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Contemporary Mathematics

Spectrum of ultrametric Banach algebras of strictly
differentiable functions

Alain Escassut and Nicolas Mäınetti

Abstract. Let IK be an ultrametric complete field and let E be an open sub-

set of IK of strictly positive codiameter. Let D(E) be the Banach IK-algebra

of bounded strictly differentiable functions from E to IK, a notion whose def-
inition is detailed. It is shown that all elements of D(E) have a derivative

that is continuous in E. Given a positive number r > 0, all functions that are

bounded and are analytic in all open disks of diameter r are strictly differen-
tiable. Maximal ideals and continuous multiplicative semi-norms on D(E) are

studied by recalling the relation of contiguity on ultrafilters: an equivalence

relation. So, the maximal spectrum of D(E) is in bijection with the set of
equivalence classes with respect to contiguity. Every prime ideal of D(E) is

included in a unique maximal ideal and every prime closed ideal of D(E) is
a maximal ideal, hence every continuous multiplicative semi-norm on D(E)

has a kernel that is a maximal ideal. If IK is locally compact, every maxi-

mal ideal of D(E) is of codimension 1. Every maximal ideal of D(E) is the
kernel of a unique continuous multiplicative semi-norm and every continuous

multiplicative semi-norm is defined as the limit along an ultrafilter on E. Con-

sequently, the set of continuous multiplicative semi-norms defined by points of
E is dense in the whole set of all continuous multiplicative semi-norms. The

Shilov boundary of D(E) is equal to the whole set of continuous multiplicative

semi-norms. Many results are similar to those concerning algebras of uniformly
continuous functions but some specific proofs are required.

Introduction and preliminaries:

Let IK be a field which is complete with respect to an ultrametric absolute
value that will be denoted by | . |.

Consider a Banach IK-algebra T . It is well known that the set of maximal
ideals is not sufficient to describe spectral properties of T : we have to consider the
set of continuous multiplicative semi-norms [4], [5], [7], [8], [9], [10], [11], [12], [13],
[14]. Many studies were made on continuous multiplicative semi-norms on algebras
of analytic functions, analytic elements and their applications to holomorphic func-
tional calculus [1], [3], [4]. Continuous multiplicative semi-norms of the Banach
algebras of bounded continuous functions and those of bounded uniformly contin-
uous functions were studied in [10], [11]. After these studies, it would be natural
to look for Banach algebras of derivable functions. Unfortunately, such Banach
algebras do not seem to exist, as shows the remark below. This is why it seems
interesting to consider strictly differentiable functions.

Definitions and notation: Throughout the paper, we denote by E an open
subset of IK. Given a ∈ IK and r > 0, we set d(a, r) = {x ∈ IK | |x − a| ≤ r},
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d(a, r−) = {x ∈ IK | |x− a| < r} dE(a, r) = {x ∈ E | |x− a| ≤ r} and dE(a, r−) =
{x ∈ E | |x− a| < r}.

We denote by δ the distance between two subsets of IK: given two subsets
B1, B2 of IK, we set δ(B1, B2) = inf{|x−y| | x ∈ B1, y ∈ B2}. We denote by diam
the diameter of a subset B of IK and we set codiam(B) = δ(B, IK \ B). Similarly,
given a subset B of E, we set codiamE(B) = δ(B,E \B). A subset B of E will be
said to be uniformly open in E or uniformly open subset of E if codiamE(B) > 0.

Given a bounded function f from E to IK, we put ‖f‖0 = supx∈E |f(x)|.
Given a disk d(a,R−), we denote by A(d(a,R−)) the IK-algebra of analytic

functions in d(a,R−) i.e. the set of power series
∞∑
n=0

an(x− a)n of radius of conver-

gence r ≥ R. For every r ∈]0, s], we call r-analytic function a function from E to
IK whose restriction in all disks d(a, r−) ⊂ E belongs to A(d(a, r−)) and we denote
by Ab(E, r) the set of r-analytic functions bounded in E.

Let D = {(x, x) | x ∈ E} and let D(E) be the IK-vector space of bounded
functions f from E to IK such that the mapping φ defined in (E×E)\D into IK as

φ(x, y) =
f(x)− f(y)

x− y
is bounded by a bound Mf and expands to a continuous func-

tion from E ×E to IK. The functions f ∈ D(E) will be called the strictly differen-
tiable functions from E to IK. Given f ∈ D(E), we put ‖f‖1 = sup

(x,y)∈(E×E)\D
φ(x, y)

and we check that ‖ . ‖1 is another IK-vector space norm on D(E). Finally we put
‖f‖ = max(‖f‖0, ‖f‖1).

Remark 1: A uniformly open subset in IK is open and closed.

Remark 2: Suppose IK is algebraically closed and let E = d(0, 1). For every
r ∈ [0, 1] ∩ |IK|, we denote by ξ(r) an element b of E such that |b|2 = r. The set
E \ {0} obviously admits a partition of the form {d(aj , |aj |−)j∈I}.

Now, let f be the function defined in E in the following way. Given x ∈
d(aj , |aj |−), we put f(x) = ξ(|aj |) and f(0) = 0. In this way, f is constant in each
disk d(aj , |aj |−), a ∈ E and therefore f has a derivative equal to 0 at each point
a ∈ E \ {0} but f has no derivative at 0 because

lim
x→0

∣∣∣f(x)
x

∣∣∣ = lim
x→0

√
|x|
|x|

= +∞.

Now, let us take a decreasing sequence (rn)n∈IN in |IK|, of limit 0 and for each
n ∈ IN, let fn be the function defined in E by fn(x) = f(x) for every x ∈ E\d(0, rn)
and fn(x) = ξ(aj) for every x ∈ d(0, rn), with aj ∈ d(0, rn). Thus, we can check
that fn has a derivative equal to 0 in all E. Therefore, the sequence (f ′n)n∈IN

trivially is uniformly convergent to the function that is identically zero in all E.
On the other hand, consider ‖fn−f‖0. By construction, we check |f(x)| ≤ √rn

for every x ∈ d(0, rn) and hence |f(x) − fn(x)| ≤ √rn for every x ∈ d(0, rn).
But since fn(x) = f(x) for every x ∈ E \ d(0, rn), we derive ‖fn − f‖0 ≤

√
rn.

Consequently, the sequence (fn)n∈IN is uniformly convergent in E to f . And f is
not derivable at 0, although the sequence (f ′n)n∈IN is also uniformly convergent in
E.
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Theorems 1 and 2 are designed to recall properties that we can also find in [16],
with some differences on hypotheses or definitions.

Theorem 1: Every function f ∈ D(E) is uniformly continuous, derivable in E
and f ′ is bounded and continuous in E. Moreover, if E is compact, then a function

from E to IK belongs to D(E) if and only if for every a ∈ E,
f(x)− f(y)

x− y
has a

limit when x and y tend to a separately, while being distinct.

Proof. Let f ∈ D(E). Then f is Lipschitzian and hence uniformly continuous

in E. Next, for every a ∈ E,
f(x)− f(y)

x− y
has a limit l(a) when x and y tend to

a separately, while being distinct. For each ε > 0 and let r(ε) > 0 be such that∣∣∣f(x)− f(y)
x− y

− l
∣∣∣ ≤ ε for all x, y ∈ dE(a, r(ε)), x 6= a, y 6= a, x 6= y. Without

loss of generality, we can assume |x− a| = r(ε) ≥ |y − a|. Now, if y tends to a, the

inequality remains and since f is continuous, we obtain
∣∣∣f(x)− f(a)

x− a
− l(a)

∣∣∣ ≤ ε.

Consequently, lim
x→a

f(x)− f(a)
x− a

= l(a). And hence
f(x)− f(y)

x− y
has a limit when

x and y tend to a separately, while being distinct, even if x or y is equal to a.
Particularly, f has a derivative equal to l(a) at each point a ∈ E.

By definition
∣∣∣f(x)− f(y)

x− y

∣∣∣ is bounded in E, hence, so is
∣∣∣f(x)− f(a)

x− a

∣∣∣ and

hence so is |f ′(x)|. Finally, let us take b ∈ dE(a, r(ε)). We have
∣∣∣f(b)− f(a)

b− a
−

f ′(a)
∣∣∣ ≤ ε and

∣∣∣f(y)− f(x)
y − x

−f ′(a)
∣∣∣ ≤ ε for all x, y ∈ dE(a, r(ε)), hence

∣∣∣f(y)− f(b)
y − b

−

f ′(a)
∣∣∣ ≤ ε for every y ∈ dE(a, r(ε)) hence |f ′(b) − f ′(a)| ≤ ε, which proves that f ′

is continuous.

