A. C. Aiken, D. Salcedo, M. J. Cubison, J. A. Huffman, P. F. Decarlo et al., Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) ? Part 1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys, vol.95194, pp.6633-6653, 2009.
DOI : 10.5194/acpd-9-8377-2009

URL : https://doi.org/10.5194/acpd-9-8377-2009

K. E. Altieri, S. P. Seitzinger, A. G. Carlton, B. J. Turpin, G. C. Klein et al., Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry, Atmospheric Environment, vol.42, issue.7, pp.1476-1490, 2008.
DOI : 10.1016/j.atmosenv.2007.11.015

R. Atkinson and J. Arey, Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review, Atmospheric Environment, vol.37, issue.03, pp.197-219, 2003.
DOI : 10.1016/S1352-2310(03)00391-1

A. P. Bateman, Z. Gong, P. Liu, B. Sato, G. Cirino et al., Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest, Nature Geoscience, vol.9, issue.1, pp.34-37, 2015.
DOI : 10.5194/acp-6-471-2006

E. A. Bruns, I. Haddad, A. Keller, F. Klein, N. K. Kumar et al., Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition, Atmospheric Measurement Techniques, vol.8, issue.6, pp.2315-2332, 2015.
DOI : 10.5194/amt-8-2315-2015-supplement

URL : https://doi.org/10.5194/amtd-8-309-2015

S. H. Budisulistiorini, X. Li, S. T. Bairai, J. Renfro, Y. Liu et al., and Surratt, J. D.: Examining the effects of anthropogenic emissions on isoprenederived secondary organic aerosol formation during the 2013

S. Oxidant and A. Study, SOAS) at the Look Rock, Tennessee ground site, Atmos. Chem. Phys, vol.155194, issue.10, pp.8871-8888, 2015.

M. R. Canagaratna, J. T. Jayne, J. L. Jimenez, J. D. Allan, M. R. Alfarra et al., Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass Spectrometry Reviews, vol.5, issue.187, pp.185-222, 2007.
DOI : 10.1080/10473289.2002.10470813

F. Canonaco, M. Crippa, J. G. Slowik, U. Baltensperger, and A. S. Prévôt, SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmospheric Measurement Techniques, vol.6, issue.12, pp.3649-3661, 2013.
DOI : 10.5194/amt-6-3649-2013-supplement

C. D. Cappa, D. L. Che, S. H. Kessler, J. H. Kroll, W. et al., Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation, Journal of Geophysical Research, vol.34, issue.20, 2011.
DOI : 10.1029/2007GL029979

A. W. Chan, N. M. Kreisberg, T. Hohaus, P. Campuzano-jost, Y. Zhao et al., Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS, Atmos. Chem. Phys, vol.16105194, pp.1187-1205, 1187.

Q. Chen, D. K. Farmer, J. Schneider, S. R. Zorn, C. L. Heald et al., Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin, Geophysical Research Letters, vol.39, issue.D24, p.20806, 2009.
DOI : 10.1029/2009GL039880

Q. Chen, Y. L. Li, K. A. Mckinney, M. Kuwata, M. et al., Particle mass yield from <i>&beta;</i>-caryophyllene ozonolysis, Atmospheric Chemistry and Physics Discussions, vol.11, issue.11, pp.3165-3179, 2012.
DOI : 10.5194/acpd-11-30527-2011-supplement

Q. Chen, D. K. Farmer, L. V. Rizzo, T. Pauliquevis, M. Kuwata et al., Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08), Atmospheric Chemistry and Physics, vol.15, issue.7, pp.3687-3701, 2015.
DOI : 10.5194/acp-15-3687-2015-supplement

E. S. Cross, J. F. Hunter, A. J. Carrasquillo, J. P. Franklin, S. C. Herndon et al., Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft, Atmos. Chem. Phys, vol.135194, issue.10, pp.7845-7858, 2013.

J. G. Crump and J. H. Seinfeld, Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape, Journal of Aerosol Science, vol.12, issue.5, pp.405-4150021, 1981.
DOI : 10.1016/0021-8502(81)90036-7

J. A. De-gouw, A. M. Middlebrook, C. Warneke, P. D. Goldan, W. C. Kuster et al., Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002, Journal of Geophysical Research, vol.56, issue.D10, p.16305, 2002.
DOI : 10.1080/02786820119445

S. S. De-sá, B. B. Palm, P. Campuzano-jost, D. A. Day, W. W. Hu et al., L., and Martin, S. T.: Urban influence on the concentration and composition of submicron particulate matter in central Amazonia, 2017.

