S. T. Keating and A. El-osta, Epigenetics and metabolism, Circ. Res, vol.116, pp.715-736, 2015.

M. Tan, Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification, Cell, vol.146, pp.1016-1028, 2011.

Y. Chen, Lysine propionylation and butyrylation are novel posttranslational modifications in histones, Mol. Cell. Proteom, vol.6, pp.812-819, 2007.

A. Goudarzi, Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters, Mol. Cell, vol.62, pp.169-180, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01341099

Z. Xie, Metabolic regulation of gene expression by histone lysine ?hydroxybutyrylation, Mol. Cell, vol.62, pp.194-206, 2016.

B. R. Sabari, Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation, Mol. Cell, vol.58, pp.203-215, 2015.

B. R. Sabari, D. Zhang, C. D. Allis, and Y. Zhao, Metabolic regulation of gene expression through histone acylations, Nat. Rev. Mol. Cell. Biol, vol.18, pp.90-101, 2016.

H. Lin, X. Su, and B. He, Protein lysine acylation and cysteine succination by intermediates of energy metabolism, ACS Chem. Biol, vol.7, pp.947-960, 2012.

D. Zhao, YEATS2 is a selective histone crotonylation reader, Cell Res, vol.26, pp.629-632, 2016.

Y. Li, Molecular coupling of histone crotonylation and active transcription by AF9 YEATS domain, Mol. Cell, vol.62, pp.181-193, 2016.

X. Xiong, Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2, Nat. Chem. Biol, vol.12, pp.1111-1118, 2016.

F. H. Andrews, The Taf14 YEATS domain is a reader of histone crotonylation, Nat. Chem. Biol, vol.12, pp.396-398, 2016.

M. Kasubuchi, S. Hasegawa, T. Hiramatsu, A. Ichimura, and I. Kimura, Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation, Nutrients, vol.7, pp.2839-2849, 2015.

A. Koh, F. De-vadder, P. Kovatcheva-datchary, and F. Bäckhed, From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites, Cell, vol.165, pp.1332-1345, 2016.

D. R. Donohoe, The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon, Cell Metab, vol.13, pp.517-526, 2011.

K. A. Krautkramer, Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues, Mol. Cell, vol.64, pp.982-992, 2016.

E. P. Candido, R. Reeves, and J. R. Davie, Sodium butyrate inhibits histone deacetylation in cultured cells, Cell, vol.14, pp.105-113, 1978.

S. Balasubramanian, E. Verner, and J. J. Buggy, Isoform-specific histone deacetylase inhibitors: the next step?, Cancer Lett, vol.280, pp.211-221, 2009.

A. Taddei, C. Maison, D. Roche, and G. Almouzni, Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases, Nat. Cell Biol, vol.3, pp.114-120, 2001.

D. Wegener, F. Wirsching, D. Riester, and A. Schwienhorst, A fluorogenic histone deacetylase assay well suited for high-throughput activity screening, Chem. Biol, vol.10, pp.61-68, 2003.

F. Halley, A bioluminogenic HDAC activity assay, J. Biomol. Screen, vol.16, pp.1227-1235, 2011.

L. M. Henkes, P. Haus, F. Jäger, J. Ludwig, and F. Meyer-almes, dodecafluoro-N-hydroxyoctanediamides as inhibitors of human histone deacetylases, Bioorg. Med. Chem, vol.20, pp.985-995, 2012.

K. Hoffmann, G. Brosch, P. Loidl, and M. Jung, A non-isotopic assay for histone deacetylase activity, Nucleic Acids Res, vol.27, pp.2057-2058, 1999.

B. E. Schultz, Kinetics and comparative reactivity of human class I and class IIb histone deacetylases, Biochemistry, vol.43, pp.11083-11091, 2004.

R. M. Stilling, The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis?, Neurochem. Int, vol.99, pp.110-132, 2016.

R. E. Sobel, R. G. Cook, C. A. Perry, A. T. Annunziato, and C. D. Allis, Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4, Proc. Natl Acad. Sci. USA, vol.92, pp.1237-1241, 1995.

Z. Jasencakova, Replication stress interferes with histone recycling and predeposition marking of new histones, Mol. Cell, vol.37, pp.736-743, 2010.

A. T. Annunziato, Assembling chromatin: the long and winding road, Biochim. Biophys. Acta, vol.1819, pp.196-210, 2012.

A. Taddei, D. Roche, J. B. Sibarita, B. M. Turner, and G. Almouzni, Duplication and maintenance of heterochromatin domains, J. Cell Biol, vol.147, pp.1153-1166, 1999.

S. Bhaskara, Hdac3 Is essential for the maintenance of chromatin structure and genome stability, Cancer Cell, vol.18, pp.436-447, 2010.

