O. Safety, U. Health-administration, and . Standards, Hydrogen sulfide exposure, p.23, 2017.

K. H. Kim, Y. J. Choi, E. C. Jeon, and Y. Sunwoo, Characterization of malodorous sulfur compounds in landfill gas, Atmos. Environ, vol.39, pp.1103-1112, 2005.

K. H. Kim, E. C. Jeon, Y. J. Choi, and Y. S. Koo, The emission characteristics and the related malodor intensities of gaseous reduced sulfur compounds (RSC) in a large industrial complex, Atmos. Environ, vol.40, pp.4478-4490, 2006.

L. Zhang, P. De-schryver, B. De-gusseme, W. De-muynck, N. Boon et al., Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review, Water Res, vol.42, pp.1-12, 2008.

, Concise International Chemical Assessment Document 53, Hydrogen sulfide: Human health aspects, p.23, 2003.

, Toxicological Review of Hydrogen Sulfide, p.23, 2003.

K. Shanthi and N. Balasubramanian, A Simple Spectrophotometric Method for the Determination of Hydrogen Sulfide Based on Schiff's Reaction, Microchem. J, vol.53, pp.168-174, 1996.

S. K. Pandey, K. H. Kim, and K. T. Tang, A review of sensor-based methods for monitoring hydrogen sulfide, Trends Anal. Chem, vol.32, pp.87-99, 2012.

A. G. Membrapor and S. , Electrochemical gas sensors for detecting H 2 S, p.23, 2017.

L. Alphasense and U. Kingdom, Alphasense hydrogen sulphide gas sensors, p.23, 2017.

A. Davydow, K. T. Chuang, and A. R. Sanger, Mechanism of H 2 S oxidation by ferric oxide and hydroxide surfaces, J. Phys. Chem. B, vol.102, pp.4745-4752, 1998.

Z. Zhang, H. Jiang, Z. Xing, and X. Zhang, A highly selective chemiluminescent H 2 S sensor, Sens. Actuators B Chem, vol.102, pp.155-161, 2004.

Z. Miao, Y. Wu, X. Zhang, Z. Liu, B. Han et al., Large-scale production of self-assembled SnO 2 nanospheres and their application in high-performance chemiluminescence sensors for hydrogen sulfide gas, J. Mater. Chem, vol.17, pp.1791-1796, 2007.

J. Ma, L. Mei, Y. Chen, Q. Li, T. Wang et al., Zheng, W. ?-Fe 2 O 3 nanochains: ammonium acetate-based ionothermal synthesis and ultrasensitive sensors for low-ppm-level H 2 S gas, Nanoscale, vol.5, pp.895-898, 2013.

Z. Lia, Y. Huang, S. Zhang, W. Chen, Z. Kuang et al., A fast response and recovery H 2 S gas sensor based on ?-Fe 2 O 3 nanoparticles with ppb level detection limit, J. Hazard. Mat, vol.300, pp.167-174, 2015.

Y. Wang, S. Wang, Y. Zhao, B. Zhu, F. Kong et al., H 2 S sensing characteristics of Pt-doped ?-Fe 2 O 3 thick film sensors, Sens. Actuators B Chem, vol.125, pp.79-84, 2007.

J. Mizsei, P. Sipila, and V. Lantto, Structural studies of sputtered noble metal catalysts on oxide surfaces, Sens. Actuators B Chem, vol.47, pp.139-144, 1998.

M. V. Vaishampayan, R. G. Deshmukh, P. Walke, and I. S. Mulla, Fe-doped SnO2 nanomaterial: A low temperature hydrogen sulfide gas sensor, Mat. Chem. Phys, vol.109, pp.230-234, 2008.

Y. J. Chen, X. M. Gao, X. Di, Q. Y. Ouyang, P. Gao et al., Porous Iron Molybdate Nanorods: In situ Diffusion Synthesis and Low-Temperature H 2 S Gas Sensing, ACS Appl. Mater. Interfaces, vol.5, pp.3267-3274, 2013.

Y. L. Liu, H. Wang, Y. Yang, Z. M. Liu, H. F. Yang et al., Hydrogen sulfide sensing properties of NiFe 2 O 4 nanopowder doped with noble metals, Sens. Actuators B Chem, vol.102, pp.148-154, 2004.

V. D. Kapse, S. A. Ghosh, F. C. Raghuwanshi, and S. D. Kapse, Nanocrystalline spinel Ni 0.6 Zn 0.4 Fe 2 O 4 : A novel material for H 2 S sensing, Mat. Chem. Phys, vol.113, pp.638-644, 2009.

