D. Bercovici and S. Karato, Whole-mantle convection and the transition-zone water filter, Nature, vol.425, issue.6953, pp.39-44, 2003.
DOI : 10.1038/nature01918

J. Revenaugh and S. Sipkin, Seismic evidence for silicate melt atop the 410-km mantle discontinuity, Nature, vol.369, issue.6480, pp.474-476, 1994.
DOI : 10.1038/369474a0

A. J. Schaeffer and M. G. Bostock, A low-velocity zone atop the transition zone in northwestern Canada, Journal of Geophysical Research, vol.105, issue.B2, pp.1-22, 2010.
DOI : 10.1029/2009JB006757

T. A. Song, D. V. Helmberger, and S. P. Grand, Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States, Nature, vol.427, issue.6974, pp.530-533, 2004.
DOI : 10.1038/nature02231

B. Tauzin, E. Debayle, and G. Wittlinger, Seismic evidence for a global low-velocity layer within the Earth???s upper mantle, Nature Geoscience, vol.253, issue.10, pp.718-721, 2010.
DOI : 10.1038/ngeo969

L. Vinnik and V. Farra, Low S velocity atop the 410-km discontinuity and mantle plumes, Earth and Planetary Science Letters, vol.262, issue.3-4, pp.398-412, 2007.
DOI : 10.1016/j.epsl.2007.07.051

URL : https://hal.archives-ouvertes.fr/hal-00337473

N. Bolfan-casanova, H. Keppler, and D. C. Rubie, Water partitioning between nominally anhydrous minerals in the MgO???SiO2???H2O system up to 24 GPa: implications for the distribution of water in the Earth's mantle, Earth and Planetary Science Letters, vol.182, issue.3-4, pp.209-221, 2000.
DOI : 10.1016/S0012-821X(00)00244-2

S. I. Karato, Water distribution across the mantle transition zone and its implications for global material circulation, Earth and Planetary Science Letters, vol.301, issue.3-4, pp.413-423, 2011.
DOI : 10.1016/j.epsl.2010.11.038

T. Inoue, Effect of water on melting phase relations and melt composition in the system Mg2SiO4???MgSiO3???H2O up to 15 GPa, Physics of the Earth and Planetary Interiors, vol.85, issue.3-4, pp.237-263, 1994.
DOI : 10.1016/0031-9201(94)90116-3

T. Sakamaki, A. Suzuki, and E. Ohtani, Stability of hydrous melt at the base of the Earth's upper mantle, Nature, vol.41, issue.144, pp.192-194, 2006.
DOI : 10.1063/1.1684753

T. Yoshino, Y. Nishihara, and S. I. Karato, Complete wetting of olivine grain boundaries by a hydrous melt near the mantle transition zone, Earth and Planetary Science Letters, vol.256, issue.3-4, pp.466-472, 2007.
DOI : 10.1016/j.epsl.2007.02.002

J. Chantel, Experimental evidence supports mantle partial melting in the asthenosphere, Science Advances, vol.2, issue.5, p.1600246, 2016.
DOI : 10.1126/sciadv.1600246

URL : https://hal.archives-ouvertes.fr/hal-01637098

U. H. Faul, F. Gerald, J. D. Jackson, and I. , Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications, Journal of Geophysical Research: Solid Earth, vol.73, issue.43, pp.1-20, 2004.
DOI : 10.1103/PhysRev.60.906

H. Sato, T. Sacks, and G. Murase, The use of laboratory velocity data for estimating temperature and partial melt fraction in the low-velocity zone: Comparison with heat flow and electrical conductivity studies, Journal of Geophysical Research, vol.57, issue.B5, pp.5689-5704, 1989.
DOI : 10.1111/j.1365-246X.1979.tb04781.x

W. C. Hammond and E. D. Humphreys, Upper mantle seismic wave attenuation: Effects of realistic partial melt distribution, Journal of Geophysical Research: Solid Earth, vol.26, issue.B5, pp.10987-10999, 2000.
DOI : 10.1029/1999GL900259

S. Hier-majumder, Influence of contiguity on seismic velocities of partially molten aggregates, Journal of Geophysical Research, vol.110, issue.4, pp.1-14, 2008.
DOI : 10.1029/GM117p0063

G. Mavko, E. Kjartansson, and K. Winkler, Seismic wave attenuation in rocks, Reviews of Geophysics, vol.277, issue.6, pp.1155-1164, 1979.
DOI : 10.1029/JZ071i010p02591

O. Connell, R. J. Budiansky, and B. , Seismic velocities in dry and saturated cracked solids, Journal of Geophysical Research, vol.2, issue.35, pp.5412-5426, 1974.
DOI : 10.1016/0020-7683(66)90002-3

H. Schmeling, Numerical models on the influence of partial melt on elastic, anelastic and electrical properties of rocks. Part II: electrical conductivity, Physics of the Earth and Planetary Interiors, vol.43, issue.2, pp.123-136, 1986.
DOI : 10.1016/0031-9201(86)90080-4

Y. Takei, : From equilibrium geometry to crack, Journal of Geophysical Research, vol.26, issue.B2, p.2043, 2002.
DOI : 10.1029/1999GL900259

