A. Guenther, The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geoscientific Model Development, vol.5, issue.6, pp.1471-1492, 2012.
DOI : 10.1029/2005JD006696

J. Lelieveld, Atmospheric oxidation capacity sustained by a tropical forest, Nature, vol.104, issue.7188, pp.737-740, 2008.
DOI : 10.1021/jp048873t

W. Chameides, R. Lindsay, J. Richardson, and C. Kiang, The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study, Science, vol.241, issue.4872, pp.1473-1475, 1988.
DOI : 10.1126/science.3420404

M. Claeys, Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene, Science, vol.303, issue.5661, pp.1173-1176, 2004.
DOI : 10.1126/science.1092805

F. Paulot, Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene, Science, vol.276, issue.5315, pp.730-733, 2009.
DOI : 10.1126/science.276.5315.1052

URL : https://authors.library.caltech.edu/15078/2/1.pdf

J. Surratt, Reactive intermediates revealed in secondary organic aerosol formation from isoprene, Proceedings of the National Academy of Sciences, vol.103, issue.15, pp.6640-6645, 2010.
DOI : 10.1029/98JD00320

URL : http://www.pnas.org/content/107/15/6640.full.pdf

T. Karl, The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia, Journal of Geophysical Research, vol.93, issue.D2, p.18302, 2007.
DOI : 10.1007/978-94-009-3027-8

U. Kuhn, Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget, Atmospheric Chemistry and Physics, vol.7, issue.11, pp.2855-2879, 2007.
DOI : 10.5194/acp-7-2855-2007

URL : https://hal.archives-ouvertes.fr/hal-00296243

M. Jenkin, J. Young, and A. Rickard, The MCM v3.3.1 degradation scheme for isoprene, Atmospheric Chemistry and Physics, vol.15, issue.20, pp.11433-11459, 2015.
DOI : 10.5194/acp-15-11433-2015-supplement

URL : https://hal.archives-ouvertes.fr/hal-00295497

J. Crounse, F. Paulot, H. Kjaergaard, and P. Wennberg, Peroxy radical isomerization in the oxidation of isoprene, Physical Chemistry Chemical Physics, vol.114, issue.12, pp.13607-13613, 2011.
DOI : 10.1021/jp104828a

URL : https://authors.library.caltech.edu/24329/1/Crounse2011p14390Physical_chemistry_chemical_physics_PCCP.pdf

Y. Liu, I. Herdlinger-blatt, K. Mckinney, and S. Martin, Production of methyl vinyl ketone and methacrolein via the hydroperoxyl pathway of isoprene oxidation, Atmospheric Chemistry and Physics, vol.13, issue.11, pp.5715-5730, 2013.
DOI : 10.5194/acp-13-5715-2013-supplement

Q. Chen, Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08), Atmospheric Chemistry and Physics, vol.15, issue.7, pp.3687-3701, 2015.
DOI : 10.5194/acp-15-3687-2015-supplement

URL : http://doi.org/10.5194/acp-15-3687-2015

J. Rivera-rios, Conversion of hydroperoxides to carbonyls in field and laboratory instrumentation: Observational bias in diagnosing pristine versus anthropogenically controlled atmospheric chemistry, Geophysical Research Letters, vol.47, issue.20, pp.8645-8651, 2014.
DOI : 10.1021/es4011064

M. Jenkin, A. Boyd, and R. Lesclaux, Peroxy radical kinetics resulting from the OH-initiated oxidation of 1,3-butadiene, 2,3-dimethyl-1,3-butadiene and isoprene, Journal of Atmospheric Chemistry, vol.29, issue.3, pp.267-298, 1998.
DOI : 10.1023/A:1005940332441

J. Peeters, J. Müller, T. Stavrakou, and V. Nguyen, Hydroxyl Radical Recycling in Isoprene Oxidation Driven by Hydrogen Bonding and Hydrogen Tunneling: The Upgraded LIM1 Mechanism, The Journal of Physical Chemistry A, vol.118, issue.38, pp.8625-8643, 2014.
DOI : 10.1021/jp5033146

URL : https://lirias.kuleuven.be/bitstream/123456789/465935/1/LIM1_JPC_just-accepted_11-7-2014.pdf

H. Fuchs, Detection of HO<sub>2</sub> by laser-induced fluorescence: calibration and interferences from RO<sub>2</sub> radicals, Atmospheric Measurement Techniques, vol.4, issue.6, pp.1209-1225, 2011.
DOI : 10.1021/jp048096x

