D. Anderson and C. Sammis, Partial melting in the upper mantle, Phys. Earth Planet. 683 Inter, vol.3, pp.41-50, 1970.

D. Andrault, G. Pesce, M. A. Bouhifd, N. Bolfan-casanova, J. Hénot et al., Melting of subducted basalt at the core-mantle boundary, Science, vol.685, issue.6186, pp.892-686, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01134845

M. A. Bouhifd, D. Andrault, G. Fiquet, and P. Richet, Thermal expension of forsterite up 688 to the melting point, Geophysical Research Letters, vol.23, pp.1143-1146, 1996.

G. Y. Bussod and J. M. Christie, Textural Development and Melt Topology in Spinel 690, 1991.

, Lherzolite Experimentally Deformed at Hypersolidus Conditions, J. Petrol, pp.17-39

L. Caricchi, F. Gaillard, J. Mecklenburgh, and E. L. Trong, Experimental determination 692 of electrical conductivity during deformation of melt-bearing olivine aggregates: 693 Implications for electrical anisotropy in the oceanic low velocity zone, 2011.

. Lett, , vol.302, pp.81-94

P. Cartigny, F. Pineau, C. Aubaud, and M. Javoy, Towards a consistent mantle carbon 696 flux estimate: Insights from volatile systematics (H2O/Ce, ?D, CO2/Nb) in the North 697, 2008.

, Atlantic mantle (14° N and 34° N), vol.265, pp.672-685

J. Chantel, G. Manthilake, D. Andrault, D. Novella, T. Yu et al., Experimental 700 evidence supports mantle partial melting in the asthenosphere, Sci. Adv, vol.2, issue.5, 2016.

M. Cmíral, J. D. Fitz-gerald, U. H. Faul, and D. H. Green, A close look at dihedral 703 angles and melt geometry in olivine-basalt aggregates: A TEM study, Contrib. to Mineral, 1998.

, Petrol, vol.130, issue.3-4, pp.336-345

S. Constable, SEO3: A new model of olivine electrical conductivity, Geophys. J. Int, vol.706, issue.1, pp.435-437, 2006.

R. F. Cooper and D. L. Kohlstedt, Sintering of Olivine and Olivine basalt Aggregates, p.708, 1984.

, Phys Chem Miner, vol.11, pp.5-16

R. Dasgupta and M. M. Hirschmann, Melting in the Earth's deep upper mantle caused 710 by carbon dioxide, Nature, issue.7084, pp.659-662, 2006.

R. Dasgupta and M. M. Hirschmann, Effect of variable carbonate concentration on the solidus of 712 mantle peridotite, Am Mineral, vol.92, pp.370-379, 2007.

A. M. Dziewonski and D. L. Anderson, Preliminary reference Earth model, Phys Earth Planet, vol.714, pp.297-356, 1981.

U. H. Faul, D. R. Toomey, and H. S. Waff, Intergranular basaltic melt is distributed in 716 thin, elongated inclusions, Geophys. Res. Lett, vol.21, issue.1, pp.29-32, 1994.

U. H. Faul, F. Gerald, J. D. , and J. I. , Shear wave attenuation and dispersion in melt-718 bearing olivine polycrystals: 2. Microstructural interpretation and seismological 719 implications, J Geophys Res B Solid Earth, vol.109, pp.1-20, 2004.

U. H. Faul, J. D. Fitz-gerald, and I. Jackson, Shear wave attenuation and dispersion in 721 melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological 722 implications, J. Geophys. Res. B Solid Earth, vol.109, issue.6, pp.1-20, 2004.

K. M. Fischer, H. A. Ford, D. L. Abt, and C. A. Rychert, , 2010.

. Boundary, Annu. Rev. Earth Planet. Sci, vol.38, issue.1, pp.551-575

F. Gaillard and G. I. Marziano, Electrical conductivity of magma in the course of, vol.727, p.34, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00023414

, crystallization controlled by their residual liquid composition, J. Geophys. Res. Solid Earth, vol.728, p.110

F. Gaillard, M. Malki, G. Iacono-marziano, M. Pichavant, and B. Scaillet, Carbonatite 730 melts and electrical conductivity in the asthenosphere, Science, vol.322, issue.5906, pp.1363-1368, 2008.