I. Jimenez, J. Arbiol, G. Dezanneau, A. Cornet, and J. R. Morante, Crystalline structure, defects and gas sensor response to NO 2 and H 2 S of tungsten trioxide nanopowders, Sens. Actuators B Chem, vol.93, pp.475-485, 2003.

M. Stankova, X. Vilanova, E. Llobet, J. Calderer, M. Vinaixa et al., On-line monitoring of CO 2 quality using doped WO 3 thin film sensor, Thin Solid Films, vol.500, pp.302-308, 2006.

W. Mickelson, A. Sussman, and A. Zettl, Low-power, fast, selective nanoparticle-based hydrogen sulfide gas sensor, Appl. Phys. Lett, vol.100, 2012.

V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Ultra-sensitive H 2 S sensors based on hydrothermal/impregnation-made Ru-functionalized WO 3 nanorods, Sens. Actuators B Chem, vol.215, pp.630-636, 2015.

C. Wang, X. Chu, and M. Wu, Detection of H 2 S down to ppb levels at room temperature using sensors based on ZnO nanorods, Sens. Actuators B Chem, vol.113, pp.320-323, 2006.

N. Zhang, K. Yu, Q. Li, Z. Q. Zhu, and Q. Wan, Room-temperature high-sensitivity H 2 S gas sensor based on dendritic ZnO nanostructures with macroscale in appearance, J. Appl. Phys, vol.103, 2008.

S. S. Badadhe and I. S. Mulla, H 2 S gas sensitive indium-doped ZnO thin films: Preparation and characterization, Sens. Actuators B Chem, vol.143, pp.164-170, 2009.

J. Xua, X. Wang, and J. Shen, Hydrothermal synthesis of In 2 O 3 for detecting H 2 S in air, Sens. Actuators B Chem, vol.115, pp.642-646, 2006.

Z. Li, X. Niu, Z. Lin, N. Wang, H. Shen et al., Hydrothermally synthesized CeO 2 nanowires for H 2 S sensing at room temperature, J. Alloy. Compd, vol.682, pp.647-653, 2016.

C. Balamurugan and D. W. Lee, Perovskite hexagonal YMnO 3 nanopowder as p-type semiconductor gas sensor for H 2 S detection, Sens. Actuators B Chem, vol.221, pp.857-866, 2015.

E. Llobet, G. Molas, P. Molinòs, J. Calderer, X. Vilanova et al., Fabrication of highly selective tungsten oxide ammonia sensors, J. Electrochem. Soc, vol.147, pp.776-779, 2000.

Y. Li, W. Luo, N. Qin, J. Dong, J. Wei et al., Highly Ordered Mesoporous Tungsten Oxides with a Large Pore Size and Crystalline Framework for H 2 S Sensing, Angew. Chem. Int. Ed, vol.53, pp.9035-9040, 2014.

S. Roso, C. Bittencourt, P. Umek, O. González, F. Güell et al., Synthesis of single crystalline In2O3 octahedra for the selective detection of NO 2 and H 2 at trace levels, J. Mat. Chem. C, vol.4, pp.9418-9427, 2016.

S. Manorama, G. S. Devi, and V. J. Rao, Hydrogen sulfide sensor based on tin oxide deposited by spray pyrolysis and microwave plasma chemical vapor deposition, Appl. Phys. Lett, vol.64, pp.3163-3165, 1994.

J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura et al., Dilute hydrogen sulfide sensing properties of CuO-SnO 2 thin film prepared by low-pressure evaporation method, Sens. Actuators B Chem, vol.49, pp.121-125, 1998.

R. B. Vasiliev, M. N. Rumyantseva, N. V. Yakovlev, A. M. Gaskov, and . Cuo, SnO 2 thin film heterostructures as chemical sensors to H 2 S, Sens. Actuators B Chem, vol.50, pp.186-193, 1998.

A. Khanna, R. Kumar, and S. S. Bhatti, CuO-doped SnO 2 thin films as hydrogen sulfide gas sensor, Appl. Phys. Lett, vol.82, pp.4388-4390, 2003.

A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar et al., Response speed of SnO 2-based H 2 S gas sensors with CuO nanoparticles, Appl. Phys. Lett, vol.84, pp.1180-1182, 2004.

X. Kong and Y. Li, High sensitivity of CuO modified SnO 2 nanoribbons to H 2 S at room temperature, Sens. Actuators B Chem, vol.105, pp.449-453, 2005.

M. Choudhary, N. K. Singh, V. N. Mishra, and R. Dwivedi, Selective detection of hydrogen sulfide using copper oxide-doped tin oxide based thick film sensor array, Mat. Chem. Phys, vol.142, pp.370-380, 2013.