J. Hoell, Airborne intercomparison of nitric oxide measurement techniques, Journal of Geophysical Research, vol.90, issue.D2, pp.1995-2008, 1987.
DOI : 10.1029/JD090iD07p12875

C. Hewitt, Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools, Atmospheric Chemistry and Physics, vol.10, issue.1, pp.169-199, 2010.
DOI : 10.5194/acp-10-169-2010

P. Wennberg, Let's abandon the " high NO x " and " low NO x " terminology, IGAC News, vol.50, pp.3-4, 2013.

A. Perring, S. Pusede, and R. Cohen, An Observational Perspective on the Atmospheric Impacts of Alkyl and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol, Chemical Reviews, vol.113, issue.8, pp.5848-5870, 2013.
DOI : 10.1021/cr300520x

J. De-gouw and C. Warneke, Measurements of volatile organic compounds in the earth's atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrometry Reviews, vol.38, issue.224, pp.223-257, 2007.
DOI : 10.1029/2003GL017933

T. Karl, Rapid formation of isoprene photo-oxidation products observed in Amazonia, Atmospheric Chemistry and Physics, vol.9, issue.20, pp.7753-7767, 2009.
DOI : 10.5194/acp-9-7753-2009

URL : https://doi.org/10.5194/acpd-9-13629-2009

D. Worton, Observational Insights into Aerosol Formation from Isoprene, Environmental Science & Technology, vol.47, issue.20, pp.11403-11413, 2013.
DOI : 10.1021/es4011064

URL : http://nature.berkeley.edu/ahg/pubs/Worton%20ES%26T%202013%20es4011064.pdf

F. Xiong, Observation of isoprene hydroxynitrates in the southeastern United States and implications for the fate of NO<sub><i>x</i></sub>, Atmospheric Chemistry and Physics, vol.15, issue.19, pp.11257-11272, 2015.
DOI : 10.5194/acp-15-11257-2015-supplement

S. Martin, Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5), Atmospheric Chemistry and Physics, vol.16, issue.8, pp.4785-4797, 2016.
DOI : 10.5194/acp-16-4785-2016-supplement

T. Nguyen, Rapid deposition of oxidized biogenic compounds to a temperate forest, Proceedings of the National Academy of Sciences, vol.5, issue.1, pp.392-401, 2015.
DOI : 10.1029/2000JD900746

URL : http://www.pnas.org/content/112/5/E392.full.pdf

T. Karl, Airborne Flux Measurements of BVOCs above Californian Oak Forests: Experimental Investigation of Surface and Entrainment Fluxes, OH Densities, and Damk??hler Numbers, Journal of the Atmospheric Sciences, vol.70, issue.10, pp.3277-3287, 2013.
DOI : 10.1175/JAS-D-13-054.1

URL : http://nature.berkeley.edu/ahg/pubs/Karl%20et%20al%202013%20JAS.pdf

Q. Chen, Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin, Geophysical Research Letters, vol.39, issue.D24, p.20806, 2009.
DOI : 10.1029/2009GL039880

S. Martin, Sources and properties of Amazonian aerosol particles, Reviews of Geophysics, vol.93, issue.D20, p.2002, 2010.
DOI : 10.1080/10473289.2002.10470813

URL : http://onlinelibrary.wiley.com/doi/10.1029/2008RG000280/pdf

T. Nguyen, Overview of the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds, Atmospheric Chemistry and Physics, vol.14, issue.24, pp.13531-13549, 2014.
DOI : 10.1021/es4011064

P. Bakwin, S. Wofsy, and S. Fan, ) within and above a tropical forest canopy in the wet season, Journal of Geophysical Research, vol.16, issue.D10, pp.16765-16772, 1990.
DOI : 10.1016/0004-6981(82)90399-7

L. Valin, A. Russell, and R. Cohen, column measurements, Geophysical Research Letters, vol.4, issue.9, pp.1856-1860, 2013.
DOI : 10.5194/amt-4-1929-2011

S. Kim, Evaluation of HO<sub>x</sub> sources and cycling using measurement-constrained model calculations in a 2-methyl-3-butene-2-ol (MBO) and monoterpene (MT) dominated ecosystem, Atmospheric Chemistry and Physics, vol.13, issue.4, pp.2031-2044, 2013.
DOI : 10.1039/c2cp40388a