Now, suppose that E is compact and let f be a function from E to IK such that

for every a ∈ E,
f(x)− f(y)

x− y
has a limit l(a) when x and y tend to a separately,

while being distinct.

We will check that
∣∣∣f(x)− f(y)

x− y

∣∣∣ is bounded by a number Mf . Suppose that

it is not bounded. Then, there exists a sequence of pairs (xn, yn)n∈IN in E × E

such that lim
n→+∞

∣∣∣f(xn)− f(yn)
xn − yn

∣∣∣ = +∞. Since E is compact we can extract from

the sequence (xn, yn)n∈IN a subsequence converging to a pair (a, b) ∈ E × E. So,
without loss of generality, we can assume that the sequence (xn, yn)n∈IN converges
to (a, b). If a 6= b, then we have a contradiction due to the continuity of f . And if
a = b, then we have a contradiction due to the very hypothesis. In the same way,
by fixing y, this proves that f is bounded in E. �

Remark 3: A function f from E to IK which is derivable with a continuous
derivative is not automatically strictly differentiable. Indeed, suppose E has an
infinite residue class field. We can find a sequence (an)n∈IN such that |an| = |an −
am| = 1 for all n 6= m. Now take a sequence (rn)n∈IN of IR+ with lim

n→+∞
rn = 0.
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Then the set E \
∞⋃
n=0

d(an, r−n ) is open. Now, take bn ∈ d(an, rn) such that |an −

bn| = rn for every n ∈ IN.
We can define a function f from E to IK such that f(x) = 0 for all x ∈⋃∞

n=0 d(an, r−n ) and f(x) = 1 for every x ∈ E \
⋃∞
n=0 d(an, r−n ). Of course, f is

derivable and f ′ is continuous in E. However,
∣∣∣f(an)− f(bn)

an − bn

∣∣∣ =
1
rn

and therefore∣∣∣f(x)− f(y)
x− y

∣∣∣ is not bounded in E.

Theorem 2: ‖ . ‖ is a norm of IK-vector space on D(E) and D(E) is complete
for that norm.

Proof. Both ‖ . ‖0 and ‖ . ‖1 are norms of IK-vector space, hence so is ‖ . ‖.
Let us show that D(E) is complete for that norm.

Let g be a function from E to IK that belongs to the completion of D(E)
with respect to the norm ‖ . ‖. For all ε > 0, there exists fε ∈ D(E) such that
‖fε− g‖ ≤ ε. Since fε is bounded, so is g. Next, we check that ‖fε− g‖1 ≤ ε, hence∣∣∣ (fε − g)(x)− (fε − g)(y)

x− y

∣∣∣ ≤ ε
for all x, y ∈ (E × E) \D. Therefore since

∣∣∣fε(x)− fε(y)
x− y

∣∣∣ is bounded by ‖fε‖1 in

(E×E) \D, so is
∣∣∣g(x)− g(y)

x− y

∣∣∣. Now we have to check that
∣∣∣g(x)− g(y)

x− y

∣∣∣ expands

to a continuous function from E ×E to IK. Let (a, a) ∈ D and let us fix ε > 0. By

definition,
∣∣∣fε(x)− fε(y)

x− y

∣∣∣ has a limit (fε)′(a) when x and y tend to a. Consequently,

there exists a disk dE(a, r) in E such that for all x, y ∈ dE(a, r), x 6= y,

(1)
∣∣∣fε(x)− fε(y)

x− y
− (fε)′(a)

∣∣∣ ≤ ε.
But since ‖fε − g‖1 ≤ ε, we have∣∣∣ (fε(x)− g(x))− (fε(y)− g(y))

x− y

∣∣∣ ≤ ε
for all x, y ∈ dE(a, r). Consequently, by (1) we derive (2) for all x, y ∈ dE(a, r), x 6=
y :

(2)
∣∣∣g(x)− g(y)

x− y
− (fε)′(a)

∣∣∣ ≤ ε.
Now, let us take ω ∈]0, ε[ and take fω ∈ D(E) such that ‖fω−g‖ ≤ ω. There exists
a disk dE(a, s) in E, with 0 < s ≤ r such that∣∣∣fω(x)− fω(y)

x− y
− (fω)′(a)

∣∣∣ ≤ ω
for all x, y ∈ dE(a, s), x 6= y. Consequently, when x, y ∈ dE(a, s), we can see
that |(fω)′(a) − (fε)′(a)| ≤ ε. Therefore each interval [|(fε)′(a)| − ε, |(fε)′(a)| + ε]

contains
g(x)− g(y)
x− y

whenever x, y ∈ dE(a, s), x 6= y. Therefore the family of

intervals [|(fε)′(a)| − ε, |(fε)′(a)|+ ε] is a basis of a Cauchy filter whose limit L(a),
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by (2), is the limit of
g(x)− g(y)
x− y

when x and y tend to a, which finishes the proof

that g belongs to D(E). �

Theorem 3: D(E) is a IK-algebra and ‖ . ‖ is a norm of IK-algebra.

Proof. Let f, g ∈ D(E). Given x, y ∈ E, we have

f(x)g(x)− f(y)g(y)
x− y

= f(x)
g(x)− g(y)
x− y

+ g(y)
f(x)− f(y)

x− y

hence the limit at a of
f(x)g(x)− f(y)g(y)

x− y
when x, y tend to a with x 6= y is

f(a)g′(a) + g(a)f ′(a). Next, we can easily check that
‖fg‖ = max

(
‖fg‖0, ‖fg‖1

)
≤ max

(
‖f‖0‖g‖0, ‖fg‖1

)
. Now ‖fg‖1 =

= sup
x,y

∣∣∣f(x)g(x)− f(y)g(y)
x− y

∣∣∣ = max
(

sup
x,y

∣∣∣f(x)(g(x)− g(y)
x− y

∣∣∣, sup
x,y

∣∣∣g(y)(f(x)− f(y)
x− y

∣∣∣).
Consequently, ‖fg‖1 ≤ ‖f‖‖g‖ and therefore ‖fg‖ ≤ ‖f‖‖g‖. �

Corollary 3.1: D(E) is a Banach IK-algebra.

Theorem 4: Let r ∈]0, s]. Suppose E uniformly open in IK, of codiameter s and
let r ∈]0, s]. Then Ab(E, r) provided with the norm ‖ . ‖E is a Banach IK-algebra
included in D(E).

Proof. By definition, E admits a partition by a family of disks (Ei)i∈I of di-
ameter r. Now, it is easily seen that A(E, r) is a IK-algebra algebraically and topo-
logically isomorphic to the direct product

∏
i∈I
A(Ei, r). Let us show that Ab(E, r)

is included in D(E). Let f ∈ Ab(E, r), let M = ‖f‖E and take x, y ∈ E. We will

prove that
∣∣∣f(x)− f(y)

x− y

∣∣∣ is bounded in E.

Suppose first that |x − y| ≥ r. Then
∣∣∣f(x)− f(y)|

x− y

∣∣∣ ≤ M

r
. Suppose now that

|x− y| < r. Then both x and y belong to a same disk Ei. Clearly, we can assume
that Ei is the disk d(0, r−) without loss of generality and then, inside that disk,

f(t) is a power series
+∞∑
n=0

ant
n, with sup

n∈IN
|an|rn ≤M . Consequently,

f(x)− f(y)
x− y

=
+∞∑
n=1

an

n−1∑
j=0

xjyn−1−j

and therefore, ∣∣∣f(x)− f(y)
x− y

∣∣∣ ≤ sup
n≥1
|an|rn−1 ≤ lim

s→r−
|f |(s)
s
≤ M

r
.

Consequently, we have proven that

(1)
∣∣∣f(x)− f(y)

x− y

∣∣∣ ≤ M

r
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for all x, y ∈ E.
Now when x and y approach independently to a same point a ∈ E, both x and

y belong to a same disk Ei and we can again assume that Ei = d(0, r−). Moreover,
without loss of generality, we can also assume that a = 0. Then we have again

f(x)− f(y)
x− y

=
+∞∑
n=1

an

n−1∑
j=0

xjyn−1−j .