C. Gao, Z. D. Lin, N. Li, P. Fu, and X. H. Wang, Preparation and H 2 S Gas-Sensing Performances of Coral-Like SnO 2-CuO Nanocomposite, Acta Metall. Sin, vol.28, pp.1190-1197, 2015.

G. Cui, M. Zhang, and G. Zou, Resonant tunneling modulation in quasi-2D Cu 2 O/SnO 2 p-n horizontal multi-layer heterostructure for room temperature H 2 S sensor application, Sci. Rep, 1250.

Z. Xu, G. Duan, Y. Li, G. Liu, H. Zhang et al., CuO-ZnO Micro/Nanoporous Array-Film-Based Chemosensors: New Sensing Properties to H 2 S, Chem. Eur. J, vol.20, pp.6040-6046, 2014.

N. M. Vuong, N. D. Chinh, B. T. Huy, and Y. I. Lee, CuO-Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H 2 S Gas Sensors, Sci. Rep, 2016.

M. S. Wagh, L. A. Patil, T. Seth, and D. P. Amalnerkar, Surface cupricated SnO 2-ZnO thick films as a H 2 S gas sensor, Mat. Chem. Phys, vol.84, pp.228-233, 2004.

F. E. Annanouch, Z. Haddi, S. Vallejos, P. Umek, P. Guttmann et al., Aerosol-Assisted CVD-Grown WO 3 Nanoneedles Decorated with Copper Oxide Nanoparticles for the Selective and Humidity-Resilient Detection of H 2 S, ACS Appl. Mater. Interfaces, vol.7, pp.6842-6851, 2015.

F. Zhang, A. Zhu, Y. Luo, Y. Tian, J. Yang et al., CuO Nanosheets for Sensitive and Selective Determination of H 2 S with High Recovery Ability, J. Phys. Chem. C, vol.114, pp.19214-19219, 2010.

J. Hennemann, C. D. Kohl, B. M. Smarsly, H. Metelmann, M. Rohnke et al., Copper oxide based H 2 S dosimeters-Modeling of percolation and diffusion processes, Sens. Actuators B Chem, vol.217, pp.41-50, 2015.

J. Kneer, S. Knobelspies, B. Bierer, J. Wöllenstein, and S. Palzer, New method to selectively determine hydrogen sulfide concentrations using CuO layers, Sens. Actuators B Chem, vol.222, pp.625-631, 2016.

E. D. Gaspera, M. Guglielmi, S. Agnoli, G. Granozzi, M. L. Post et al., Au Nanoparticles in Nanocrystalline TiO 2-NiO Films for SPR-Based, Selective H2S Gas Sensing, Chem. Mater, vol.22, pp.3407-3417, 2010.

R. Tabassum, S. K. Mishra, and B. D. Gupta, Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu-ZnO thin films, Phys. Chem. Chem. Phys, vol.15, pp.11868-11874, 2013.

S. K. Mishra, S. Rani, and B. D. Gupta, Surface plasmon resonance based fiber optic hydrogen sulphide gas sensor utilizing nickel oxide doped ITO thin film, Sens. Actuators B Chem, vol.195, pp.215-222, 2014.

S. P. Usha, S. K. Mishra, and B. D. Gupta, Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnOnanoparticles: A comparison of surface plasmon resonance and lossy mode resonance, Sens. Actuators B Chem, vol.218, pp.196-204, 2015.

S. P. Usha, S. K. Mishra, and B. D. Gupta, Zinc oxide thin film/nanorods based lossy mode resonance hydrogen sulphide gas sensor, Mater. Res. Express, vol.2, p.95003, 2015.

D. W. Fam, A. I. Tok, A. Palaniappan, A. P. Nopphawan, A. Lohani et al., Selective sensing of hydrogen sulphide using silver nanoparticle decorated carbon nanotubes, Sens. Actuators B Chem, vol.138, pp.189-192, 2009.

S. Mubeen, T. Zhang, N. Chartuprayoon, Y. Rheem, A. Mulchandani et al., Sensitive Detection of H 2 S Using Gold Nanoparticle Decorated Single-Walled Carbon Nanotubes, Anal. Chem, vol.82, pp.250-257, 2010.

Z. Zanolli, R. Leghrib, A. Felten, J. J. Pireaux, E. Llobet et al., Gas Sensing with Au-Decorated Carbon Nanotubes, ACS Nano, vol.5, pp.4592-4599, 2011.

S. Moon, N. M. Vuong, D. Lee, D. Kim, H. Lee et al., Co 3 O 4-SWCNT composites for H 2 S gas sensor application, Sens. Actuators B Chem, vol.222, pp.166-172, 2016.

