R. J. Xavier and D. K. Podolsky, Unravelling the pathogenesis of inflammatory bowel disease, Nature, vol.448, pp.427-434, 2007.

J. Cosnes, C. Gower-rousseau, P. Seksik, and A. Cortot, Epidemiology and natural history of inflammatory bowel diseases, Gastroenterology, vol.140, pp.1785-1794, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00631553

P. Seksik, Review article: the role of bacteria in onset and perpetuation of inflammatory bowel disease, Aliment. Pharmacol. Ther, vol.24, pp.11-18, 2006.

M. Baumgart, Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum, ISME J, vol.1, pp.403-418, 2007.

M. P. Conte, Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease, Gut, vol.55, pp.1760-1767, 2006.

A. Darfeuille-michaud, Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease, Gastroenterology, vol.115, pp.1405-1413, 1998.

R. Kotlowski, C. N. Bernstein, S. Sepehri, and D. O. Krause, High prevalence of Escherichia coli belonging to the B2 + D phylogenetic group in inflammatory bowel disease, Gut, vol.56, pp.669-675, 2007.

H. M. Martin, Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer, Gastroenterology, vol.127, pp.80-93, 2004.

, Scientific RepoRts |, vol.6

M. Martinez-medina, Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease, Inflamm. Bowel Dis, vol.15, pp.872-882, 2009.

C. Neut, Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection for Crohn's disease, Am. J. Gastroenterol, vol.97, pp.939-946, 2002.

M. Sasaki, Invasive Escherichia coli are a feature of Crohn's disease, Lab. Investig. J. Tech. Methods Pathol, vol.87, pp.1042-1054, 2007.

A. Swidsinski, Mucosal flora in inflammatory bowel disease, Gastroenterology, vol.122, pp.44-54, 2002.

N. Barnich, CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease, J. Clin. Invest, vol.117, pp.1566-1574, 2007.
DOI : 10.1172/jci30504

URL : http://www.jci.org/articles/view/30504/files/pdf

M. Economou and G. Pappas, New global map of Crohn's disease: Genetic, environmental, and socioeconomic correlations, Inflamm. Bowel Dis, vol.14, pp.709-720, 2008.
DOI : 10.1002/ibd.20352

F. A. Carvalho, Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM, J. Exp. Med, vol.206, pp.2179-2189, 2009.
DOI : 10.1084/jem.20090741

URL : http://jem.rupress.org/content/206/10/2179.full.pdf

C. A. Chapman-kiddell, P. S. Davies, L. Gillen, and G. L. Radford-smith, Role of diet in the development of inflammatory bowel disease, Inflamm. Bowel Dis, vol.16, pp.137-151, 2010.

J. K. Hou, B. Abraham, and H. El-serag, Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature, Am. J. Gastroenterol, vol.106, pp.563-573, 2011.

M. Martinez-medina, Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation, Gut, vol.63, pp.116-124, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01928324

K. M. Maslowski, Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43, Nature, vol.461, pp.1282-1286, 2009.

R. E. Ley, Evolution of mammals and their gut microbes, Science, vol.320, pp.1647-1651, 2008.

J. Boudeau, A. L. Glasser, E. Masseret, B. Joly, and A. Darfeuille-michaud, Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease, Infect. Immun, vol.67, pp.4499-4509, 1999.

A. Darfeuille-michaud, High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease, Gastroenterology, vol.127, pp.412-421, 2004.

A. Negroni, Characterization of adherent-invasive Escherichia coli isolated from pediatric patients with inflammatory bowel disease, Inflamm. Bowel Dis, vol.18, pp.913-924, 2012.

R. N. Carmody, Diet dominates host genotype in shaping the murine gut microbiota, Cell Host Microbe, vol.17, pp.72-84, 2015.

B. W. Parks, Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice, Cell Metab, vol.17, pp.141-152, 2013.

M. A. Hildebrandt, High-fat diet determines the composition of the murine gut microbiome independently of obesity, Gastroenterology, vol.137, pp.1716-1724, 2009.

P. D. Cani, Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice, Diabetes, vol.57, pp.1470-1481, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00410066

C. Manichanh, N. Borruel, F. Casellas, and F. Guarner, The gut microbiota in IBD, Nat. Rev. Gastroenterol. Hepatol, vol.9, pp.599-608, 2012.

L. A. Milo, K. A. Reardon, and K. A. Tappenden, Effects of short-chain fatty acid-supplemented total parenteral nutrition on intestinal pro-inflammatory cytokine abundance, Dig. Dis. Sci, vol.47, pp.2049-2055, 2002.

M. D. Säemann, Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and upregulation of IL-10 production, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.14, pp.2380-2382, 2000.

M. A. Vinolo, H. G. Rodrigues, R. T. Nachbar, and R. Curi, Regulation of inflammation by short chain fatty acids, Nutrients, vol.3, pp.858-876, 2011.

A. L. Mcorist, Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch, J. Nutr, vol.141, pp.883-889, 2011.

S. H. Duncan, Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces, Appl. Environ. Microbiol, vol.73, pp.1073-1078, 2007.

P. M. Smith, The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis, Science, vol.341, pp.569-573, 2013.

N. Arpaia, Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation, Nature, vol.504, pp.451-455, 2013.

A. J. Brown, The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids, J. Biol. Chem, vol.278, pp.11312-11319, 2003.

C. Sina, G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation, J. Immunol. Baltim. Md, vol.183, pp.7514-7522, 1950.

M. H. Kim, S. G. Kang, J. H. Park, M. Yanagisawa, and C. H. Kim, Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice, Gastroenterology, vol.145, pp.396-406, 2013.

A. Trompette, Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis, Nat. Med, vol.20, pp.159-166, 2014.

S. Kim, J. Kim, B. O. Park, and Y. S. Kwak, Perspectives on the therapeutic potential of short-chain fatty acid receptors, BMB Rep, vol.47, pp.173-178, 2014.

J. A. Leedle and R. B. Hespell, Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrateutilizing subgroups in rumen bacterial populations, Appl. Environ. Microbiol, vol.39, pp.709-719, 1980.

K. R. Clarke and N. J. Owens, A simple and versatile micro-computer program for the determination of 'most probable number, J. Microbiol. Methods, vol.1, pp.133-137, 1983.