When x and y go separately to 0, clearly the sum goes to a1 which is f ′(0). Therefore
Ab(E, r) is a sub-algebra of D(E).

On the other hand, by (1), we can see that ‖f‖1 ≤
‖f‖E
r

therefore the norms

‖ . ‖E and ‖ . ‖ are equivalent on Ab(E, r).
Let sus show that Ab(E, r) is closed with respect to the norm ‖ . ‖E and hence

with respect to the norm ‖ . ‖. Let (fn)n∈IN be a Cauchy sequence of Ab(E, r).
For every disk d(a, r−), it is a Cauchy sequence of Ab(d(a, r−)) with respect to the
norm ‖ . ‖d(a,r−), hence the sequence converges to a function ga ∈ Ab(d(a, r−)).
Then the function f defined in E as f(x) = ga(x) for every x ∈ d(a, r−) is clearly
the limit of the sequence (fn)n∈IN with respect to the norm ‖ .‖E . On the other
hand, since the sequence (fn) is a Cauchy sequence of bounded functions, its limit
is obviously bounded. Thus, Ab(E, r) is closed in D(E). �

The role of ultrafilters here is essential as in a few previous works [10]. They
were deeply studied in [15].

Notation and definitions. Let F be a filter on E. Given a function f from E
to IK admitting a limit along F , we will denote by lim

F
f(x) that limit.

Let Ul(E) be the set of ultrafilters on E. Two filters F , G on E will be said to
be contiguous if for every H ∈ F , L ∈ G, we have δ(H,L) = 0. We shall denote by
(T ) the relation defined on Ul(E) as U(T )V if U and V are contiguous.

An ultrafilter U on the set E is said to be principal if it converges to a point
a ∈ E.

Remark 4: Let U , V be contiguous ultrafilters on E and assume U is convergent.
Then V is convergent and has the same limit as U .

The following Lemma L is immediate:

Lemma L: Let X1, ..., Xq be uniformly open subsets of E. Then if
q⋂
j=1

Xj is not

empty, it is uniformly open in E.

Theorem 5: Let X ⊂ E be uniformly open in E and let u be defined as u(x) = 1
for every x ∈ X and u(x) = 0 for every x /∈ X. Then u belongs to D(E).

Proof. Let r = codiam(X). Of course, we have
u(x)− u(y)

x− y
= 0 for all

(x, y) ∈ X ×X, x 6= y. Finally, let x ∈ X, y ∈ (E \X). Then
∣∣∣u(x)− u(y)

x− y

∣∣∣ ≤ 1
r

.
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Moreover, if x and y tend to a point a ∈ E, then we can assume that either both

belong to X or both belong to E \X, hence
u(x)− u(y)

x− y
= 0. �

Notation: Let f1, ..., fq ∈ D(E) and let ε > 0. We set W (f1, ..., fq, ε) = {x ∈
E | |f(x)| ≤ ε}.

Theorem 6: Let f1, ..., fq ∈ D(E), let ε > 0. Then if W (f1, ..., fq, ε) is not empty,
it is uniformly open in E.

Proof. By Lemma L, we can assume q = 1. So, consider a set W (f, ε). Since
f is uniformly continuous, there exists r(ε) > 0 such that |f(x) − f(y)| ≤ ε for
all x, y ∈ E such that |x − y| ≤ r(ε). Let a ∈ E be such that |f(a)| > ε. Then
|f(x)| > ε for every x ∈ dE(a, r(ε)), which proves that W (f, ε) is uniformly open
in E. �

Theorems 7 and 8 were proven in [10].

Theorem 7: Let U , V be two ultrafilters on E that are not contiguous. There
exist uniformly open subsets H ∈ U , L ∈ V of E and f ∈ D(E) such that f(x) = 1
for every x ∈ H, f(x) = 0 for every x ∈ L.

Proof. Let F ∈ U , G ∈ V be such that δ(F,G) = r > 0. LetH =
⋃
b∈F

dE(b, r−).

Then F ∩G = ∅.
Let f be defined as f(x) = 1 for every x ∈ H and f(x) = 0 for every x /∈ H.

Then f(x) − f(y) = 0 for every x, y ∈ H and f(x) − f(y) = 0 for all x, y /∈

H. Now, take x ∈ H and y /∈ H. We have
f(x)− f(y)

x− y
=

1
x− y

and hence∣∣∣f(x)− f(y)
x− y

∣∣∣ ≤ 1
r

. Consequently,
f(x)− f(y)

x− y
is bounded in E. Moreover, when

x and y tend to a point a ∈ E, either both x, y belong to H or both x, y do not

belong to H, therefore
f(x)− f(y)

x− y
= 0, so f belongs to D(E). On the other hand,

by construction, H belongs to U , and putting L = E \H, we see that G ⊂ L, hence
L belongs to V. Then, f satisfies f(x) = 1 for every x ∈ H, f(x) = 0 for every
x ∈ L. Moreover, by construction, we check that both H and L are uniformly open
in E, which ends the proof. �

Notation: We denote by E′ another open subset of IK. Let f be a mapping
from E to E′ and let U be an ultrafilter on E. We denote by f(U) the ultrafilter
admitting the basis f(U).

Lemma M: Let f be a uniformly continuous mapping from E to E′. Let U , V
be contiguous. Then f(U) and f(V) are contiguous.
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Proof. Set U ′ = f(U) and V ′ = f(V) and let X ∈ U ′, Y ∈ V ′. The familly
of subsets f−1(f(U)) is obviously included in U , hence the set P = f−1(X) be-
longs to U and similarly, the set Q = f−1(Y ) belongs to V. Now, we have
δ(P,Q) = 0, so there exist a sequence (an)n∈IN of P and a sequence (bn)n∈IN

of Q such that lim
n→+∞

(an − bn) = 0. But since f is uniformly continuous, in E′ we

have lim
n→+∞

δ′(f(an), f(bn)) = 0 and hence δ′(X,Y ) = 0 i.e. U ′(T )V ′. �

Notation: Given a uniformly continuous mapping f from E to E′ and a class of
contiguity H on E, we will denote by f(H) the class of contiguity on E′: {f(U) | U ∈
H}.

Given a filter F on E, we will denote by I(F) the ideal of the f ∈ D(E) such
that lim

F
f(x) = 0. We will denote by I∗(F) the ideal of the f ∈ D(E) such that

there exists a subset L ∈ F such that f(x) = 0 for every x ∈ L. Given a ∈ E we
will denote by I(a) the ideal of the f ∈ D(E) such that f(a) = 0.

We will denote by Max(D(E)) the set of maximal ideals of D(E) and by
MaxE(D(E)) the set of maximal ideals of the form I(a), a ∈ E.

The proof of Theorem 8 is easy and is not specific to the algebra D(E) [10].

Theorem 8: Given an ultrafilter U on E, I(U), I∗(U) are prime ideals of D(E).

Notation: We will denote by | · |∞ the Archimedean absolute value of IR.

Theorem 9: Let U , V be two ultrafilters on E. Then I(U) = I(V) if and only if
U and V are contiguous.

Proof. Suppose that U , V are not contiguous. By Theorem 7, there exist
H ∈ U , L ∈ V and f ∈ D(E) such that f(x) = 1 for every x ∈ H, f(x) = 0 for
every x ∈ L. Consequently, f belongs to I(U) but does not belong to I(V). Thus,
I(F) 6= I(G).

Now, suppose that U , V are contiguous. Let f ∈ I(U). Since U ,V are ultrafil-
ters and since f is bounded, |f(x)| admits limits on both filters. Let l = lim

V
|f(x)|,

suppose l > 0 and let L ∈ V be such that
∣∣∣ |f(x)| − l

∣∣∣
∞
≤ l

3
for every x ∈ L,

hence |f(x)| ≥ 2l
3

for every x ∈ L. Let H ∈ U be such that |f(x)| ≤ l

3
for all

x, y ∈ dE(a, r), x 6= y. x ∈ H. Since f ∈ D(E), f is uniformly continuous, hence

there exists ρ > 0 such that δ(x, y) ≤ ρ implies |f(x)− f(y)| ≤ l

4
. And there exist

a ∈ H, b ∈ L such that |a−b| ≤ ρ, hence |f(a)−f(b)| ≤ l

4
, a contradiction because

|f(a)| ≤ l

3
and |f(b)| ≥ 2l

3
. �

Remark 5: As noticed in [10], Relation (T ) is not transitive in the case of the set
of all filters on E. However, given a topological space X satisfying the normality
axiom, particularly, given a metric space X, then (T ) is transitive for ultrafilters
and therefore is an equivalence relation on Ul(X) [10].
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Notation: We will denote by Y(T )(E) the set of equivalence classes on Ul(E)
with respect to Relation (T ). Given H ∈ Y(T )(E), we will denote by I(H) the
ideal I(U), U ∈ H.