S. S. De-sá, B. B. Palm, P. Campuzano-jost, D. A. Day, M. K. Newburn et al., Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia, pp.6611-6629, 2017.

P. F. Decarlo, J. R. Kimmel, A. Trimborn, M. J. Northway, J. T. Jayne et al., Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer, Analytical Chemistry, vol.78, issue.24, pp.8281-8289, 2006.
DOI : 10.1021/ac061249n

N. M. Donahue, W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop et al., Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set, Environmental Chemistry, vol.10, issue.3, p.151, 2013.
DOI : 10.1071/EN13022

URL : http://www.publish.csiro.au/en/pdf/EN13022

K. Dzepina, R. M. Volkamer, S. Madronich, P. Tulet, I. M. Ulbrich et al., Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City, Atmospheric Chemistry and Physics, vol.9, issue.15, pp.5681-5709, 2009.
DOI : 10.5194/acp-9-5681-2009-supplement

URL : https://hal.archives-ouvertes.fr/hal-00961621

N. C. Eddingsaas, D. G. Vandervelde, and P. O. Wennberg, Kinetics and Products of the Acid-Catalyzed Ring-Opening of Atmospherically Relevant Butyl Epoxy Alcohols, The Journal of Physical Chemistry A, vol.114, issue.31, pp.8106-8113, 2010.
DOI : 10.1021/jp103907c

P. M. Edwards, M. J. Evans, K. L. Furneaux, J. Hopkins, T. Ingham et al., OH reactivity in a South East Asian tropical rainforest during the Oxidant and Particle Photochemical Processes (OP3) project, OH reactivity in a South East Asian tropical rainforest during the Oxidant and Particle Photochemical Processes (OP3) project, pp.9497-9514, 2013.
DOI : 10.5194/acp-11-77-2011

URL : https://doi.org/10.5194/acpd-13-5233-2013

M. Ehn, J. A. Thornton, E. Kleist, M. Sipilä, H. Junninen et al., A large source of low-volatility secondary organic aerosol, Nature, vol.214, issue.7489, pp.476-479, 2014.
DOI : 10.5194/acp-10-2063-2010

K. D. Froyd, S. M. Murphy, D. M. Murphy, J. A. De-gouw, N. C. Eddingsaas et al., Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass, Proceedings of the National Academy of Sciences, vol.105, issue.12, pp.21360-21365, 2010.
DOI : 10.1029/2000JD900389

URL : http://www.pnas.org/content/107/50/21360.full.pdf

I. J. George and J. P. Abbatt, Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals, Nature Chemistry, vol.7, issue.9, pp.713-722, 2010.
DOI : 10.1021/jp0512513

I. J. George, R. Y. Chang, V. Danov, A. Vlasenko, and J. P. Abbatt, Modification of cloud condensation nucleus activity of organic aerosols by hydroxyl radical heterogeneous oxidation, Atmospheric Environment, vol.43, issue.32, pp.5038-5045, 2009.
DOI : 10.1016/j.atmosenv.2009.06.043

A. H. Goldstein and I. E. Galbally, Known and Unexplored Organic Constituents in the Earth's Atmosphere, Environmental Science & Technology, vol.41, issue.5, pp.1514-1521, 2007.
DOI : 10.1021/es072476p

URL : http://pubs.acs.org/doi/pdf/10.1021/es072476p

D. Gu, A. B. Guenther, J. E. Shilling, H. Yu, M. Huang et al., Airborne observations reveal elevational gradient in tropical forest isoprene emissions, Nature Communications, vol.8, p.15541, 2017.
DOI : 10.5194/gmd-9-1959-2016

URL : http://www.nature.com/articles/ncomms15541.pdf

D. K. Henze and J. H. Seinfeld, Global secondary organic aerosol from isoprene oxidation, Geophysical Research Letters, vol.3, issue.19, p.9812, 2006.
DOI : 10.1029/2006GL025976

A. Hodzic, J. L. Jimenez, S. Madronich, M. R. Canagaratna, P. F. De-carlo et al., Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary orwww .atmos-chem-phys.net, Atmos. Chem. Phys, vol.467, issue.18, pp.467-493, 2018.