S. J. Galer and R. K. O'nions, Magmagenesis and the mapping of chemical and 733 isotopic variations in the mantle, Chem. Geol, vol.56, issue.1, pp.90109-90118, 1986.

P. Gillet, P. Richet, F. Guyot, and G. Fiquet, High-temperature thermodynamic properties 736 of forsterite, J. Geophys. Res, vol.96, pp.805-816, 1991.

C. Goetze, A Brief summary of our present day understanding of the effect of volatiles 738 and partial melt on the mechanical properties of the upper mantle, vol.739, 1977.

M. H. Manghnani, S. Akimoto, ;. S. , M. R. Drury, C. J. Spiers et al., Melt distribution in 742 olivine rocks based on electrical conductivity measurements, J. Geophys. Res. Solid Earth, vol.743, issue.12, pp.1-11, 2005.

W. C. Hammond and E. D. Humphreys, Upper mantle seismic wave attenuation: Effects 745 of realistic partial melt distribution, J. Geophys. Res, vol.105, issue.B5, pp.10987-10999, 2000.

R. Hansen, M. G. Bostock, and N. I. Christensen, Nature of the low velocity zone in Cascadia 748 from receiver function waveform inversion, Earth Planet Sci Lett, 2012.

S. Hier-majumder, Influence of contiguity on seismic velocities of partially molten 751 aggregates, J. Geophys. Res. Solid Earth, vol.113, issue.12, pp.1-14, 2008.

N. Hirano, E. Takahashi, J. Yamamoto, N. Abe, S. Ingle et al.,

Y. Ishii, S. Ogawa, K. Machida, and . Suyehiro, Volcanism in response to plate flexure, p.754, 2006.

, Science, vol.313, issue.5792, pp.1426-1428

S. Karato, The role of hydrogen in the electrical conductivity of the upper mantle, p.756, 1990.

, Nature, vol.347, pp.183-187

S. Karato, Importance of anelasticity in the interpritation of seismic tomography, Geophys, vol.758, 1993.

, Res Lett, vol.20, pp.1623-1626

S. Karato and . Ichiro, Does partial melting explain geophysical anomalies?, Phys. Earth 760 Planet. Inter, vol.228, pp.300-306, 2014.

H. Kawakatsu, P. Kumar, Y. Takei, M. Shinohara, T. Kanazawa et al., Seismic Evidence for Sharp Boundaries of Oceanic Plates, vol.762, pp.499-502, 2009.

B. Kennett, E. R. Engdahl, and R. Buland, Constraints on seismic velocities in the Earth from 765 traveltimes, Geophys J Int, vol.122, pp.108-124, 1995.

D. L. Kohlstedt, Structure, Rheology and Permeability of Partially Molten Rocks at Low 767, 1992.

, Melt Fractions, in Mantle Flow and Melt Generation at Mid-Ocean Ridges, p.768

, American Geophysical Union

Y. Kono, C. Park, T. Sakamaki, C. Kenny-benson, G. Shen et al., Simultaneous 770 structure and elastic wave velocity measurement of SiO2 glass at high pressures and high 771 temperatures in a Paris-Edinburgh cell, Rev. Sci. Instrum, vol.83, issue.3, p.772, 2012.

I. Jackson, J. Gerald, U. H. Faul, and B. H. Tan, Grain-size-sensitive seismic wave attenuation in 774 polycrystalline olivine, J. Geophys. Res, vol.107, pp.1-16, 2002.

I. Jackson, U. H. Faul, F. Gerald, J. D. Tan, and B. H. , Shear wave attenuation and dispersion in 776 melt-bearing olivine polycrystals: 1. Specimen fabrication and mechanical testing, J, vol.777, 2004.

, Geophys Res B Solid Earth, vol.109, pp.1-20

D. Laporte and A. Provost, The grain-scale distribution of silicate, carbonate and 779 metallosulfide partial melts: a review of theory and experiments, Physics and Chemistry 780 of Partially Molten Rocks, pp.781-93, 2000.

