C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine et al., Deep spatial autoencoders for visuomotor learning, 2016.

S. Levine, C. Finn, T. Darrell, and P. Abbeel, End-to-end Training of Deep Visuomotor Policies, J. Mach. Learn. Res, 2016.

A. Ghadirzadeh, A. Maki, D. Kragic, and M. Björkman, Deep predictive policy training using reinforcement learning, IROS, 2017.

Y. Chebotar, K. Hausman, M. Zhang, G. S. Sukhatme, S. Schaal et al., Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning, ICML, 2017.

M. P. Deisenroth, C. E. Rasmussen, and D. Fox, Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning, Robotics: Science and Systems, 2011.

S. Gu, E. Holly, T. P. Lillicrap, and S. Levine, Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates, ICRA, 2017.

Y. Tsurumine, Y. Cui, E. Uchibe, and T. Matsubara, Deep dynamic policy programming for robot control with raw images, IROS, 2017.

S. Levine, N. Wagener, and P. Abbeel, Learning contact-rich manipulation skills with guided policy search, ICRA, 2015.

H. Hoffmann, W. Schenck, and R. Möller, Learning visuomotor transformations for gaze-control and grasping, Biological Cybernetics, 2005.

D. Carey, R. Coleman, and S. D. Salla, Magnetic Misreaching, Cortex, 2018.

K. Fischer, A Theory of Cognitive Development: The Control and Construction of Hierarchies of Skills, Psychological Review, 1980.

F. Nori, L. Natale, G. Sandini, and G. Metta, Autonomous learning of 3D reaching in a humanoid robot, IROS, 2007.

J. Law, P. Shaw, M. Lee, and M. Sheldon, From Saccades to Grasping: A Model of Coordinated Reaching Through Simulated Development on a Humanoid Robot, IEEE Trans. on Autonomous Mental Development, 2014.

E. Chinellato, M. Antonelli, B. J. Grzyb, and A. P. , Implicit Sensorimotor Mapping of the Peripersonal Space by Gazing and Reaching, IEEE Trans. on Autonomous Mental Development, 2011.

S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection, Int. J. of Rob. Res, 2017.
DOI : 10.1177/0278364917710318

URL : http://arxiv.org/pdf/1603.02199

A. Boularias, J. A. Bagnell, and A. T. Stentz, Learning to Manipulate Unknown Objects in Clutter by Reinforcement, 2015.

M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda, Purposive Behavior Acquisition for a Real Robot by Vision-Based Reinforcement Learning, Machine Learning, 1996.

C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, Reverse Curriculum Generation for Reinforcement Learning, 2017.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez et al., Continuous control with deep reinforcement learning, ICLR, 2016.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra et al., Deterministic Policy Gradient Algorithms, ICML, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00938992

V. Mnih, K. Kavukcuoglu, D. Silver, A. Andrei, J. Veness et al., Human-level control through deep reinforcement learning, Nature, 2015.
DOI : 10.1038/nature14236

M. J. Hausknecht and P. Stone, Deep Reinforcement Learning in Parameterized Action Space, ICLR, 2016.

F. De-la-bourdonnaye, C. Teulière, T. Chateau, and J. Triesch, Learning of binocular fixations using anomaly detection with deep reinforcement learning, IJCNN, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01635610

G. Metta and P. Fitzpatrick, Early Integration of Vision and Manipulation, Adaptive Behavior special issue on Epigenetic Robotics, 2003.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote et al., ROS: an open-source Robot Operating System, ICRA Workshop on Open Source Software, 2009.

A. Rajeswaran, K. Lowrey, E. V. Todorov, and S. M. Kakade, Towards Generalization and Simplicity in Continuous Control, Advances in NIPS, 2017.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long et al., Caffe: Convolutional Architecture for Fast Feature Embedding, 2014.

D. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, ICLR, 2015.