Let f ∈ D(E) and let ε be > 0. We set B(f, ε) = {x ∈ E | |f(x)| ≤ ε}.

Theorem 10 looks like certain Bezout-Corona statements [8], [17], [9], [10].
The proof is close to that given in [10] but here the functions in D(E) have more
properties, allowing for a more specific proof.

Theorem 10: Let f1, ..., fq ∈ D(E) satisfying inf
x∈E

( max
1≤j≤q

|fj(x)|) > 0. Then there

exist

g1, ..., gq ∈ D(E) such that
q∑
j=1

fj(x)gj(x) = 1 for all x ∈ E.

Proof. Let M = infx∈E(max1≤j≤q |fj(x)|). Let Hj = {x ∈ E | |fj(x)| ≥

M}, j = 1, ..., q and let Fj =
j⋃

m=1

Hm, j = 1, ..., q. Let g1(x) = 1
f1(x)

for all x ∈ H1

and g1(x) = 0 for all x ∈ E\H1. In H1, we have
g1(x)− g1(y)

x− y
=

f1(y)− f1(x)
f1(x)f1(y)(x− y)

,

hence
g1(x)− g1(y)

x− y
converges at each point a ∈ H1 to g′1(a).

Let us show that g1 belongs to D(E). Let us fix i ∈ I and let h = ‖f1‖1.
Let x, y ∈ Ei. If both x, y belong to Ei \ H1, we have g1(x) − g1(y) = 0.

If both x, y belong to H1, we have g1(x) − g1(y) =
f1(y)− f1(x)

f1(x)f1(y)(x− y)
hence

|g1(x)− g1(y)| ≤ ‖f1‖1
M2

.

Finally, suppose x ∈ E1 \ H1 and y ∈ H1. Now, we have |g1(x) − g1(y)| =
1

|f1(y)
| ≤ 1

M
. On the other hand, by hypothesis, |f1(x)| < M, |f1(y)| ≥M , hence

|f1(x)− f1(y)| ≥M , therefore
1

|x− y|
≤ ‖f1‖1
|f1(x)− f1(y)|

, hence

∣∣∣g1(x)− g1(y)
x− y

∣∣∣ ≤ ‖f1‖1
|f1(y)(f1(x)− f1(y))|

≤ ‖f1‖1
M2

.

Consequently, g1 belongs to D(E).

Suppose now we have constructed g1, ..., gk ∈ D(E) satisfying
k∑
j=1

fjgj(x) = 1

for all x ∈ Fk and
k∑
j=1

fjgj(x) = 0 for all x ∈ E \ Fk. Let gk+1 be defined on

E by gk+1(x) =
1

fk+1(x)
for every x ∈ Fk+1 \ Fk and gk+1(x) = 0 for every

x ∈ E \ (Fk+1 \ Fk). In the same way as we did for g1, we can check that gk+1

belongs to D(E).
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Next, we have
k+1∑
j=1

fjgj(x) = 1 for every x ∈ Fk+1 and
k∑
j=1

fjgj(x) = 0 for every

x ∈ E\Fk+1. So, by an immediate recurrence, we can get functions g1, ..., gq ∈ D(E)
such that
q∑
j=1

fjgj(x) = 1 for every x ∈ E, which ends the proof. �

Corollary 10.1: Let I be an ideal of D(E) different from D(E). The family
B(f, ε), f ∈ I, ε > 0, generates a filter FI on E such that I ⊂ I(FI).

Main results

Theorem 11: Let M be a maximal ideal of D(E). There exists an ultrafilter U
on E such that M = I(U) .

Proof. By Corollary 10.1, we have M ⊂ I(FM). Let U be an ultrafilter
thinner than FM. Then I(FM) ⊂ I(U), hence M ⊂ I(U). But since M is a
maximal ideal of D(E), M is equal to I(U). �

Corollary 11.1: For every maximal ideal M of D(E) there exists a unique H ∈
Y(T )(E) such that M = I(U) for every U ∈ H.

Moreover, the mapping Ψ that associates to each M∈Max(D(E)) the unique
H ∈ Y(T )(E) such thatM = I(U) for every U ∈ H, is a bijection from Max(D(E))
onto Y(T )(E).

Theorem 12: Let U be an ultrafilter on E such that, for every f ∈ D(E), f(x)
converges on U in IK. Then I(U) is of codimension 1.

Proof. For each f ∈ D(E) we set χ(f) = lim
U
f(x). Then I(U) is the ideal

Ker(χ) of D(E) and this is a maximal ideal because clearly χ(D(E)) = IK. So,
I(U) is a maximal ideal of D(E) of codimension 1. �

Corollary 12.1: Let U be a Cauchy ultrafilter on E. Then I(U) is of codimen-
sion 1.

Proof. If U is convergent, there is nothing to prove. Suppose now that U does
not converge. Since the functions of D(E) are uniformly continuous, they have a
continuation to the completion Ẽ of E and U defines an ultrafilter that converges
in Ẽ to a point a. Given f ∈ D(E), let f̃ be the continuation of f in Ẽ: we have
lim
U
f(x) = f̃(a). So by Theorem 12, M is of codimension 1. �

Corollary 12.2: Let IK be a locally compact field. Then every maximal ideal of
D(E) is of codimension 1.
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Proof. Let M be a maximal ideal of D(E). By Corollary 9.1 there exists an
ultrafilter U such that M = I(U). Let f ∈ D(E). Since f is bounded, f(E) is
included in a compact subset B of IK. Consequently, f has a limit χ(f) along U .
Thus, the mapping χ from D(E) to IK is a IK-algebra homomorphism and therefore
M is of codimension 1. �

We will now examine prime closed ideals of D(E).

Theorem 13: Let U be an ultrafilter on E and let P be a prime ideal included in
I(U). Let L ∈ U be uniformly open in E and let H = E \ L. Let u be the function
defined on E by u(x) = 1 for every x ∈ H, u(x) = 0 for every x ∈ L. Then u
belongs to P.

Proof. By Theorem 7 we know that u ∈ D(E). By construction, 1 − u does
not belong to I(U) because lim

U
u(x) = 1. But u(1− u) = 0, hence u belongs to P

because P is prime. �

Corollary 13.1: Let U be an ultrafilter on E. The ideal of the f ∈ D(E) such
that there exists a uniformly open subset H ∈ U of E such that f(x) = 0 for every
x ∈ H is included in every prime ideal P ⊂ I(U).

Theorem 14: The closure of a prime ideal of D(E) is a maximal ideal.

Proof. The proof is similar to Theorem 12 in [10]. Let P be a prime ideal of
D(E) included in a maximal ideal M = I(U). Let f belong to I(U). Let us take
ε > 0 and let us find h ∈ P such that ‖f − h‖ ≤ ε. By Theorem 7, we can find a
uniformly open subset L ∈ U of E such that |f(x)| ≤ ε for every x ∈ L. Let u be
the characteristic function of E \ L. By Theorem 13, u belongs to P and hence so
does uf . We then check that ‖f − uf‖ ≤ ε. Thus, P is dense in M. �

Corollary 14.1: Let P be a prime ideal of D(E). There exists a unique maximal
ideal M of D(E) containing P.

Corollary 14.2: Every prime closed ideal of D(E) is a maximal ideal.

Let us recall the main definitions concerning multiplicative semi-norms [3], [4],
[5], [8], [10], [13], [14].

Notation and definition: We denote by Mult(D(E), ‖ . ‖) the set of multi-
plicative semi-norms of D(E) provided with the topology of pointwise convergence.
Given φ ∈ Mult(D(E), ‖ . ‖), the set of the f ∈ D(E) such that φ(f) = 0 is a
closed prime ideal called the kernel of φ. It is denoted by Ker(φ).