D. Laporte, C. Rapaille, and A. Provost, Wetting Angles, Equilibrium Melt Geometry, 783 and the Permeability Threshold of Partially Molten Crustal Protoliths BT -Granite, p.784, 1997.

, Segregation of Melt to Emplacement Fabrics, pp.31-54

G. Laske, A. Markee, J. A. Orcutt, and C. J. Wolfe,

E. H. Bercovici and . Hauri, Asymmetric shallow mantle structure beneath the 788, 2011.

, Hawaiian Swell-evidence from Rayleigh waves recorded by the PLUME network

, J. Int, vol.187, issue.3, pp.1725-1742

M. Laumonier, R. Farla, D. J. Frost, T. Katsura, K. Marquardt et al.,

. Baumgartner, Experimental determination of melt interconnectivity and electrical 792 conductivity in the upper mantle, Earth Planet. Sci. Lett, vol.463, pp.286-297, 2017.

B. Li and R. C. Liebermann, Indoor seismology by probing the Earth's interior by using sound 795 velocity measurements at high pressures and temperatures, vol.104, pp.9145-9150, 2007.

L. Li, M. Wentzcovitch, D. J. Weider, C. R. Da, and . Silva, Vibrational and 797 thermodynamic properties of forsterite at mantle conditions, J. Geophys. Res, 2007.

M. A. Manthilake, T. Matsuzaki, T. Yoshino, S. Yamashita, E. Ito et al., , p.800, 2009.

, Electrical conductivity of wadsleyite as a function of temperature and water content, Phys

, Earth Planet. Inter, vol.174, issue.1-4, pp.10-18

J. Maumus, N. Bagdassarov, and H. Schmeling, Electrical conductivity and partial 803 melting of mafic rocks under pressure, Geochemica and Cosmochimica Acta, vol.69, p.4178, 2005.

G. Mavko, Velocity and attenuation in partially molten rocks, J. Geophys. Res, vol.85, pp.806-5173, 1980.

W. G. Minarik and E. B. Watson, Interconnectivity of carbonate melt at low melt 808 fraction, Earth Planet. Sci. Lett, vol.133, issue.3-4, pp.423-437, 1995.

V. B. Naumov, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, Comparison of 810 major, volatile, and trace element contents in the melts of mid-ocean ridges on the basis of 811 data on inclusions in minerals and quenched glasses of rocks, Geochemistry Int, vol.52, issue.5, pp.347-364, 2014.

H. Ni, H. Keppler, and H. Behrens, Electrical conductivity of hydrous basaltic melts: 814 Implications for partial melting in the upper mantle, Contrib. to Mineral. Petrol, vol.162, issue.3, pp.637-650, 2011.

H. Nielser and I. Jackson, Pressure derivatives of elastic wave velocities from ultrasonic 817 interferometric measurements on jacketed polycrystals, J.Acoust. Soc. Am, vol.86, pp.1573-1585, 1989.

D. Novella, D. J. Frost, E. H. Hauri, H. Bureau, C. Raepsaet et al., The 819 38 distribution of H2O between silicate melt and nominally anhydrous peridotite and the onset 820 of hydrous melting in the deep upper mantle, Earth Planet. Sci. Lett, vol.400, pp.1-13, 2014.

R. J. O'connell and B. Budiansky, Seismic velocities in dry and saturated cracked 823 solids, J. Geophys. Res, vol.79, issue.35, pp.5412-5426, 1974.

S. Okumura and N. Hirano, Carbon dioxide emission to earth's surface by deep-sea 825 volcanism, Geology, issue.11, pp.1167-1170, 2013.

T. Pfeiffer, Viscosities and electrical conductivities of oxidic glass-forming melts, Solid, vol.827, 1998.

, State Ionics, vol.105, issue.1, pp.277-287

T. Plank and C. H. Langmuir, Effects of the melting regime on the composition of the 829 oceanic crust, J. Geophys. Res, vol.97, issue.B13, pp.19749-19770, 1992.

A. Pommier and E. J. Garnero, Petrology-based modeling of mantle melt electrical 831 conductivity and joint interpretation of electromagnetic and seismic results, J. Geophys, 2014.