S. Bhaskara, Histone deacetylases 1 and 2 maintain S-phase chromatin and DNA replication fork progression, Epigenetics Chromatin, vol.6, p.27, 2013.

O. H. Krämer, The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2, EMBO J, vol.22, pp.3411-3420, 2003.

P. Zhu, Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis, Cancer Cell, vol.5, pp.455-463, 2004.

H. Ashktorab, Global histone H4 acetylation and HDAC2 expression in colon adenoma and carcinoma, Dig. Dis. Sci, vol.54, pp.2109-2117, 2009.

W. Wei, Class I histone deacetylases are major histone decrotonylases: evidence for critical and broad function of histone crotonylation in transcription, Cell Res, vol.27, pp.898-915, 2017.

A. S. Madsen and C. A. Olsen, Profiling of substrates for zinc-dependent lysine deacylase enzymes: HDAC3 exhibits decrotonylase activity in vitro, Angew. Chem. Int. Ed. Engl, vol.51, pp.9083-9087, 2012.

W. Xu, Global profiling of crotonylation on non-histone proteins, Cell Res, vol.27, pp.946-949, 2017.

E. Ceccacci and S. Minucci, Inhibition of histone deacetylases in cancer therapy: lessons from leukaemia, Br. J. Cancer, vol.114, pp.605-611, 2016.

Y. Li and E. Seto, HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb, Perspect. Med, vol.6, 2016.

M. Barman, Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract, Infect. Immun, vol.76, pp.907-915, 2008.

E. Mendes, Prophylactic supplementation of Bifidobacterium longum 51A protects mice from ovariectomy-induced exacerbated allergic airway inflammation and airway hyperresponsiveness, Front. Microbiol, vol.8, p.1732, 2017.

M. Soldi, A. Cuomo, and T. Bonaldi, Improved bottom-up strategy to efficiently separate hypermodified histone peptides through ultra-HPLC separation on a bench top Orbitrap instrument, Proteomics, vol.14, pp.2212-2225, 2014.

A. Cuomo, M. Soldi, and T. Bonaldi, SILAC-based quantitative strategies for accurate histone posttranslational modification profiling across multiple biological samples, Methods Mol. Biol, vol.1528, pp.97-119, 2017.

J. Rappsilber, Y. Ishihama, and M. Mann, Stop and go extraction tips for matrixassisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics, Anal. Chem, vol.75, pp.663-670, 2003.

A. Cuomo, S. Moretti, S. Minucci, and T. Bonaldi, SILAC-based proteomic analysis to dissect the "histone modification signature" of human breast cancer cells, Amino Acids, vol.41, pp.387-399, 2011.

S. Tyanova, T. Temu, and J. Cox, The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat. Protoc, vol.11, pp.2301-2319, 2016.

S. Tyanova, Visualization of LC-MS/MS proteomics data in MaxQuant, Proteomics, vol.15, pp.1453-1456, 2015.

H. R. Jung, D. Pasini, K. Helin, and O. N. Jensen, Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36, Mol. Cell. Proteom, vol.9, pp.838-850, 2010.

S. Tyanova, The Perseus computational platform for comprehensive analysis of (prote)omics data, Nat. Methods, vol.13, pp.731-740, 2016.

L. Tou, Q. Liu, and R. A. Shivdasani, Regulation of mammalian epithelial differentiation and intestine development by class I histone deacetylases, Mol. Cell. Biol, vol.24, pp.3132-3139, 2004.

T. Sato and H. Clevers, Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications, Science, vol.340, pp.1190-1194, 2013.

Y. Ohbo, M. City-university, ;. M. Nakamura, S. B. , Z. H. et al., This work was funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC), the UK Medical Research Council through project grant MR/N009398/1 to P, Tokyo Medical and Dental University, for hosting him for 2 months in 2012 in Japan, during which time the idea for this work was conceived, pp.10653-10662, 2012.

P. V. , -. , T. B. , M. A. , J. D. et al., conceived the research and designed the experiments. A.C. and T.B. performed mass spectrometry analysis

P. , performed ChIPseq in colon epithelium

A. L. , RNA-seq of colon epithelium

R. F. , R. O. , J. L. , and M. A. , V. performed antibiotics treatment experiments in mice and bacterial load measurements

W. R. , F. T. , and C. M. ,

, J.K. performed immunohistochemistry

R. F. , S. B. , Z. H. , P. V. , and -. , performed in vitro enzymatic assays; C.S. and E.S. performed ChIP-seq and RNA-seq of HCT116 cells

E. , performed the cell cycle experiments

J. F. C-;-r, J. D. , C. S. , E. S. , A. L. et al., performed chemical synthesis

R. F. , R. O. , J. G. , A. L. , and M. ,

R. F. , C. S. , P. J. , A. L. , C. M. et al.,