URL : http://onlinelibrary.wiley.com/doi/10.1029/2001JB000522/pdf

Y. Takei, Constitutive mechanical relations of solid-liquid composites in terms of grain-boundary contiguity, Journal of Geophysical Research: Solid Earth, vol.2, issue.B8, pp.18183-18203, 1998.
DOI : 10.1016/0020-7683(66)90002-3

T. Yoshino, Y. Takei, D. A. Wark, and E. B. Watson, Grain boundary wetness of texturally equilibrated rocks, with implications for seismic properties of the upper mantle, Journal of Geophysical Research, vol.142, issue.B1, pp.1-16, 2005.
DOI : 10.1007/s00410-001-0327-4

G. M. Leahy and D. Bercovici, On the dynamics of a hydrous melt layer above the transition zone, Journal of Geophysical Research, vol.124, issue.B2, pp.1-14, 2007.
DOI : 10.1029/168GM19

G. M. Leahy and D. Bercovici, Reactive infiltration of hydrous melt above the mantle transition zone, Journal of Geophysical Research, vol.20, issue.4, pp.1-17, 2010.
DOI : 10.1007/s004100000212

D. Novella and D. J. Frost, The Composition of Hydrous Partial Melts of Garnet Peridotite at 6 GPa: Implications for the Origin of Group II Kimberlites, Journal of Petrology, vol.99, issue.B12, pp.2097-2124, 2014.
DOI : 10.1029/94JB01406

K. N. Matsukage, Z. Jing, and S. Karato, Density of hydrous silicate melt at the conditions of Earth's deep upper mantle, Nature, vol.138, issue.7067, pp.488-491, 2005.
DOI : 10.1007/s004100050567

Z. Jing and S. I. Karato, The density of volatile bearing melts in the Earth's deep mantle: The role of chemical composition, Chemical Geology, vol.262, issue.1-2, pp.100-107, 2009.
DOI : 10.1016/j.chemgeo.2009.02.019

Z. Jing and . Karato, Effect of H2O on the density of silicate melts at high pressures: Static experiments and the application of a modified hard-sphere model of equation of state, Geochimica et Cosmochimica Acta, vol.85, pp.357-372, 2012.
DOI : 10.1016/j.gca.2012.03.001

E. Ohtani, Y. Nagata, A. Suzuki, and T. Kato, Melting relations of peridotite and the density crossover in planetary mantles, Chemical Geology, vol.120, issue.3-4, pp.207-221, 1995.
DOI : 10.1016/0009-2541(94)00139-Y

A. Suzuki and E. Ohtani, Density of peridotite melts at high pressure, Physics and Chemistry of Minerals, vol.30, issue.8, pp.449-456, 2003.
DOI : 10.1007/s00269-003-0322-6

A. Suzuki, E. Ohtani, and T. Kato, Density and thermal expansion of a peridotite melt at high pressure, Physics of the Earth and Planetary Interiors, vol.107, issue.1-3, pp.53-61, 1998.
DOI : 10.1016/S0031-9201(97)00123-4

M. Mookherjee, L. Stixrude, and B. Karki, Hydrous silicate melt at high pressure, Nature, vol.101, issue.7190, pp.983-986, 2008.
DOI : 10.1007/s004100000212

D. Laporte, C. Rapaille, A. Provost, and . Granite, From Segregation of Melt to Emplacement Fabrics. Petrology and Structural Geology, pp.31-54, 1997.

N. Von-bargen and H. S. Waff, Permeabilities, interfacial areas and curvatures of partially molten systems: Results of numerical computations of equilibrium microstructures, Journal of Geophysical Research, vol.24, issue.B9, pp.9261-9276, 1986.
DOI : 10.1016/0001-6160(76)90015-8

W. G. Minarik and E. B. Watson, Interconnectivity of carbonate melt at low melt fraction, Earth and Planetary Science Letters, vol.133, issue.3-4, pp.423-437, 1995.
DOI : 10.1016/0012-821X(95)00085-Q

M. Cmíral, F. Gerald, J. D. Faul, U. H. Green, and D. H. , A close look at dihedral angles and melt geometry in olivine-basalt aggregates: a TEM study, Contributions to Mineralogy and Petrology, vol.130, issue.3-4, pp.336-345, 1998.
DOI : 10.1007/s004100050369

R. F. Cooper and D. L. Kohlstedt, Sintering of olivine and olivine-basalt aggregates, Physics and Chemistry of Minerals, vol.12, issue.39, pp.5-16, 1984.
DOI : 10.1007/978-1-4684-2643-4_8

H. S. Waff and U. H. Faul, Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts, Journal of Geophysical Research, vol.10, issue.1, p.9003, 1992.
DOI : 10.1130/0091-7613(1982)10<236:MIAME>2.0.CO;2

J. C. Afonso and D. L. Schutt, The effects of polybaric partial melting on density and seismic velocities of mantle restites, Lithos, vol.134, issue.135, pp.289-303, 2012.
DOI : 10.1016/j.lithos.2012.01.009

