances in the scaling of impact an 930 explosion cratering, Int. J. Impact Eng, vol.5, pp.543-560, 1987.

H. Senshu, K. Kuramoto, and T. Matsui, Thermal evolution of a growing Mars, 2002.

, Geophys. Res, vol.107

E. M. Shoemaker, Interpretation of Lunar Craters, p.359, 1962.

V. S. Solomatov, Fluid Dynamics of a Terrestrial Magma Ocean, Canup, R.M, 2000.

K. Righter, Origin of the earth and moon, vol.69

S. Thompson and H. Lauson, Improvements in the CHART D Radiation-Hydrodynamic, 1972.

, Code III: Revised Analytic Equations of State

S. L. Thompson, ANEOS analytic equations of state for shock physics codes input 942 manual, pp.89-2951, 1990.

W. B. Tonks and H. J. Melosh, Core Formation by Giant Impacts, Icarus, vol.100, pp.326-346, 1992.

W. B. Tonks and H. J. Melosh, Magma Ocean Formation Due to Giant Impacts, 1993.

, Geophys. Res, vol.98, pp.5319-5333

W. A. Watters, M. T. Zuber, and B. H. Hager, Thermal perturbations caused by large impacts 947 and consequences for mantle convection, J. Geophys. Res, vol.114, p.2001, 2009.

K. Wünnemann, G. S. Collins, and H. J. Melosh, A strain-based porosity model for use in 949 hydrocode simulations of impacts and implications for transient-crater growth in porous targets, 2006.

, Icarus, vol.180, pp.514-552

, Shock pressure along the ray angle ?=36° as a function of the distance from the 1019 1049 1050 Figure 9b: A 3 as a function of the ray angle ? (Eq. 1b: P Z2 =A 2 (D/R imp ), vol.7

, 1078 1080 1081 Figure 12: Position of the peak shock pressure as a function of the time after the impact for 1082 the models with strength (top panels) and the hydrodynamic models