We denote by Multm(D(E), ‖ . ‖) the set of multiplicative semi-norms of D(E)
whose kernel is a maximal ideal and by Mult1(D(E), ‖ . ‖) the set of multiplicative
semi-norms of D(E) whose kernel is a maximal ideal of codimension 1.

Let a ∈ E. The mapping ϕa from D(E) to IR defined by ϕa(f) = |f(a)| belongs
to Mult(D(E), ‖ . ‖). Let U be an ultrafilter on E. By Urysohn’s Theorem, given
f ∈ D(E), the mapping from E to IR that sends x to |f(x)| admits a limit along
U . We set ϕU (f) = lim

U
|f(x)|. Moreover, we denote by MultE(D(E), ‖ . ‖) the
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set of multiplicative semi-norms of D(E) of the form ϕa, a ∈ E. Consequently, by
definition, MultE(D(E), ‖ . ‖) is a subset of Mult1(D(E), ‖ . ‖).

The following Theorems 15 and 16 are immediate and well known:

Theorem 15: Let a ∈ E. Then I(a) is a maximal ideal of D(E) of codimension
1 and ϕa belongs to Mult1(D(E), ‖ . ‖).

Corollary 15.1: MultE(D(E), ‖ . ‖) is included in Mult1(D(E), ‖ . ‖).

Theorem 16: Let U be an ultrafilter on E. Then ϕU belongs to the closure of
MultE(D(E), ‖ . ‖).

Now, Corollary 16.1 is an immediate consequence of Theorems 14, 15 and 16
and Corollary 12.1:

Corollary 16.1 : Mult(D(E), ‖ . ‖) = Multm(D(E), ‖ . ‖). Furthermore, if IK
is locally compact then Mult(D(E), ‖ . ‖) = Mult1(D(E), ‖ . ‖).

Remark 6: Suppose IK is locally compact and E is a disk in an algebraically
closed complete ultrametric field. There do exist ultrafilters on E that do not
converge. Let U be such an ultrafilter. Then ϕU belongs to Mult1(D(E), ‖ . ‖) but
does not belong to MultE(D(E), ‖ . ‖).

Remark 7: In H ∈ Y(T )(E) the various ultrafilters U ∈ H ∈ Y(T )(E) define
various prime ideals of D(E) and it is not clear whether these ideals are minimal
among the set of prime ideals of D(E).

Theorem 17: The topology induced on E by the one of MultE(D(E), ‖ . ‖) is
equivalent to the metric topology induced on E by the field IK.

Proof. The proof made for Theorem 15 in [10] holds with no change. Let us
recall it. Let a ∈ E. The filter of neighborhoods of a admits for basis the family
of disks dE(a, r−), r > 0. But we can check that such a disk is induced by a
neighborhood of ϕa with respect to the topology of MultE(D(E), ‖ . ‖) and to the
metric topology of E. Given ϕa ∈MultE(D(E), ‖ . ‖), we set
W ′(ϕa, f1, ..., fq, ε) = W (ϕa, f1, ..., fq, ε)∩MultE(D(E), ‖ . ‖). Let r ∈]0, 1[. There
exist u ∈ D(E) such that u(x) = 0 for every x ∈ dE(a, r−) and u(x) = 1 for
every x ∈ E \ dE(a, r−). Consequently, W ′(ϕa, u, r) is the set of the ϕb such that
|b − a| ≤ r. Hence the topology of MultE(D(E), ‖ . ‖) is thinner or equal to the
metric topology of E. Now, since each fj is continuous, the set of the x ∈ E such
that | |fj(x)| − |fj(a)| |∞ ≤ ε for every j = 1, ..., q is open and hence contains a
ball dE(a, r−) of E. Consequently, the topology of E is thinner or equal to this of
MultE(D(E), ‖ . ‖), which finishes the proof that the topology induced on E by
Mult(D(E), ‖ . ‖) coincides with the metric topology of E. �

Theorem 18 was proven in [19] for the algebra of bounded continuous functions.
In [10] we proved it again for algebras of bounded continuous functions and for
algebras of bounded uniformly continuous functions, in a different way. Here we
adapt that proof to the algebra D(E).
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Theorem 18: Let M be a maximal ideal of D(E). Let T be the field
D(E)
M

and

let θ be the canonical surjection from D(E) onto T . Given any ultrafilter U such
that I(U) = M, the quotient norm ‖ . ‖′ on T is defined by ‖θ(f)‖′ = lim

U
|f(s)|

and hence is multiplicative.

Proof. Let t ∈ T and let f ∈ D(E) be such that θ(f) = t. Let U be an
ultrafilter such that I(U) = M. So, on T we have an absolute value ψ defined as
ψ(t) = limU |f(s)|. That absolute value is continuous with respect to the quotient
norm ‖ . ‖′ of T . Indeed, by construction, we have ‖f‖ ≥ limU |f(s)| = ψ(t). But
‖t‖′ = infh∈M ‖f+h‖ and of course, ψ(θ(t+h)) = ψ(t) = limU |f(s)|. Consequently
‖t‖′ ≥ ψ(t).

Conversely, let V ∈ U be such that |f(x)| ≤ lim
U
|f(s)|+ ε for every x ∈

V . There exist f1, ..., fq ∈ M and ε > 0 sucht that
q⋂
j=1

B(fj , ε) ⊂V . Let X =

q⋂
j=1

B(fj , ε). By Theorem 6, since fj ∈ D(E) for every j = 1, ..., q, X is uniformly

open in E. Consequently, by Theorem 5 there exists u ∈ D(E) such that u(x) = 0
for every x ∈ X, u(x) = 1 for every x ∈ E \ X. Then u(1 − u) = 0. But
1 − u /∈ M. Hence, u belongs to M and then θ(f − uf) = θ(f) = t. But by
construction, (f−uf)(x) = 0 for every x ∈ E\X and (f−uf)(x) = f(x) for every
x ∈ X. Consequently, ‖f −uf‖ ≤ lim

U
|f(s)|+ ε and therefore ‖t‖′ = ‖θ(f −uh)‖ ≤

lim
U
|f(s)|+ ε. This finishes the proof that the equality ‖θ(f)‖′ = lim

U
|f(s)|. Now,

such a norm defined as ‖θ(f)‖′ = lim
U
|f(s)| is obviously multiplicative. �

Remark 8: A similar proof is given in [10] for Theorem 16 where we forgot to
mention the use of a lemma such as Theorem 6 in the case of algebra B.

Definition: Recall that given a commutative Banach IK-algebra T with unity,
every maximal ideal of T is the kernel of at least one continuous multiplicative
semi-norm [2], [3]. The algebra T is said to be multbijective if every maximal ideal
is the kernel of only one continuous multiplicative semi-norm.

Remark 9: There exist ultrametric Banach IK-algebras that are not multbijective
[1], [2], [3].

Theorem 19: D(E) is multbijective.

Proof. Let M be a maximal ideal of D(E) and let T be the field
D(E)
M

. By
Theorem 18, the quotient norm of T is multiplicative. But then, T admits only one
continuous multiplicative semi-norm: its quotient IK-algebra norm. Consequently,
D(E) admits only one continuous multiplicative semi-norm whose kernel is M,
which proves that D(E) is multbijective. �
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By Theorem 19 and Corollary 14.2, we can now state Corollary 19.1:

Corollary 19.1: The mapping that associates to each φ ∈ Mult(D(E), ‖ . ‖) its
kernel Ker(φ) is a bijection from Mult(D(E), ‖ . ‖) onto Max(D(E)).

By Theorem 11, Corollary 11.1 and Theorem 19, we have Corollary 19.2:

Corollary 19.2: For every φ ∈ Mult(D(E), ‖ . ‖) there exists a unique H ∈
Y(T )(E) such that φ(f) = lim

U
|f(x)| for every f ∈ D(E), for every U ∈ H.

Moreover, the mapping Ψ̃ that associates to each φ ∈ Mult(D(E), ‖ . ‖) the
unique H ∈ Y(T )(E) such that φ(f) = lim

U
|f(x)| for every f ∈ D(E), for every

U ∈ H, is a bijection from Mult(D(E), ‖ . ‖) onto Y(T )(E).

Now, by Theorems 15 and 16, we have Corollary 19.3:

Corollary 19.3: MultE(D(E), ‖ . ‖) is dense in Mult(D(E), ‖ . ‖).