S. Hier-majumder, E. B. Keel, and A. M. Courtier, The influence of temperature, bulk composition, and melting on the seismic signature of the low-velocity layer above the transition zone, Journal of Geophysical Research: Solid Earth, vol.295, issue.2, pp.971-983, 2014.
DOI : 10.1016/j.epsl.2010.04.050

T. Sakamaki, E. Ohtani, S. Urakawa, A. Suzuki, and Y. Katayama, Measurement of hydrous peridotite magma density at high pressure using the X-ray absorption method, Earth and Planetary Science Letters, vol.287, issue.3-4, pp.293-297, 2009.
DOI : 10.1016/j.epsl.2009.07.030

A. M. Dziewonski and D. L. Anderson, Preliminary reference Earth model, Physics of the Earth and Planetary Interiors, vol.25, issue.4, pp.297-356, 1981.
DOI : 10.1016/0031-9201(81)90046-7

E. Ohtani, K. Litasov, T. Hosoya, T. Kubo, and T. Kondo, Water transport into the deep mantle and formation of a hydrous transition zone, Physics of the Earth and Planetary Interiors, vol.143, issue.144, pp.255-269, 2004.
DOI : 10.1016/j.pepi.2003.09.015

B. Yan, E. K. Graham, and K. P. Furlong, Lateral variations in upper mantle thermal structure inferred from three-dimensional seismic inversion models, Geophysical Research Letters, vol.89, issue.5, pp.449-452, 1989.
DOI : 10.1029/GL012i007p00417

D. Novella, The distribution of H2O between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting in the deep upper mantle, Earth and Planetary Science Letters, vol.400, pp.1-13, 2014.
DOI : 10.1016/j.epsl.2014.05.006

X. Huang, Y. Xu, and S. Karato, Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite, Nature, vol.248, issue.7034, pp.746-749, 2005.
DOI : 10.1016/S0031-9201(99)00135-1

T. Yoshino, G. Manthilake, T. Matsuzaki, and T. Katsura, Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite, Nature, vol.105, issue.7176, pp.326-329, 2008.
DOI : 10.1111/j.1365-246X.1969.tb00252.x

H. Fei, A nearly water-saturated mantle transition zone inferred from mineral viscosity, Science Advances, vol.94, issue.6, pp.1-8, 2017.
DOI : 10.1029/JB094iB08p10637

URL : https://doi.org/10.1126/sciadv.1603024

D. G. Pearson, Hydrous mantle transition zone indicated by ringwoodite included within diamond, Nature, vol.29, issue.7491, pp.221-224, 2014.
DOI : 10.1007/BF00199497

W. Wang and E. Takahashi, Subsolidus and melting experiments of K-doped peridotite KLB-1 to 27 GPa: Its geophysical and geochemical implications, Journal of Geophysical Research: Solid Earth, vol.23, issue.17, pp.2855-2868, 2000.
DOI : 10.1007/BF00202987

A. Férot and N. Bolfan-casanova, Water storage capacity in olivine and pyroxene to 14 GPa: implications for the water content of the Earth's upper mantle and nature of seismic discontinuities, Earth Planet. Sci. Lett, pp.349-350, 2012.

B. Li, J. Kung, and R. C. Liebermann, Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus, Physics of the Earth and Planetary Interiors, vol.143, issue.144, pp.143-144, 2004.
DOI : 10.1016/j.pepi.2003.09.020

M. Mercier, Spectroscopic analysis (FTIR, Raman) of water in mafic and intermediate glasses and glass inclusions, Geochimica et Cosmochimica Acta, vol.74, issue.19, pp.5641-5656, 2010.
DOI : 10.1016/j.gca.2010.06.020

E. Médard and T. L. Grove, The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models, Contributions to Mineralogy and Petrology, vol.3, issue.1, pp.417-432, 2008.
DOI : 10.1093/petrology/3.3.342

Z. Jing, S. I. Karato, and . Ichiro, Compositional effect on the pressure derivatives of bulk modulus of silicate melts, Earth and Planetary Science Letters, vol.272, issue.1-2, pp.429-436, 2008.
DOI : 10.1016/j.epsl.2008.05.013

C. B. Agee, Compressibility of water in magma and the prediction of density crossovers in mantle differentiation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.300, issue.5617, pp.4239-52, 2008.
DOI : 10.1126/science.1079645

B. Guillot and N. Sator, A computer simulation study of natural silicate melts. Part II: High pressure properties, Geochimica et Cosmochimica Acta, vol.71, issue.18, pp.4538-4556, 2007.
DOI : 10.1016/j.gca.2007.05.029

F. A. Ochs and R. A. Lange, The Density of Hydrous Magmatic Liquids, Science, vol.283, issue.5406, pp.1314-1317, 1999.
DOI : 10.1126/science.283.5406.1314

T. Sakamaki, E. Ohtani, S. Urakawa, A. Suzuki, and Y. Katayama, Density of dry peridotite magma at high pressure using an X-ray absorption method, American Mineralogist, vol.95, issue.1, pp.144-147, 2010.
DOI : 10.2138/am.2010.3143