J. Vilà-guerau-de-arellano, K. Van-den-dries, and D. Pino, On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements, Atmospheric Chemistry and Physics, vol.9, issue.11, pp.3629-3640, 2009.
DOI : 10.5194/acp-9-3629-2009

S. Clair and J. , Kinetics and Products of the Reaction of the First-Generation Isoprene Hydroxy Hydroperoxide (ISOPOOH) with OH, The Journal of Physical Chemistry A, vol.120, issue.9, pp.1441-1451, 2016.
DOI : 10.1021/acs.jpca.5b06532

A. Torres and H. Buchan, Tropospheric nitric oxide measurements over the Amazon Basin, Journal of Geophysical Research, vol.93, issue.D2, pp.1396-1406, 1988.
DOI : 10.1029/JD093iD02p01407

J. Levine, Isoprene chemistry in pristine and polluted Amazon environments: Eulerian and Lagrangian model frameworks and the strong bearing they have on our understanding of surface ozone and predictions of rainforest exposure to this priority pollutant, Atmospheric Chemistry and Physics Discussions, vol.15, issue.17, pp.24251-24310, 2015.
DOI : 10.5194/acpd-15-24251-2015-supplement

U. Pöschl, Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon, Science, vol.452, issue.7188, pp.1513-1516, 2010.
DOI : 10.1038/nature06870

A. Ito, S. Sillman, and J. Penner, Effects of additional nonmethane volatile organic compounds, organic nitrates, and direct emissions of oxygenated organic species on global tropospheric chemistry, Journal of Geophysical Research, vol.24, issue.4, p.6309, 2007.
DOI : 10.1021/jp971908n

URL : http://onlinelibrary.wiley.com/doi/10.1029/2005JD006556/pdf

P. Bakwin, Emission of nitric oxide (NO) from tropical forest soils and exchange of NO between the forest canopy and atmospheric boundary layers, Journal of Geophysical Research, vol.92, issue.D10, pp.16755-16764, 1990.
DOI : 10.1029/JD092iD02p02173

L. Verchot, Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia, Global Biogeochemical Cycles, vol.100, issue.1, pp.31-46, 1999.
DOI : 10.1029/95JD00370

URL : http://onlinelibrary.wiley.com/doi/10.1029/1998GB900019/pdf

D. Garcia-montiel, Controls on soil nitrogen oxide emissions from forest and pastures in the Brazilian Amazon, Global Biogeochemical Cycles, vol.17, issue.suppl. 1, pp.1021-1030, 2001.
DOI : 10.1146/annurev.es.17.110186.001033

URL : http://onlinelibrary.wiley.com/doi/10.1029/2000GB001349/pdf

W. Kaplan, S. Wofsy, M. Keller, D. Costa, and J. , in a tropical forest system, Journal of Geophysical Research, vol.93, issue.D2, pp.1389-1395, 1988.
DOI : 10.1029/JD093iD02p01407

C. Hewitt, Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution, Proceedings of the National Academy of Sciences, vol.51, issue.3, pp.18447-18451, 2009.
DOI : 10.1111/j.1365-313X.2007.03157.x

L. Ganzeveld, emissions and the role of canopy processes, Journal of Geophysical Research, vol.100, issue.D16, p.4298, 2002.
DOI : 10.1029/95JD00370

D. Jacob and S. Wofsy, Photochemistry of biogenic emissions over the Amazon forest, Journal of Geophysical Research, vol.93, issue.D2, pp.1477-1486, 1988.
DOI : 10.1029/JD093iD02p01407

URL : https://dash.harvard.edu/bitstream/handle/1/14121764/Photochemistry%20of%20biogenic%20emissions%20over%20the%20Amazon%20forest.pdf?sequence=1

E. Davidson, The Amazon basin in transition, Nature, vol.21, issue.7381, pp.321-328, 2012.
DOI : 10.1111/j.1529-8817.2003.00774.x

R. Pike, NO<sub>x</sub> and O<sub>3</sub> above a tropical rainforest: an analysis with a global and box model, Atmospheric Chemistry and Physics, vol.10, issue.21, pp.10607-10620, 2010.
DOI : 10.5194/acp-10-10607-2010-supplement

S. Martin, Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5), Atmospheric Chemistry and Physics Discussions, vol.15, issue.21, pp.30175-30210, 2015.
DOI : 10.5194/acpd-15-30175-2015-supplement

A. Guenther, Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmospheric Chemistry and Physics, vol.6, issue.11, pp.3181-3210, 2006.
DOI : 10.5194/acp-6-3181-2006