Proof. Indeed, let ψ ∈ Mult(D(E), ‖ . ‖). By Theorem 16, Ker(ψ) is a
maximal ideal I(U) with U an ultrafilter on E; but then by Theorem 19, ψ = ϕU
and hence ψ belongs to the closure of MultE(D(E), ‖ . ‖). �

Theorem 20: For every φ ∈ Mult(D(E), ‖ . ‖), φ satisfies φ(f) ≤ ‖f‖0 for
every f ∈ D(E).

Proof. By Theorem 19, D(E) is multbijective, then by Theorem 11, every
element of Multm(D(E), ‖ . ‖) is of the form ϕU where U is an ultrafilter on E. Of
course, we have ϕU (f) ≤ ‖f‖0 for every f ∈ D(E) and consequently, φ(f) ≤ ‖f‖0
for every f ∈ D(E), for every φ ∈ Multm(D(E), ‖ . ‖). But by Corollary 16.1,
Multm(D(E), ‖ . ‖) = Mult(D(E), ‖ . ‖). Thererfore φ(f) ≤ ‖f‖0 for every
f ∈ D(E), for every φ ∈Mult(D(E), ‖ . ‖). �

Notation: On D(E) we denote by ‖ . ‖si the semi-norm of D(E) defined as ‖f‖si =
lim

n→+∞
n
√
‖fn‖.

Le us recall Proposition F (See for instance Theorem 6.19 in [3]):

Proposition F: Let T be a normed IK-algebra whose norm is ‖ . ‖. Then ‖ . ‖si
is a power multiplicative semi-norm on T such that ‖f‖si = sup{ϕ(f) | ϕ ∈
Mult(D(E), ‖ . ‖}.

Then we can state Theorem 21:

Theorem 21: ‖f‖si = ‖f‖0 for every f ∈ D(E).

Proof. We have ‖f‖si = sup{ϕ(f) | ϕ ∈ Mult(D(E), ‖ . ‖}. But by Corol-
lary 16.1, we have Mult(D(E), ‖ . ‖) = Multm(D(E), ‖ . ‖), hence ‖f‖si =
sup{ϕ(f) | ϕ ∈ Multm(D(E), ‖ . ‖}. Consequently, ‖f‖si ≥ |f(x)| for every
x ∈ E, for every f ∈ D(E) and hence ‖f‖si ≥ ‖f‖0 for every f ∈ D(E). On
the other hand, by Theorem 20, we have φ(f) ≤ ‖f‖0 for every f ∈ D(E), for
every φ ∈ Mult(D(E), ‖ . ‖), hence ‖f‖si ≤ ‖f‖0 for every f ∈ D(E) and finally
‖f‖si = ‖f‖0 for every f ∈ D(E). �
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Theorem 22: Suppose IK is algebraically closed. Let U be an ultrafilter on IK
and suppose there exists P ∈ IK[x], P 6= 0 satisfying lim

U
P (x) = 0. Then U is a

principal ultrafilter.

Proof. Let P (x) =
q∏
j=1

(x− aj). Let F be the filter admitting for basis the

family of sets Λ(r) =
q⋃
j=1

d(aj , r), r > 0. Suppose first that U is not secant with F .

There exist ρ > 0 and H ∈ U such that Λ(ρ) ∩H = ∅. Then |P (x)| ≥ ρq for every
x ∈ H, a contradiction to the hypothesis lim

U
P (x) = 0. Consequently, U is secant

with F . Hence it is obviously secant with the filter of neighborhoods of one of the
points aj and therefore, it converges to this point. �

As a consequence, we have Theorem 23:

Theorem 23: Suppose that IK is algebraically closed and that E is a closed
bounded subset of IK with infinitely many points and let M be a maximal ideal
of D(E) of the form I(U) where U is not principal. Then M is of infinite codi-
mension.

Proof. Indeed, by Theorem 22 the idealM contains no polynomials different

from 0, hence
D(E)
M

contains a subfield isomorphic to IK(x) and therefore is not of
finite codimension. �

Remark 10: Suppose IK is algebraically closed and let E = IK. Then the algebra
D(E) contains no polynomial. In such a case, it is not clear whether all maximal
ideals not defined by points of IK are of infinite codimension.

Remark 11: Concerning uniformly continuous functions, it has been shown in
[10] that two ultrafilters that are not contiguous define two distinct continuous
multiplicative semi-norms. By Corollary 11.1 we know that the same holds in
D(E).

Now, concerning bounded analytic functions inside the disk F = {x ∈ IK |x| <
1}, in [7], it was shown that the same property holds for a large set of ultrafilters
on F . However, the question remains whether it holds for all ultrafilters on F .

The following lemma is well known and comes from the fact that on a vector
space of finite dimension over a complete field, two norms are equivalent.

Lemma U : Let  L be an algebraic extension of IK of degree t of the form IK[a]
provided with the absolute value | . | which expands that of IK. Given x ∈  L, let

x =
t−1∑
j=0

ajxj and let ‖x‖ = max0≤j≤t−1 |xj |. Then the norm ‖ . ‖ is equivalent to

the absolute value | . |.

Theorem 24 : Let  L be an algebraic extension of IK of degree t of the form
IK[a] provided with the absolute value which expands that of IK. Let f be a strictly
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differentiable function from E to  L. There exists f0, ..., ft−1 ∈ D(E) such that

f =
t−1∑
j=0

ajfj.

Proof. For every x ∈ E, we can write f(x) =
t−1∑
j=0

ajfj(x) with fj(x) ∈ IK, 0 ≤

j ≤ t− 1.We will show that each function fj belongs to D(E).

By definition, given any a ∈ E,
f(x)− f(y)

x− y
has a limit f ′(a) ∈  L when x and

y tend to a while x 6= y. Let us write f ′(a) =
t−1∑
j=0

aj lj , hence

f(x)− f(y)
x− y

− f ′(a) =
t−1∑
j=0

aj
(fj(x)− fj(y)

x− y
− lj

)
.

Since lim
x→a, y→a

x 6=y

f(x)− f(y)
x− y

− f ′(a) = 0, by Lemma U, we can see that for each

j = 0, ..., t − 1, we have lim
x→a, y→a

x6=y

fj(x)− fj(y)
x− y

− lj = 0. Consequently, fj does

belong to D(E) and that ends the proof of Theorem 24. �

We can now prove Theorem 25 that will let us show Theorem 26:

Theorem 25: Let  L be a finite algebraic extension of IK provided with the abso-
lute value which expands that of IK. Suppose there exists a morphism of IK-algebra,
χ, from D(E) onto  L. Let D̂(E) be the  L-algebra of strictly differentiable functions
from E to  L. Then χ has continuation to a morphism of  L-algebra χ̂ from D̂(E)
to  L.

Proof. The proof is similar to the proof of Proposition 3.5 in [10]. Let t =
[ L : IK]. By the primitive element theorem, there exists a ∈  L such that  L = IK[a].

Let f, g ∈ D̂(E). Then f is of the form
t−1∑
j=0

ajfj , fj ∈ D(E), j = 0, . . . , d−1 and g

is of the form
t−1∑
j=0

ajgj , gj ∈ D(E), j = 0, ..., t− 1. By Theorem 24, all the fj and

the gj belong to D(E).

Now, we can define χ̂ on D̂(E) as χ̂(f) =
t−1∑
j=0

ajχ(fj). Then obviously, χ̂

is IK-linear. On the other hand, for each q ∈ IN, aq is of the form Pq(a) where
Pq ∈ IK[x], deg(Pq) ≤ t − 1. Then χ̂(aq) = χ̂(Pq(a)) = Pq(χ̂(a)) = Pq(a) = aq.
Next,

χ̂(fg) = χ̂
(

(
t−1∑
j=0

ajfj)(
t−1∑
j=0

ajgj)
)

= χ̂
( ∑

0≤m≤t−1
0≤n≤t−1

am+nfmgn

)



SPECTRUM OF ULTRAMETRIC BANACH ALGEBRAS... 17

=
∑

0≤m≤t−1
0≤n≤t−1

am+nχ(fm)χ(gn) = (
t−1∑
j=0

ajχ(fj))(
t−1∑
j=0

ajχ(gj)) = χ(f)χ(g).

That finishes the proof that χ is a  L-algebra morphism from D̂(E) to  L. �

Theorem 26: Every maximal ideal of finite codimension of D(E) is of codimen-
sion 1.

