A method for electric field simulations and acceleration measurements for intraoperative test stimulation
Daniela Pison, Fabiola Alonso, Karin Wårdell, Ashesh Shah, Jerome Coste, Jean-Jacques Lemaire, Erik Schkommodau, Simone Hemm-Ode

To cite this version:
Daniela Pison, Fabiola Alonso, Karin Wårdell, Ashesh Shah, Jerome Coste, et al.. A method for electric field simulations and acceleration measurements for intraoperative test stimulation. 7th international IEEE EMBS Conference on Neural Engineering, Apr 2015, Montpellier, France. 7th international IEEE EMBS Conference on Neural Engineering, poster 485, 2015, IEEE/EMBS Conference on Neural Engineering (NER), 2015. hal-01866542

HAL Id: hal-01866542
https://hal.uca.fr/hal-01866542
Submitted on 5 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A METHOD FOR ELECTRIC FIELD SIMULATIONS AND ACCELERATION MEASUREMENT FOR INTRAOPERATIVE TEST SIMULATION IN DBS

D. Pison 1, F. Alonso 2, K. Wårdell 2, Member, IEEE, A. Shah 1, Member, IEEE, J. Coste 3, JJ. Lemaire 3, E. Schkommodou 1, Member, IEEE and S. Hemm-Ode 1, 2, Member, IEEE

1 Institute for Medical and Analytical Technologies, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
2 Department of Biomedical Engineering, Linköping University, Linköping, Sweden
3 CHU de Clermont-Ferrand, EA 7282, IGCNC, Université d’Auvergne, France, CHU de Clermont-Ferrand, France

Background
Despite an increasing use of deep brain stimulation (DBS) the fundamental mechanisms underlying therapeutic and adverse effects as well as the optimal stimulation site remain largely unknown. So far no group has considered simulations of electric entities for intraoperatively obtained test stimulation data to identify the stimulated volume around intraoperative DBS electrodes. The aim of the present paper is to introduce a method allowing patient-specific electric field simulations for stimulation amplitudes at different anatomical positions and taking into account the obtained clinical results objectively evaluated by acceleration measurements [1].

Methods

PATIENTS
- 2 patients with Essential tremor (ET)
- bilateral implantation of DBS electrodes in the VIM (University Hospital in Clermont-Ferrand, France (Clinical study 2011-A00774-37 / AU905))

SURGICAL PROTOCOL
- Preoperative anatomical planning: manual outlining of VIM and its anatomic neighbors (Fig. 1) using iPlan (Brainlab, Feldkirchen, Germany) and choice of target and trajectory
- Intraoperative microelectrode recording (MER) and test stimulations
 - in 22 (patient 1) and 28 positions (patient 2) (4 traj. per patient)
 - clinically evaluated using 3-axis accelerometer (Shah, 2013)

DATA ANALYSIS
- Extraction of the statistical parameters
- Determination of the objective clinical improvement [%] for each stimulation amplitude
- Choice of the stimulation amplitudes for simulations

E-field simulation
- Input: patient specific T1 MRI dataset, target coordinates, stimulation position and amplitude
- Output: Electrical-field isosurface for 0.2V/mm (Åström, 2009)

Results
- 115 electric field simulations performed for the eight trajectories
- Data can be visualized in 3D and together with the anatomical images (Fig. 3)
- E-field maps show that not always best intraoperative clinical results can be observed in the VIM but in the surrounding regions (Fig. 4)
- The visual representation for all performed simulations (Fig.4) of the structures and structure combinations touched by the isoelectrical field and in relation to the corresponding clinical improvement shows:
 - VO and VCM often appear together with the VIM
 - In several cases, FF or PLR are touched by the isoelectrical field when the improvement is higher
 - LaCM and VCL especially appear for lower improvements

Discussion
- Workflow and methodology for electrical field simulations on manually outlined anatomical structures have been designed and successfully applied to two patients.
- First results seem to confirm published data hypothesizing that the stimulation of other structures than the VIM might at least partially be responsible for good clinical effects: Vassal et al. (Vassal, 2012) already suggested that parts of the ventro-oral nucleus (VO) could be appropriate targets as well.
- New concept including a detailed analysis of the isofield maps will allow the analysis of a high amount of intraoperative data which might help to elucidate the mechanism of action of DBS.
- New successful methodology for the interpretation of multiple patients’ intraoperative data in relation to the anatomical structures and the objective clinical improvements.

References