URL : https://hal.archives-ouvertes.fr/hal-00295995

A. Jordan, An online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+SRI???MS), International Journal of Mass Spectrometry, vol.286, issue.1, pp.32-38, 2009.
DOI : 10.1016/j.ijms.2009.06.006

Y. Liu, I. Herdlinger-blatt, K. Mckinney, and S. Martin, Production of methyl vinyl ketone and methacrolein via the hydroperoxyl pathway of isoprene oxidation, Atmospheric Chemistry and Physics, vol.13, issue.11, pp.5715-5730, 2013.
DOI : 10.5194/acp-13-5715-2013-supplement

T. Nguyen, Overview of the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds, Atmospheric Chemistry and Physics, vol.14, issue.24, pp.13531-13549, 2014.
DOI : 10.1021/es4011064

A. Wisthaler, N. Jensen, R. Winterhalter, W. Lindinger, and J. Hjorth, Measurements of acetone and other gas phase product yields from the OH-initiated oxidation of terpenes by proton-transfer-reaction mass spectrometry (PTR-MS), Atmospheric Environment, vol.35, issue.35, pp.356181-6191, 2001.
DOI : 10.1016/S1352-2310(01)00385-5

J. Rivera-rios, Conversion of hydroperoxides to carbonyls in field and laboratory instrumentation: Observational bias in diagnosing pristine versus anthropogenically controlled atmospheric chemistry, Geophysical Research Letters, vol.47, issue.20, pp.418645-8651, 2014.
DOI : 10.1021/es4011064

Y. Liu, Pathway, Environmental Science & Technology, vol.49, issue.1, pp.250-258, 2015.
DOI : 10.1021/es5034298

URL : https://hal.archives-ouvertes.fr/hal-01518006

M. Jenkin, J. Young, and A. Rickard, The MCM v3.3.1 degradation scheme for isoprene, Atmospheric Chemistry and Physics, vol.15, issue.20, pp.11433-11459, 2015.
DOI : 10.5194/acp-15-11433-2015-supplement

URL : https://hal.archives-ouvertes.fr/hal-00295497

. St and J. Clair, Kinetics and products of the reaction of the first-generation isoprene hydroxy hydroperoxide (ISOPOOH) with OH, J. Phys. Chem. A, vol.120, issue.9, pp.1441-1451, 2016.

I. Bey, Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research: Atmospheres, vol.37, issue.D19, pp.23073-23095, 2001.
DOI : 10.1023/A:1006415919030

URL : http://onlinelibrary.wiley.com/doi/10.1029/2001JD000807/pdf

J. Mao, Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry, Journal of Geophysical Research: Atmospheres, vol.45, issue.37, pp.11256-11268, 2013.
DOI : 10.1016/j.atmosenv.2011.07.054

URL : http://onlinelibrary.wiley.com/doi/10.1002/jgrd.50817/pdf

T. Nguyen, Rapid deposition of oxidized biogenic compounds to a temperate forest, Proceedings of the National Academy of Sciences, vol.5, issue.1, pp.392-401, 2015.
DOI : 10.1029/2000JD900746

URL : http://www.pnas.org/content/112/5/E392.full.pdf

K. Bates, Gas Phase Production and Loss of Isoprene Epoxydiols, The Journal of Physical Chemistry A, vol.118, issue.7, pp.1237-1246, 2014.
DOI : 10.1021/jp4107958

URL : https://authors.library.caltech.edu/43756/7/jp4107958_si_001.pdf

E. Praske, The Journal of Physical Chemistry A, vol.119, issue.19, pp.4562-4572, 2015.
DOI : 10.1021/jp5107058

K. Bates, Dihydroxycarbonyl Compounds from Isoprene Oxidation, The Journal of Physical Chemistry A, vol.120, issue.1, pp.106-117, 2016.
DOI : 10.1021/acs.jpca.5b10335

URL : https://authors.library.caltech.edu/63562/2/jp5b10335_si_001.pdf

S. Kim, Evaluation of HO<sub>x</sub> sources and cycling using measurement-constrained model calculations in a 2-methyl-3-butene-2-ol (MBO) and monoterpene (MT) dominated ecosystem, Atmospheric Chemistry and Physics, vol.13, issue.4, pp.2031-204416851, 1990.
DOI : 10.1039/c2cp40388a

M. Jenkin, S. Saunders, and M. Pilling, The tropospheric degradation of volatile organic compounds: a protocol for mechanism development, Atmospheric Environment, vol.31, issue.1, pp.81-104, 1997.
DOI : 10.1016/S1352-2310(96)00105-7