Proof. The proof follows from Theorem 3.7 in [10]. LetM be a maximal ideal

of finite codimension of D(E), let  L be the field
D(E)
M

and let χ be the canonical

surjective morphism from D(E) over  L. Since M is of finite codimension,  L is a
finite extension of IK and hence has a unique absolute value expanding that of IK.
Consequently,  L is complete for this absolute value. Let D̂(E) be the  L-algebra of
strictly differentiable functions from E to  L. By Theorem 25, χ has continuation
to a  L-algebra morphism χ̂ from D̂(E) to  L.

Let f ∈ D(E). Then χ(f) is an element b of  L and of course, f − b ∈ D̂(E).
Now, by Theorem 25, χ̂ is surjective on  L, hence Ker(χ̂) is a maximal ideal M̂
of D̂(E). Then by Theorem 11, there exists an ultrafilter U on E such that M̂
is the ideal of the g ∈ Â such that lim

U
g(x) = 0. So, we have lim

U
(f(x)− b) = 0,

therefore lim
U

(f(x)) = b. But since IK is complete, this proves that b belongs to IK

and therefore χ(D(E)) = IK i.e.  L = IK. �

By Theorem 26 and Corollary 12.1, we can state this corollary:

Corollary 26.1: Let U be an ultrafilter on E. The following 3 statements are
equivalent:

i) I(U) is of codimension 1,
ii) I(U) is of finite codimension,
iii) for every f ∈ D(E), the filter generated by f(U) converges in IK.

Corollary 26.2: Every maximal ideal of D(E) of finite codimension is of codi-
mension 1.

The following Theorem is almost classical [2], [3]:

Theorem 27: Suppose IK is not locally compact. There exists a sequence
(bn)n∈IN in IK such that either the sequence |bn− bn+1| is a strictly monotonous, of
limit r ∈]0,+∞[, or |bn − bm| is a constant whenever m 6= n ∈ IN.

Proof. Indeed, since IK is not locally compact, either the set |IK| = {|x| | x ∈
IK} is not discrete and hence is dense in [0,+∞[ or the residue field of IK is infinite.
If |IK| is dense in [0,+∞[, there exists a sequence (bn)n∈IN such that |bn − bn+1| is
strictly monotonous, of limit r ∈]0,+∞[. And if the residue field of IK is infinite,
then there exists sequences (bn)n∈IN such that |bn − bm| = c for every n 6= m. �
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Theorem 28: Suppose that IK is not locally compact and that E contains a
sequence (an)n∈IN such that |an − am| ≥ r > for all m 6= n. Let (bn)n∈IN be a
sequence of IK such that either the sequence |bn − bn+1| is a strictly monotonous,
of limit r ∈]0,+∞[, or |bn − bm| is a constant whenever m 6= n ∈ IN.

Then, there exists an ultrafilter U on E thinner than the sequence (an)n∈IN

and f ∈ D(E) such that the filter generated by f(U) is thinner than the sequence
(bn)n∈IN and does not converge.

Proof. By hypothesis, there exists λ > 0 such that |bm − bn| ≥ λ for all
m 6= n. Now, we can define a function f from E to IK as f(x) = bn for every
x ∈ dE(an, r−) and (for instance) f(x) = 0 for every x ∈ E \

(⋃
n∈IN dE(an, r−)

)
.

We can check that f belongs to D(E).
Now, let U be an ultrafilter on E thinner than the sequence (an)n∈IN. Then,

the filter W generated by f(U) on IK is thinner than the sequence (bn)n∈IN. Every
element X ofW contains several terms of the sequence (bn)n∈IN, for instance bm, bn
with m 6= n, hence diam(X) ≥ λ and therefore W does not converge. �

Theorem 29: The algebra D(E) admits maximal ideals of infinite codimension
if and only if IK is not locally compact.

Proof. If IK is locally compact, then by Theorem 12, every maximal ideal of
D(E) is of codimension 1.

Now, suppose that IK is not locally compact. By Theorem 27 there exists
a sequence (bn)n∈IN in IK such that either the sequence |bn − bn+1| is a strictly
monotonous, of limit r ∈]0,+∞[, or |bn − bm| is a constant whenever m 6= n ∈ IN.
So, by Theorem 28 in both cases there exists an ultrafilter U on E and f ∈ B
such that the filter generated by f(U) is thinner than the sequence (bn)n∈IN and
does not converge. Consequently, I(U) is a maximal ideal of D(E) of infinite
codimension. �

Notation: Given r ∈]0,+∞[, and a ∈ E, we denote by dE(a, r−) the ball of E
{x ∈ E : |x− a| < r} and we denote by card(E, r) the cardinal of the set of disks
dE(a, r−), a ∈ E. We denote by U the disk d(0, 1) of IK.

We can now add some precisions on maximal ideals of infinite codimension by
making certain hypotheses on E and IK.

Theorem 30: Suppose that we have card(E, r) ≤ card(U, r) for every r ∈]0, 1].
Let U be an ultrafilter on E. Either U is convergent and then I(U) is of codimension
1, or U is not convergent and then I(U) is of infinite codimension.

Proof. If U is convergent, by Corollary 12.1 I(U) is of codimension 1. Now,
suppose that U is not convergent. There exists ρ > 0 such that diam(X) ≥ ρ
for every X ∈ U . Let r ∈]0, ρ[. Consider the covering of E by the family of disks
(dE(ai, r−))i∈J that are pairwise disjoint. Since card(E, r) ≤ card(U, r), there
exists a covering of U by a family of disks (d(bj , r−)i∈I) pairwise disjoint, with an
injection θ from I to J . So, we have |bθ(i) − bθ(j)| ≤ r for every i 6= j.
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Consider now the function f from E to IK defined by f(x) = bθ(i) for every
x ∈ dE(ai, r−). Let X ∈ U . Since diam(X) ≤ r, there exists ai, aj ∈ X with
ai 6= aj and we have f(ai) = bi, f(aj) = bj , hence |f(ai)− f(aj)| ≥ r which shows
that f does not converge on U and therefore, by Corollary 26.1, I(U) is not of finite
codimension. �

Corollary 30.1: Suppose that E is separable and that IK is not locally compact.
Let U be a non-convergent ultrafilter on E. Then I(U) is of infinite codimension.

Remark 12: Particularly Theorem 30 applies when IK is algebraically closed
and E is separable.

Let us recall some results on the Shilov boundary of an ultrametric normed
algebra [6].

Given a norm of IK-algebra, we call Shilov boundary of T a closed subset S
of Mult(T, ‖ . ‖) that is minimum with respect to inclusion, such that, for every
x ∈ T , there exists φ ∈ S such that φ(x) = ‖x‖si.

Proposition G [3], [5] : Every normed IK-algebra admits a Shilov boundary.

Theorem 31: The Shilov boundary S of D(E) is equal to Mult(D(E), ‖ . ‖).

Proof. Henceforth we take ε ∈]0, 1
2 [. Suppose that the Shilov boundary S of

D(E) is not equal to Mult(D(E), ‖ . ‖) and let ψ ∈Mult(D(E), ‖ . ‖)\S. Since S is
a closed subset of Mult(D(E), ‖ . ‖), the set Mult(D(E), ‖ . ‖)\S is an open subset
of Mult(D(E), ‖ . ‖) and hence, there exist f1, ..., fq such that W (ψ, f1, ..., fq, ε) ⊂
(Mult(D(E), ‖ . ‖)\S). Let L = {x ∈ E | |ψ(fj)−|f(j(x)| |∞ ≤

ε

2
}. By Theorem 6,

L is uniformly open in E. Consequently, by Theorem 5 the characteristic function
u of L belongs to D(E) and obviously satisfies ψ(u) = 1. On the other hand, we
have u(x) = 0 for every x /∈ L.