B. B. Palm, SOA formation from ambient air in an oxidation flow reactor ganic aerosol formation, Atmos. Chem. Phys, vol.10, pp.5491-5514, 2010.
DOI : 10.5194/acp-2017-795

URL : https://doi.org/10.5194/acp-2017-795

W. Hu, B. B. Palm, D. A. Day, P. Campuzano-jost, J. E. Krechmer et al., Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiolsderived secondary organic aerosol (IEPOX-SOA), Atmos. Chem. Phys, vol.165194, pp.11563-11580, 2016.
DOI : 10.5194/acp-16-11563-2016

URL : http://doi.org/10.5194/acp-16-11563-2016

W. W. Hu, P. Campuzano-jost, B. B. Palm, D. A. Day, A. M. Ortega et al., Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements, Atmos. Chem. Phys, vol.155194, pp.11807-11833, 2015.
DOI : 10.5194/acpd-15-11223-2015

URL : https://doi.org/10.5194/acpd-15-11223-2015

J. F. Hunter, D. A. Day, B. B. Palm, R. L. Yatavelli, A. W. Chan et al., Comprehensive characterization of atmospheric organic carbon at a forested site, Nature Geoscience, vol.47, issue.10, pp.748-753, 2017.
DOI : 10.1080/02786826.2013.791022

T. F. Stocker, D. Qin, G. Plattner, M. Tignor, S. K. Allen et al., Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC: IPCC 2013, 2013.

G. Isaacman, N. M. Kreisberg, L. D. Yee, D. R. Worton, A. W. Chan et al., Online derivatization for hourly measurements of gas-and particlephase semi-volatile oxygenated organic compounds by thermal desorption aerosol gas chromatography, Atmos. Meas. Tech, vol.75194, issue.10, pp.4417-4429, 2014.
DOI : 10.5194/amt-7-4417-2014

URL : http://doi.org/10.5194/amt-7-4417-2014

M. Jaoui, S. Leungsakul, and R. M. Kamens, Gas and Particle Products Distribution from the Reaction of ?- Caryophyllene with Ozone, Journal of Atmospheric Chemistry, vol.45, issue.3, pp.261-2871024263430285, 2003.
DOI : 10.1023/A:1024263430285

M. Jaoui, T. E. Kleindienst, K. S. Docherty, M. Lewandowski, and J. H. Offenberg, Secondary organic aerosol formation from the oxidation of a series of sesquiterpenes: ??-cedrene, ??-caryophyllene, ??-humulene and ??-farnesene with O3, OH and NO3 radicals, Environmental Chemistry, vol.10, issue.3, p.178, 2013.
DOI : 10.1071/EN13025

A. B. Jardine, K. J. Jardine, J. D. Fuentes, S. T. Martin, G. Martins et al., Highly reactive light-dependent monoterpenes in the Amazon, Geophysical Research Letters, vol.14, issue.1, pp.1576-1583, 2015.
DOI : 10.5194/acpd-14-12591-2014

S. H. Jathar, S. C. Farina, A. L. Robinson, A. , and P. J. , The influence of semi-volatile and reactive primary emissions on the abundance and properties of global organic aerosol, Atmos . Chem. Phys, vol.115194, issue.10, pp.7727-7746, 2011.

J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. Prevot, Q. Zhang et al., Evolution of Organic Aerosols in the Atmosphere, Evolution of Organic Aerosols in the Atmosphere, pp.1525-1529, 2009.
DOI : 10.1016/1352-2310(94)90094-9

A. Jordan, S. Haidacher, G. Hanel, E. Hartungen, L. Märk et al., A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS), International Journal of Mass Spectrometry, vol.286, issue.2-3, pp.122-128, 2009.
DOI : 10.1016/j.ijms.2009.07.005

A. Jordan, S. Haidacher, G. Hanel, E. Hartungen, J. Herbig et al., An online ultra-high sensitivity Proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+SRI???MS), International Journal of Mass Spectrometry, vol.286, issue.1, pp.32-38, 2009.
DOI : 10.1016/j.ijms.2009.06.006

E. Kang, M. J. Root, D. W. Toohey, and W. H. Brune, Introducing the concept of, Potential Aerosol Mass (PAM) Atmos. Chem. Phys, vol.7105194, pp.5727-5744, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00302957

I. Kourtchev, R. H. Godoi, S. Connors, J. G. Levine, A. T. Archibald et al., Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study, Atmos. Chem. Phys, vol.16105194, pp.11899-11913, 2016.

J. E. Krechmer, M. M. Coggon, P. Massoli, T. B. Nguyen, J. D. Crounse et al., Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation, Environmental Science & Technology, vol.49, issue.17, pp.10330-10339, 2015.
DOI : 10.1021/acs.est.5b02031

M. Kuwata, Q. Chen, M. , and S. T. , Cloud condensation nuclei (CCN) activity and oxygen-to-carbon elemental ratios following thermodenuder treatment of organic particles grown by ??-pinene ozonolysis, Physical Chemistry Chemical Physics, vol.35, issue.32, 2011.
DOI : 10.1021/es010790s

Y. S. La, M. Camredon, P. J. Ziemann, R. Valorso, A. Matsunaga et al., Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation, Atmos . Chem. Phys, vol.165194, issue.10, pp.1417-1431, 1417.