URL : https://hal.archives-ouvertes.fr/hal-00300962

S. Saunders, M. Jenkin, R. Derwent, and M. Pilling, Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmospheric Chemistry and Physics, vol.3, issue.1, pp.161-180, 2003.
DOI : 10.5194/acp-3-161-2003

URL : https://hal.archives-ouvertes.fr/hal-00300962

J. Lelieveld, Atmospheric oxidation capacity sustained by a tropical forest, Nature, vol.104, issue.7188, pp.737-740, 2008.
DOI : 10.1021/jp048873t

H. Fuchs, Detection of HO<sub>2</sub> by laser-induced fluorescence: calibration and interferences from RO<sub>2</sub> radicals, Atmospheric Measurement Techniques, vol.4, issue.6, pp.1209-1225, 2011.
DOI : 10.1021/jp048096x

C. Hewitt, Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools, Atmospheric Chemistry and Physics, vol.10, issue.1, pp.169-199, 2010.
DOI : 10.5194/acp-10-169-2010

Z. Fleming, Peroxy radical chemistry and the control of ozone photochemistry at Mace Head, Ireland during the summer of 2002, Atmospheric Chemistry and Physics, vol.6, issue.8, pp.2193-2214, 2006.
DOI : 10.5194/acp-6-2193-2006

URL : https://hal.archives-ouvertes.fr/hal-00295945

D. Barket and . Jr, dependence of isoprene oxidation, Journal of Geophysical Research, vol.103, issue.D12, p.11310, 2004.
DOI : 10.1029/98JD00074

P. Bakwin, Emission of nitric oxide (NO) from tropical forest soils and exchange of NO between the forest canopy and atmospheric boundary layers, Journal of Geophysical Research, vol.92, issue.D10, pp.16755-16764, 1990.
DOI : 10.1029/JD092iD02p02173

L. Verchot, Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia, Global Biogeochemical Cycles, vol.100, issue.1, pp.31-46, 1999.
DOI : 10.1029/95JD00370

D. Garcia-montiel, Controls on soil nitrogen oxide emissions from forest and pastures in the Brazilian Amazon, Global Biogeochemical Cycles, vol.17, issue.suppl. 1, pp.1021-1030, 2001.
DOI : 10.1146/annurev.es.17.110186.001033

W. Kaplan, S. Wofsy, M. Keller, and J. Da-costa, in a tropical forest system, Journal of Geophysical Research, vol.93, issue.D2, pp.1389-1395, 1988.
DOI : 10.1029/JD093iD02p01407

L. Ganzeveld, Global soil-biogenic NOx emissions and the role of canopy processes, D16):ACH 9, 2002.

D. Jacob and P. Bakwin, Cycling of NOx in tropical forest canopies. Microbioal production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes, pp.237-253, 1991.

R. Hudman, Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints, Atmospheric Chemistry and Physics, vol.12, issue.16, pp.7779-7795, 2012.
DOI : 10.5194/acp-12-7779-2012

R. Atkinson, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II &ndash; gas phase reactions of organic species, Atmospheric Chemistry and Physics, vol.6, issue.11, pp.3625-4055, 2006.
DOI : 10.5194/acp-6-3625-2006

J. Vilà-guerau-de-arellano, K. Van-den-dries, and D. Pino, On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements, Atmospheric Chemistry and Physics, vol.9, issue.11, pp.3629-3640, 2009.
DOI : 10.5194/acp-9-3629-2009

U. Kuhn, Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget, Atmospheric Chemistry and Physics, vol.7, issue.11, pp.2855-2879, 2007.
DOI : 10.5194/acp-7-2855-2007

URL : https://hal.archives-ouvertes.fr/hal-00296243

T. Karl, The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia, Journal of Geophysical Research, vol.93, issue.D2, p.18302, 2007.
DOI : 10.1007/978-94-009-3027-8

J. Peeters, J. Müller, T. Stavrakou, and V. Nguyen, Hydroxyl Radical Recycling in Isoprene Oxidation Driven by Hydrogen Bonding and Hydrogen Tunneling: The Upgraded LIM1 Mechanism, The Journal of Physical Chemistry A, vol.118, issue.38, pp.8625-8643, 2014.
DOI : 10.1021/jp5033146

URL : https://lirias.kuleuven.be/bitstream/123456789/465935/1/LIM1_JPC_just-accepted_11-7-2014.pdf