Now, there exists θ ∈ S such that θ(u) = ‖u‖ = 1. Consider the neighborhood
W (θ, f1, ..., fq, u, ε2 ). Since MultE(D(E), ‖ . ‖) is dense in Mult(D(E), ‖ . ‖), we
can take ϕa ∈ W (θ, f1, ..., fq, u, ε2 ) we have | |u(a)| − θ(u)|∞ ≤ ε

2 , hence |u(a)| ≥
1− ε

2 > 0. But since θ ∈ S, we have W (θ, f1, ..., fq, ε2 )∩W (ψ, f1, ..., fq, ε2 ) = ∅ and
so much the more: W (θ, f1, ..., fq, u, ε2 ) ∩W (ψ, f1, ..., fq, u, ε2 ) = ∅. Let H = {a ∈
E | ϕa ∈ W (θ, f1, ..., fq, u, ε2 )}. Then H ∩ L = ∅. But by definition of u, we have
u(a) = 0 for every a ∈ H, a contradiction. �

Morphisms between algebras of strictly differentiable functions

Notations: Henceforth, we denote by E′ another open subset of IK and by D(E′)
the IK-algebra of strictly differentiable functions from E′ to IK whose norm is de-
noted by ‖ . ‖′. We denote by γ an injective strictly differentiable function from E′

to E and for every f ∈ D(E′), we set γ̃(f) = f ◦ γ.

Theorem 32: Let f ∈ D(E). Then f ◦ γ belongs to D(E′) and γ̃ is a morphism
from D(E) to D(E′) such that ‖γ̃(f) − γ̃(g)‖′ ≤ ‖f − g‖ for every f, g ∈ D(E).
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Moreover, if γ is a bijection from E′ onto E, then γ̃ is injective and particularly
and if γ−1 is also strictly differentiable, then γ̃ is an isometric isomorphism.

Proof. Let f ∈ D(E). Let us first show that γ̃(f) belongs to D(E)′. Set
h = f ◦ γ̃. Given u, v ∈ E′, u 6= v, since γ is injective, we can write

h(u)− h(v)
u− v

=
(f(γ(u))− f(γ(v))

γ(u)− γ(v)

)(γ(u)− γ(v)
u− v

)
.

By definition, the mapping φ from (E×E)\D to IK given by φ(x, y) =
f(x)− f(y)

x− y
is bounded and expands to a continuous function from E × E to IK. Similarly,
denoting by D′ the set {(u, u) |u ∈ E′}, γ is bounded in (E′×E′)\D′ and expands to
a continuous function from E′×E′ to IK. Consequently, h is bounded in (E′\E′)\D′
and expands to a continuous function from E′ × E′ to IK. Therefore h belongs to
D(E)′. It is then obvious that ‖γ̃(f) − γ̃(g)‖′ ≤ ‖f − g‖ for every f, g ∈ D(E).
Suppose now that γ is surjective. Let f, g ∈ D(E) be such that γ̃(f) = γ̃(g). Then
for all u ∈ E′, we have f(γ(u)) = g(γ(u)). But since γ is surjective, for each u ∈ E′,
there exists x ∈ E such that x = γ(u), hence f(u) = g(u) and hence f = g, which
shows that γ̃ is injective. Particularly, if γ−1 is also strictly differentiable, then γ̃
is an isomorphism from D(E) onto D(E′) such that ‖γ̃(f)− γ̃(g)‖′ = ‖f − g‖ for
every f, g ∈ D(E). �

Notation: Let H be a class of contiguity on Ul(E′). By Lemma M, we know
that two contiguous ultrafilters on E′ have images by γ that are also contiguous.
We denote by γ(H) the class of contiguity of the f(U), U ∈ H.

Theorem 33: Let ψ be a continuous morphism from D(E) to D(E′) and let M′
be a maximal ideal of D(E′). Then, ψ−1(M′) is a maximal ideal of D(E).

Proof. We know that ψ−1(M′) is a prime ideal of D(E). Since ψ is continuous
and sinceM′ is closed, ψ−1(M′) is closed, hence it is a closed prime ideal of D(E).
Then by Corollary 14.2, ψ−1(M′) is a maximal ideal of D(E). �

Corollary 33.1: For every class of contiguity H′ on E′, the maximal ideal M′ =
I(H′) satisfies (γ̃)−1(M′) = I(γ(H′)).

Theorem 34: γ is supposed to be a strictly differentiable bijection from E′ onto
E. Then γ defines a surjective mapping from the set of the classes of contiguity
on E′ onto the set classes of contiguity on E and (γ̃)−1 defines a surjection from
Max(D(E′)) onto Max(D(E)) as (γ̃)−1(I(H′)) = I(γ(H′)).

Proof. Let H′ be a class of contiguity on E′ and let M′ = I(H′). By
Lemma M γ(H′) is a class of contiguity on E, hence I(γ(H′)) is a maximal ideal
of D(E). And by Corollary 14.2 , γ̃−1(M′) is a maximal ideal of D(E), hence
γ̃−1(M′) is of the form I(H) where H is a class of contiguity of E. Consequently,
I(γ(H ′)) = I(H). But since the mapping I defines a bijection from the set
of classes of contiguity on E onto Max(D(E)), we have γ(H′) = H and hence
(γ̃)−1(M′) = I(γ(H′)). �
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Notation: Let (T, ‖ · ‖) be a IK-normed algebra and let ϕ ∈ Mult(T, ‖ · ‖). Let
f1, ..., fq ∈ T and let ε ∈]0,+∞[. We will denote by N (ϕ, f1, ..., fq, ε) the set
{φ ∈Mult(T, ‖ · ‖) | |ϕ(fk)− φ(fk)|∞ ≤ ε}.

Recall that given a class of contiguity H on E we denote by I(H) the maximal
ideal I(U), U ∈ H. Similarly, given a class of contiguity H′ on E′ we will denote
by I ′(H′) the maximal ideal I(U ′), U ′ ∈ H′.

Theorem 35: Let γ∗ be the mapping from Mult(D(E′), ‖ · ‖′) to Mult(D(E), ‖ ·
‖) defined by (γ∗(ϕ′))(f) = ϕ′(f ◦ γ), (f ∈ D(E)). Then γ∗ is continuous and
surjective.

Proof. By Corollary 19.1 the mapping that associates to each ϕ ∈Mult(D(E), ‖·
‖) the ideal Ker(ϕ) is a bijection from Mult(D(E), ‖ · ‖) onto Max(D(E)). Next,
given ϕ′ ∈Mult(D(E′), ‖·‖′), by Corollary 19.2 ϕ′ is defined by a class of contiguity
H′ on E′ such that

ϕ′(f ◦ γ) = lim
H′

f(γ(u)) = lim
γ(H′)

(f(x)).

Consequently, Ker(ϕ′) = I ′(H′) and Ker(γ∗(ϕ′)) = I(H).
Let us now show the continuity of γ∗. Consider again ϕ′ ∈Mult(D(E′), ‖ · ‖′)

and a neighborhood W = N (γ∗(ϕ′), f1, ..., fq, ε) of γ∗(ϕ′) in Mult(D(E), , ‖·‖) with
fj ∈ D(E), j = 1, ..., q. Set gk = fk ◦ γ, k = 1, ..., q and let V = N (ϕ′, f1, ..., fq, ε)
be a neighborhood of ϕ′ in Mult(D(E′), ‖ · ‖′). Then

W = {ψ ∈Mult(D(E), ‖ · ‖) | |ψ(fk)− (γ∗(ϕ′))(fk)|∞ ≤ ε, k = 1, ..., q}
and

= {φ ∈Mult(D(E′), ‖ · ‖′) | |φ(gk)− (ϕ′)(gk)|∞ ≤ ε, k = 1, ..., q}
= {φ ∈Mult(D(E′), ‖ · ‖′) | |φ(fk ◦ γ)− (ϕ′)(fk ◦ γ)|∞ ≤ ε, k = 1, ..., q}
= {φ ∈Mult(D(E′), ‖ · ‖′) | |(γ∗(φ))(fk)− (γ∗(ϕ′))(fk)|∞ ≤ ε, k = 1, ..., q}
= {φ ∈Mult(D(E′), ‖ · ‖′) | (γ∗(φ)) ∈W},
hence γ∗(V ) ⊂W . That shows the continuity of γ∗. �

Remark 13: We can derive the following interpretation: let ϕ′ ∈Mult(D(E′), ‖ ·
‖′) and let M′ = Ker(ϕ′). Then (γ̃)−1(M′) is a maximal ideal M of D(E) which
is the kernel of a unique ϕ ∈ Mult(D(E), ‖ · ‖). Consequently, ϕ is defined as
ϕ(f) = ϕ′(f ◦ γ) described by Theorem 34.
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[8] Escassut, A. and Mäınetti, N. About the Ultrametric Corona Problem Bulletin des Sciences
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