A. T. Lambe and J. L. Jimenez, PAM Wiki, available at: https:// sites.google.com/site, 2017.

A. T. Lambe, A. T. Ahern, L. R. Williams, J. G. Slowik, J. P. Wong et al., Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements, Atmospheric Measurement Techniques, vol.4, issue.3, pp.445-461, 2011.
DOI : 10.5194/amt-4-445-2011

A. T. Lambe, T. B. Onasch, P. Massoli, D. R. Croasdale, J. P. Wright et al., Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA), Atmos. Chem. Phys, vol.115194, issue.10, pp.8913-8928, 2011.

A. T. Lambe, T. B. Onasch, D. R. Croasdale, J. P. Wright, A. T. Martin et al., Transitions from Functionalization to Fragmentation Reactions of Laboratory Secondary Organic Aerosol (SOA) Generated from the OH Oxidation of Alkane Precursors, Environmental Science & Technology, vol.46, issue.10, pp.5430-5437, 2012.
DOI : 10.1021/es300274t

A. T. Lambe, P. S. Chhabra, T. B. Onasch, W. H. Brune, J. F. Hunter et al., Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield, Atmospheric Chemistry and Physics, vol.15, issue.6, pp.3063-3075, 2015.
DOI : 10.1029/2011GL049385

T. E. Lane, N. M. Donahue, and S. N. Pandis, on Secondary Organic Aerosol Concentrations, Environmental Science & Technology, vol.42, issue.16, pp.6022-6027, 2008.
DOI : 10.1021/es703225a

T. E. Lane, N. M. Donahue, and S. N. Pandis, Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model, Atmospheric Environment, vol.42, issue.32, pp.7439-7451, 2008.
DOI : 10.1016/j.atmosenv.2008.06.026

R. Li, B. B. Palm, A. M. Ortega, J. Hlywiak, W. Hu et al., Modeling the Radical Chemistry in an Oxidation Flow Reactor: Radical Formation and Recycling, Sensitivities, and the OH Exposure Estimation Equation, The Journal of Physical Chemistry A, vol.119, issue.19, pp.4418-4432, 2015.
DOI : 10.1021/jp509534k

J. Liao, K. D. Froyd, D. M. Murphy, F. N. Keutsch, G. Yu et al., Airborne measurements of organosulfates over the continental U.S., Journal of Geophysical Research: Atmospheres, vol.40, issue.9, pp.2990-3005, 2015.
DOI : 10.1029/2012GL054428

Y. B. Lim, Y. Tan, M. J. Perri, S. P. Seitzinger, and B. J. Turpin, Aqueous chemistry and its role in secondary organic aerosol (SOA) formation, Atmos. Chem. Phys, vol.105194, issue.10, pp.10521-10539, 2010.

Y. Lin, Z. Zhang, K. S. Docherty, H. Zhang, S. H. Budisulistiorini et al., Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds, Environmental Science & Technology, vol.46, issue.1, pp.250-258, 2012.
DOI : 10.1021/es202554c

W. Lindinger, A. Hansel, J. , and A. , On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research, International Journal of Mass Spectrometry and Ion Processes, vol.173, issue.3, pp.191-241, 1998.
DOI : 10.1016/S0168-1176(97)00281-4

Y. Liu, J. Brito, M. R. Dorris, J. C. Rivera-rios, R. Seco et al., Isoprene photochemistry over the Amazon rainforest, P. Natl. Acad. Sci, pp.6125-6130, 2016.

J. Mao, X. Ren, W. H. Brune, J. R. Olson, J. H. Crawford et al., Airborne measurement of OH reactivity during INTEX-B, Atmospheric Chemistry and Physics, vol.9, issue.1, pp.163-173, 2009.
DOI : 10.5194/acp-9-163-2009

S. T. Martin, M. O. Andreae, P. Artaxo, D. Baumgardner, Q. Chen et al., Sources and properties of Amazonian aerosol particles, Reviews of Geophysics, vol.93, issue.D20, p.2002, 2010.
DOI : 10.1080/10473289.2002.10470813

S. T. Martin, P. Artaxo, L. A. Machado, A. O. Manzi, R. A. Souza et al., Introduction: Observations and Modeling of the Green Ocean Amazon, Atmos. Chem. Phys, vol.16105194, pp.4785-4797, 2016.