, Res. Solid Earth, vol.119, pp.4001-4016

A. Pommier, K. Leinenweber, D. L. Kohlstedt, C. Qi, E. J. Garnero et al., , vol.834

. Tyburczy, Experimental constraints on the electrical anisotropy of the lithosphere-835 asthenosphere system, Nature, vol.522, issue.7555, pp.202-206, 2015.

D. C. Presnall, C. L. Simmons, and H. Porath, Changes in electrical conductivity of a 837 synthetic basalt during melting, J. Geophys. Res, vol.77, issue.29, p.838, 1972.

M. L. Rivers and I. Carmichael, Ulstrasonic Studies of Silicate Melts, J Geophys Res, vol.840, pp.9247-9270, 1987.

J. J. Roberts and J. A. Tyburczy, Partial-melt electrical conductivity: Influence of melt 842 39 composition, J. Geophys. Res, vol.104, issue.B4, p.7055, 1999.

B. Romanowicz, A global tomographic model of shear attenuation in the upper mantle, J, vol.844, 1995.

, Geophys. Res, vol.100, issue.B7, p.12375

A. E. Saal, E. H. Hauri, C. H. Langmuir, and M. R. Perfit, Vapour undersaturation in 846 primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle, Nature, vol.847, issue.6906, pp.451-455, 2002.

D. L. Sahagian and A. A. Proussevitch, 3D particle size distributions from 2D 849 observations: stereology for natural applications, J. Volcanol. Geotherm. Res, vol.84, issue.3, pp.43-45, 1998.

V. J. Salters and S. R. Hart, The hafnium paradox and the role of garnet in the source 852 of mid-ocean-ridge basalts, Nature, vol.342, p.420, 1989.

H. Sato, I. S. Sacks, T. Murase, G. Muncill, and H. Fukuyama, Qp-melting temperature 854 relation in peridotite at high pressure and temperature: Attenuation mechanism and 855 implications for the mechanical properties of the upper mantle, J. Geophys. Res, vol.94, issue.B8, p.10647, 1989.

A. J. Schaeffer and M. G. Bostock, A low-velocity zone atop the transition zone in northwestern 858, 2010.

. Canada, J Geophys Res, vol.115, p.6302

H. Schmeling, Numerical models on the influence of partial melt on elastic, anelastic and 860 electrical properties of rocks. Part II: electrical conductivity, Phys. Earth Planet. Inter, vol.861, issue.2, pp.90080-90084, 1986.

N. Schmerr, The Gutenberg discontinuity: melt at the lithosphere-asthenosphere 863 boundary, Science, vol.335, issue.6075, pp.1480-1483, 2012.

T. J. Shankland and H. S. Waff, Partial Melting and Electrical Conductivity Anomalies 865 40 in the Upper Mantle, J. Geophys. Res, vol.82, issue.33, pp.5409-5417, 1977.

T. Shea, B. F. Houghton, L. Gurioli, K. Cashman, J. E. Hammer et al., , p.867, 2010.

, Textural studies of vesicles in volcanic rocks : An integrated methodology

, Geotherm. Res, vol.190, issue.3-4, pp.271-289

D. Sifré, E. Gardés, M. Massuyeau, L. Hashim, S. Hier-majumder et al., , vol.870, 2014.

, Electrical conductivity during incipient melting in the oceanic low-velocity zone, Nature, issue.7498, pp.81-86

V. Soustelle and G. Manthilake, Deformation of olivine-orthopyroxene aggregates at 873 high pressure and temperature: Implications for the seismic properties of the asthenosphere, vol.874, 2017.

. Tectonophysics, , vol.694, pp.385-399

L. Stixrude and C. Lithgow-bertelloni, Mineralogy and elasticity of the oceanic upper 876 mantle: Origin of the low-velocity zone, J. Geophys. Res. B Solid Earth, vol.110, issue.3, pp.1-16, 2005.

Y. Takei, Constitutive mechanicarl elationso f solid-liquidc omposites in terms of grain-879 boundary contiguit, J. Geophys. Res, vol.103, issue.B8, pp.18183-18203, 1998.