S. T. Martin, P. Artaxo, L. Machado, A. O. Manzi, R. A. Souza et al., The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest, The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest, B. Am, pp.981-997, 2017.
DOI : 10.1175/BAMS-D-15-00221.2

URL : https://hal.archives-ouvertes.fr/hal-01836097

P. Massoli, A. T. Lambe, A. T. Ahern, L. R. Williams, M. Ehn et al., Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles, Geophys. Res. Lett, vol.37, p.24801, 2010.

A. Matsunaga and P. J. Ziemann, Gas-Wall Partitioning of Organic Compounds in a Teflon Film Chamber and Potential Effects on Reaction Product and Aerosol Yield Measurements, Aerosol Science and Technology, vol.18, issue.10, pp.881-892, 2010.
DOI : 10.1002/app.1980.070250822

P. H. Mcmurry and D. J. Rader, Aerosol Wall Losses in Electrically Charged Chambers, Aerosol Science and Technology, vol.4, issue.3, pp.249-268, 1985.
DOI : 10.1016/0004-6981(83)90091-4

F. Mei, A. Setyan, Q. Zhang, W. , and J. , CCN activity of organic aerosols observed downwind of urban emissions during CARES, Atmospheric Chemistry and Physics, vol.13, issue.24, pp.12155-12169, 2013.
DOI : 10.5194/acp-13-12155-2013-supplement

A. M. Middlebrook, R. Bahreini, J. L. Jimenez, and M. R. Canagaratna, Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data, Aerosol Science and Technology, vol.54, issue.3, pp.258-271, 2011.
DOI : 10.1080/02786820490479833

M. A. Miracolo, C. J. Hennigan, M. Ranjan, N. T. Nguyen, T. D. Gordon et al., Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber, Atmos . Chem. Phys, vol.115194, issue.10, pp.4135-4147, 2011.

P. K. Misztal, C. N. Hewitt, J. Wildt, J. D. Blande, A. S. Eller et al., Atmospheric benzenoid emissions from plants rival those from fossil fuels, Sci. Rep, p.12064, 2015.

M. Müller, T. Mikoviny, W. Jud, B. D-'anna, and A. Wisthaler, A new software tool for the analysis of high resolution PTR-TOF mass spectra, Chemometrics and Intelligent Laboratory Systems, vol.127, pp.158-165, 2013.
DOI : 10.1016/j.chemolab.2013.06.011

T. Nah, R. C. Mcvay, X. Zhang, C. M. Boyd, J. H. Seinfeld et al., Influence of Seed Aerosol Surface Area and Oxidation Rate on Vapor-Wall Deposition and SOA Mass Yields: A case study with &alpha;-pinene Ozonolysis, Atmospheric Chemistry and Physics Discussions, vol.16, pp.9361-9379, 2016.
DOI : 10.5194/acp-2016-269-RC2

N. L. Ng, J. H. Kroll, M. D. Keywood, R. Bahreini, V. Varutbangkul et al., Contribution of First- versus Second-Generation Products to Secondary Organic Aerosols Formed in the Oxidation of Biogenic Hydrocarbons, Environmental Science & Technology, vol.40, issue.7, pp.2283-2297, 2006.
DOI : 10.1021/es052269u

N. L. Ng, S. C. Herndon, A. Trimborn, M. R. Canagaratna, P. L. Croteau et al., An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol, Aerosol Science and Technology, vol.56, issue.7, pp.780-794, 2011.
DOI : 10.1029/2007GL029979

A. M. Ortega, D. A. Day, M. J. Cubison, W. H. Brune, D. Bon et al., Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3, Atmospheric Chemistry and Physics, vol.13, issue.22, pp.11551-11571, 2013.
DOI : 10.5194/acp-13-11551-2013-supplement

A. M. Ortega, P. L. Hayes, Z. Peng, B. B. Palm, W. Hu et al., Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area, Atmospheric Chemistry and Physics, vol.16, issue.11, pp.7411-7433, 2016.
DOI : 10.5194/acp-16-7411-2016-supplement

D. Pagonis, J. E. Krechmer, J. De-gouw, J. L. Jimenez, and P. J. Ziemann, Effects of gas???wall partitioning in Teflon tubing and instrumentation on time-resolved measurements of gas-phase organic compounds, Atmospheric Measurement Techniques, vol.10, issue.12, pp.4687-4696, 2017.
DOI : 10.5194/amt-10-4687-2017-supplement

B. B. Palm, P. Campuzano-jost, A. M. Ortega, D. A. Day, L. Kaser et al., In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor, Atmospheric Chemistry and Physics, vol.16, issue.5, pp.2943-2970, 2016.
DOI : 10.5194/acp-16-2943-2016-supplement

URL : https://doi.org/10.5194/acpd-15-30409-2015

B. B. Palm, P. Campuzano-jost, D. A. Day, A. M. Ortega, J. L. Fry et al., Secondary organic aerosol formation from in situ OH, O 3 , and NO 3 oxidation of ambient forest air in an oxidation flow reactor, Atmos. Chem. Phys, vol.175194, issue.10, pp.5331-5354, 2017.

D. D. Parrish, A. Stohl, C. Forster, E. L. Atlas, D. R. Blake et al., Effects of mixing on evolution of hydrocarbon ratios in the troposphere, Journal of Geophysical Research: Atmospheres, vol.109, issue.D2, pp.1-17, 2007.
DOI : 10.1029/2003JD004424

R. Pathak, N. M. Donahue, and S. N. Pandis, Ozonolysis of ??-Pinene: Temperature Dependence of Secondary Organic Aerosol Mass Fraction, Environmental Science & Technology, vol.42, issue.14, pp.5081-5086, 2008.
DOI : 10.1021/es070721z

R. K. Pathak, A. A. Presto, T. E. Lane, C. O. Stanier, N. M. Donahue et al., Ozonolysis of ?-pinene: parameterization of secondary organic aerosol mass fraction, Atmos. Chem. Phys, vol.75194, issue.10, pp.3811-3821, 2007.
DOI : 10.5194/acp-7-3811-2007

URL : https://hal.archives-ouvertes.fr/hal-00296294

J. Peng, M. Hu, S. Guo, Z. Du, J. Zheng et al., Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments, P. Natl. Acad

. Sci, , pp.4266-4271, 2016.

Z. Peng, D. A. Day, H. Stark, R. Li, J. Lee-taylor et al., HO<sub><i>x</i></sub> radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling, Atmospheric Measurement Techniques Discussions, vol.8, issue.4, pp.4863-4890, 2015.
DOI : 10.5194/amtd-8-3883-2015-supplement

Z. Peng, D. A. Day, A. M. Ortega, B. B. Palm, W. Hu et al., Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling, Atmos . Chem. Phys, vol.165194, issue.10, pp.4283-4305, 2016.

M. D. Petters and S. M. Kreidenweis, A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys, vol.7105194, pp.1961-1971, 1961.
URL : https://hal.archives-ouvertes.fr/hal-00302098

M. D. Petters, A. J. Prenni, S. M. Kreidenweis, P. J. Demott, A. Matsunaga et al., Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol, Geophysical Research Letters, vol.5, issue.D19, 2006.
DOI : 10.1063/1.882420

M. D. Petters, S. M. Kreidenweis, J. R. Snider, K. A. Koehler, Q. Wang et al., Cloud droplet activation of polymerized organic aerosol, Tellus B: Chemical and Physical Meteorology, vol.204, issue.3, pp.196-205, 2006.
DOI : 10.1029/2000JD000203

J. R. Pierce, G. J. Engelhart, L. Hildebrandt, E. A. Weitkamp, R. K. Pathak et al., Constraining Particle Evolution from Wall Losses, Coagulation, and Condensation-Evaporation in Smog-Chamber Experiments: Optimal Estimation Based on Size Distribution Measurements, Aerosol Science and Technology, vol.42, issue.12, pp.1001-1015, 2008.
DOI : 10.1021/es070193r

S. M. Platt, I. Haddad, A. A. Zardini, M. Clairotte, C. Astorga et al., Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber, Atmospheric Chemistry and Physics, vol.13, issue.18, pp.9141-9158, 2013.
DOI : 10.5194/acp-13-9141-2013-supplement

URL : https://hal.archives-ouvertes.fr/hal-01456525

C. A. Pope and D. W. Dockery, Health Effects of Fine Particulate Air Pollution: Lines that Connect, Journal of the Air & Waste Management Association, vol.56, issue.6, pp.709-742, 2006.
DOI : 10.1016/B978-012352335-8/50111-3

U. Pöschl, S. T. Martin, B. Sinha, Q. Chen, S. S. Gunthe et al., Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon, Science, vol.452, issue.7188, pp.1513-1516, 2010.
DOI : 10.1038/nature06870

M. Pósfai, Atmospheric tar balls: Particles from biomass and biofuel burning, Journal of Geophysical Research: Atmospheres, vol.108, issue.D13, 2004.
DOI : 10.1029/2002JD002322