Y. Takei, Acoustic properties of partially molten media studied on a simple binary system 881 with a controllable dihedral angle, J. Geophys. Res, vol.105, issue.B7, p.882, 2000.

Y. Takei, Effect of pore geometry on V P / V S : From equilibrium geometry to crack, J, vol.884, 2002.

, Geophys. Res, vol.107, issue.B2, p.2043

D. R. Toomey, W. S. Wilcock, S. C. Solomon, W. C. Hammond, and J. A. Orcutt, , p.886, 1998.

, Mantle Seismic Structure Beneath the MELT Region of the East Pacific Rise from P and S 887

, Wave Tomography Mantle Seismic Structure Beneath the MELT Region of the East Pacific, vol.888, p.41

, Rise from P and S Wave Tomography the primary ocean bottom seismometer, vol.280, pp.1224-1227

D. R. Toomey, D. Jousselin, R. Dunn, W. S. Wilcock, and R. S. Detrick, Skew of 891 mantle upwelling beneath the East Pacific Rise governs segmentation, Nature, vol.892, issue.7134, pp.409-414, 2007.

J. A. Tyburczy and H. S. Waff, Electrical conductivity of molten basalt and andesite to 894 25 kilobars pressure: Geophysical significance and implications for charge transport and 895 melt structure, J. Geophys. Res, vol.88, issue.2, pp.2413-2430, 1983.

N. Von-bargen and H. S. Waff, Permeabilities, interfacvial areas and curvatures of 897 partially molten systems: results of numerical computations of equilibrium microstructures, p.898, 1986.

, J. Geophys. Res, vol.91, pp.9261-9276

H. S. Waff, Theoretical consideration of electrical conductivity in a partially molten 900 mantle and implications for geothermometry, J. Geophys. Res, vol.79, issue.26, pp.4003-4010, 1974.

H. S. Waff and J. R. Blau, Experimental determination of near equilibrium textures in 902 partially molten silicates at high pressures, High Pressure Research in Geophysics, p.904, 1982.

. Tokyo,

H. S. Waff and U. H. Faul, Effects of crystalline anisotropy on fluid distribution in 906 ultramafic partial melts, J. Geophys. Res, vol.97, issue.B6, p.9003, 1992.

L. Wagner, D. W. Forsyth, M. J. Fouch, and D. E. James, Detailed three-dimensional 908 shear wave velocity structure of the northwestern United States from Rayleigh wave 909 tomography, Earth Planet. Sci. Lett, vol.299, issue.3-4, pp.273-284, 2010.

R. Widmer, G. Masters, and F. Gilbert, Spherically symmetric attenuation within the 911, p.42, 1991.

, Earth from normal mode data, Geophys. J. Int, vol.104, issue.3, pp.541-553

T. Yoshino, Y. Takei, D. A. Wark, and E. B. Watson, Grain boundary wetness of 914 texturally equilibrated rocks, with implications for seismic properties of the upper mantle, 2005.

, Geophys. Res. B Solid Earth, vol.110, issue.8, pp.1-16

T. Yoshino, Y. Nishihara, and S. Ichiro-karato, Complete wetting of olivine grain 917 boundaries by a hydrous melt near the mantle transition zone, Earth Planet. Sci. Lett, vol.918, issue.3-4, pp.466-472, 2007.

T. Yoshino, D. Yamazaki, and K. Mibe, Well-wetted olivine grain boundaries in partially 920 molten peridotite in the asthenosphere, Earth Planet. Sci. Lett, vol.283, issue.1-4, pp.167-173, 2009.

T. Yoshino, M. Laumonier, E. Mcisaac, and T. Katsura, Electrical conductivity of basaltic 923 and carbonatite melt-bearing peridotites at high pressures: Implications for melt distribution 924 and melt fraction in the upper mantle, Earth Planet. Sci. Lett, vol.295, issue.3-4, pp.593-602, 2010.

B. Zhang, T. Yoshino, D. Yamazaki, G. Manthilake, and T. Katsura, Electrical 927 conductivity anisotropy in partially molten peridotite under shear deformation, Earth 928 Planet. Sci. Lett, vol.405, pp.98-109, 2014.