A. A. Presto, N. T. Nguyen, M. Ranjan, A. J. Reeder, E. M. Lipsky et al., Fine particle and organic vapor emissions from staged tests of an in-use aircraft engine, Atmospheric Environment, vol.45, issue.21, pp.3603-3612, 2011.
DOI : 10.1016/j.atmosenv.2011.03.061

H. J. Rinne, A. B. Guenther, J. P. Greenberg, H. , and P. C. , Isoprene and monoterpene fluxes measured above Amazonian rainforest and their dependence on light and temperature, Atmospheric Environment, vol.36, issue.14, pp.2421-2426, 2002.
DOI : 10.1016/S1352-2310(01)00523-4

A. L. Robinson, N. M. Donahue, M. K. Shrivastava, E. A. Weitkamp, A. M. Sage et al., Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging, Science, vol.39, issue.15, pp.315-1259, 2007.
DOI : 10.1021/es048061a

N. H. Robinson, H. M. Newton, J. D. Allan, M. Irwin, J. F. Hamilton et al., Source attribution of Bornean air masses by back trajectory analysis during the OP3 project, Atmospheric Chemistry and Physics, vol.11, issue.18, pp.9605-9630, 2011.
DOI : 10.5194/acp-11-9605-2011-supplement

URL : https://doi.org/10.5194/acpd-11-15157-2011

J. E. Shilling, Q. Chen, S. M. King, T. Rosenoern, J. H. Kroll et al., Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of ??-pinene, Atmospheric Chemistry and Physics, vol.8, issue.7, pp.2073-2088, 2008.
DOI : 10.5194/acp-8-2073-2008-supplement

URL : https://hal.archives-ouvertes.fr/hal-00296522

V. Sinha, J. Williams, J. N. Crowley, and J. Lelieveld, The Comparative Reactivity Method ? a new tool to measure total OH Reactivity in ambient air, Atmos. Chem. Phys, vol.8105194, pp.2213-2227, 2008.
DOI : 10.5194/acpd-7-18179-2007

URL : https://hal.archives-ouvertes.fr/hal-00303218

Y. L. Sun, Q. Zhang, C. Anastasio, and J. Sun, Insights into secondary organic aerosol formed via aqueous-phase reactions of phenolic compounds based on high resolution mass spectrometry, Atmospheric Chemistry and Physics, vol.10, issue.10, pp.4809-4822, 2010.
DOI : 10.5194/acp-10-4809-2010-supplement

URL : https://doi.org/10.5194/acpd-10-2915-2010

J. D. Surratt, A. W. Chan, N. C. Eddingsaas, M. Chan, C. L. Loza et al., Reactive intermediates revealed in secondary organic aerosol formation from isoprene, Proceedings of the National Academy of Sciences, vol.103, issue.15, pp.6640-6645, 2010.
DOI : 10.1029/98JD00320

URL : http://www.pnas.org/content/107/15/6640.full.pdf

Y. Tan, A. G. Carlton, S. P. Seitzinger, and B. J. Turpin, SOA from methylglyoxal in clouds and wet aerosols: Measurement and prediction of key products, Atmospheric Environment, vol.44, issue.39, pp.5218-5226, 2010.
DOI : 10.1016/j.atmosenv.2010.08.045

Y. Tan, Y. B. Lim, K. E. Altieri, S. P. Seitzinger, and B. J. Turpin, Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal, Atmospheric Chemistry and Physics, vol.12, issue.2, pp.801-813, 2012.
DOI : 10.5194/acp-12-801-2012-supplement

URL : http://doi.org/10.5194/acp-12-801-2012

A. Tasoglou and S. N. Pandis, Formation and chemical aging of secondary organic aerosol during the ??-caryophyllene oxidation, Atmospheric Chemistry and Physics, vol.15, issue.11, pp.6035-6046, 2015.
DOI : 10.1029/2006JD007436

URL : https://doi.org/10.5194/acpd-14-28919-2014

R. Thalman, S. S. De-sá, B. B. Palm, H. M. Barbosa, M. L. Pöhlker et al., Atmos. Chem. Phys, vol.467, issue.18, pp.467-493, 2018.

B. B. Palm, SOA formation from ambient air in an oxidation flow reactor

J. Wang, CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions
URL : https://hal.archives-ouvertes.fr/hal-01836083

, Chem. Phys, vol.175194, pp.11779-11801, 2017.

K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo et al., The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys, vol.145194, pp.10845-10895, 2014.

A. P. Tsimpidi, V. A. Karydis, M. Zavala, W. Lei, L. Molina et al., Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area, Atmos. Chem. Phys, vol.105194, issue.10, pp.525-546, 2010.

I. M. Ulbrich, M. R. Canagaratna, Q. Zhang, D. R. Worsnop, and J. L. Jimenez, Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos . Chem. Phys, vol.95194, issue.10, pp.2891-2918, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00303447

T. M. Vanreken, N. L. Ng, R. C. Flagan, J. H. Seinfeld, F. Drewnick et al., Cloud condensation nucleus activation properties of biogenic secondary organic aerosol Particle Loss Calculator ? a new software tool for the assessment of the performance of aerosol inlet systems, J. Geophys. Res. Atmos. Meas. Tech, vol.110105194, issue.210, pp.479-494, 1029.

B. J. Williams, A. H. Goldstein, N. M. Kreisberg, and S. V. Hering, C/MS-FID (TAG), Aerosol Science and Technology, vol.46, issue.8, pp.627-638, 2006.
DOI : 10.1021/es048568l

J. Williams, S. U. Keßel, A. C. Nölscher, Y. Yang, Y. Lee et al., Opposite OH reactivity and ozone cycles in the Amazon rainforest and megacity Beijing: Subversion of biospheric oxidant control by anthropogenic emissions, Atmospheric Environment, vol.125, pp.112-118, 2016.
DOI : 10.1016/j.atmosenv.2015.11.007

R. Winterhalter, F. Herrmann, B. Kanawati, T. L. Nguyen, J. Peeters et al., The gasphase ozonolysis of ?-caryophyllene (C 15 H 24 ). Part I: an experimental study, Phys. Chem. Chem. Phys, vol.11, issue.4152, 2009.

M. C. Woody, J. J. West, S. H. Jathar, A. L. Robinson, and S. Arunachalam, Estimates of non-traditional secondary organic aerosols from aircraft SVOC and IVOC emissions using CMAQ, Atmospheric Chemistry and Physics, vol.15, issue.12, pp.6929-6942, 2015.
DOI : 10.5194/acp-15-6929-2015-supplement

W. Xu, S. Guo, M. Gomez-hernandez, M. L. Zamora, J. Secrest et al., Cloud forming potential of oligomers relevant to secondary organic aerosols, Geophysical Research Letters, vol.40, issue.24, pp.6538-6545, 2014.
DOI : 10.1021/es060610k

L. D. Yee, G. Isaacman-vanwertz, R. A. Wernis, M. Meng, V. Rivera et al., Observations of Sesquiterpenes and their Oxidation Products During GoAmazon2014, 2017.

Q. Zhang, J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe et al., Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophysical Research Letters, vol.39, issue.52, 2007.
DOI : 10.1021/es048568l

Q. Zhang, J. L. Jimenez, M. R. Canagaratna, I. M. Ulbrich, N. L. Ng et al., Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review, Analytical and Bioanalytical Chemistry, vol.37, issue.6, pp.3045-67, 2011.
DOI : 10.1029/2010GL043337

X. Zhang, C. D. Cappa, S. H. Jathar, R. C. Mcvay, J. J. Ensberg et al., Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol, Proceedings of the National Academy of Sciences, vol.9, issue.29, pp.5802-5807, 2014.
DOI : 10.5194/acp-9-3049-2009

D. F. Zhao, M. Kaminski, P. Schlag, H. Fuchs, I. Acir et al., Secondary organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes, Atmospheric Chemistry and Physics, vol.15, issue.2, pp.991-1012, 2015.
DOI : 10.5194/acp-15-991-2015-supplement

Y. Zhao, N. M. Kreisberg, D. R. Worton, A. P. Teng, S. V. Hering et al., Thermal Desorption Gas Chromatography Instrument for Quantifying Atmospheric Semi-Volatile Organic Compounds, Aerosol Science and Technology, vol.47, issue.3, pp.258-266, 2013.
DOI : 10.1073/pnas.0911858107

Y. Zhao, C. J. Hennigan, A. A. May, D. S. Tkacik, J. A. De-gouw et al., Intermediate-Volatility Organic Compounds: A Large Source of Secondary Organic Aerosol, Environmental Science & Technology, vol.48, issue.23, pp.13743-13750, 2014.
DOI : 10.1021/es5035188

S. Zhou, S. Collier, D. A. Jaffe, N. L. Briggs, J. Hee et al., Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol, Atmos. Chem. Phys, vol.175194, issue.10, pp.2477-2493, 2017.

P. J. Ziemann and R. Atkinson, Kinetics, products, and mechanisms of secondary organic aerosol formation, Chemical Society Reviews, vol.40, issue.19, pp.467-493, 2018.
DOI : 10.1021/es052203z