M. Asad and M. H. Sheikhi, Surface acoustic wave based H 2 S gas sensors incorporating sensitive layers of single wall carbon nanotubes decorated with Cu nanoparticles, Sens. Actuators B Chem, vol.198, pp.134-141, 2014.

N. Bhadra, S. Hussain, S. Das, R. Bhunia, R. Bhar et al., H 2 S Gas Sensor Based on Nanocrystalline Copper/DLC Composite Films, Plasmonics, vol.10, pp.503-509, 2015.

L. Zhou, F. Shen, X. Tian, D. Wang, T. Zhang et al., Stable Cu 2 O nanocrystals grown on functionalized graphene sheets and room temperature H 2 S gas sensing with ultrahigh sensitivity, Nanoscale, vol.5, pp.1564-1569, 2013.

M. Malekalaie, M. Jahangiri, A. M. Rashidi, A. Haghighiasl, and N. Izadi, Selective hydrogen sulfide (H 2 S) sensors based on molybdenum trioxide (MoO 3 ) nanoparticle decorated reduced graphene oxide, Mat. Sci. Semicond. Proc, vol.38, pp.93-100, 2015.

S. Cho, J. S. Lee, J. Jun, S. G. Kim, and J. Jang, Fabrication of water-dispersible and highly conductive PSS-doped PANI/graphene nanocomposites using a high-molecular weight PSS dopant and their application in H 2 S detection, Nanoscale, vol.6, pp.15181-15195, 2014.

M. M. Alaie, M. Jahangiri, A. M. Rashidi, A. H. Asl, and N. Izadi, A novel selective H 2 S sensor using dodecylamine and ethylenediamine functionalized graphene oxide, J. Ind. Eng. Chem, vol.29, pp.97-103, 2015.

S. Rani, M. Kumar, R. Garg, S. Sharma, and D. Kumar, Amide Functionalized Graphene Oxide Thin Films for Hydrogen Sulfide Gas Sensing Applications, IEEE Sens. J, vol.16, pp.2929-2934, 2016.

X. Li, Y. Jiang, G. Xie, H. Taia, P. Sunb et al., Copper phthalocyanine thin film transistors for hydrogen sulfide detection, Sens. Actuators B Chem, vol.176, pp.1191-1196, 2013.

R. A. Collins and K. A. Mohammed, Gas sensitivity of some metal phthalocyanines, J. Phys. D: Appl. Phys, vol.21, 1998.

A. Kumar, J. Brunet, C. Varenne, A. Ndiaye, and A. Pauly, Phthalocyanines based QCM sensors for aromatic hydrocarbons monitoring: Role of metal atoms and substituents on response to toluene, Sens. Actuators B Chem, vol.230, pp.320-329, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02117391

S. Bai, K. Zhang, J. Sun, D. Zhang, R. Luo et al., Polythiophene-WO 3 hybrid architectures for low-temperature, H 2 S detection, Sens. Actuators B Chem, vol.197, pp.142-148, 2014.

H. Liu, M. Li, G. Shao, H. Zhang, W. Wang et al., Enhancement of hydrogen sulfide gas sensing of PbS colloidal quantum dots by remote doping through ligand exchange, Sens. Actuators B Chem, vol.212, pp.434-439, 2015.

M. Li, D. Zhou, J. Zhao, Z. Zheng, J. He et al., Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection, Sens. Actuators B Chem, vol.217, pp.198-201, 2015.

X. Wan, L. Wu, L. Zhang, H. Song, and Y. Lv, Novel metal-organic frameworks-based hydrogen sulfide cataluminescence sensors, Sens. Actuators B Chem, vol.220, pp.614-621, 2015.

M. Drobek, J. H. Kim, M. Bechelany, C. Vallicari, A. Julbe et al., MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity, ACS Appl. Mater. Interfaces, vol.8, pp.8323-8328, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01677978

N. Kumar, V. Bhalla, and M. Kumar, Recent developments of fluorescent probes for the detection of gasotransmitters (NO, CO and H 2 S), Coord. Chem. Rev, vol.257, pp.2335-2347, 2013.

S. Chen, Z. Chen, W. Ren, and H. Ai, Reaction-Based Genetically Encoded Fluorescent Hydrogen Sulfide Sensors, J. Am. Chem. Soc, vol.134, pp.9589-9592, 2012.

S. S. Nagarkar, A. V. Desai, and S. K. Ghosh, A Nitro-Functionalized Metal-Organic Framework as a Reaction-Based Fluorescence Turn-On Probe for Rapid and Selective H 2 S Detection, Chem. Eur. J, vol.21, pp.9994-9997, 2015.

G. S. Coles, G. Williams, and B. Smith, The effect of oxygen partial pressure on the response of tin (IV) oxide based gas sensors, J. Phys. D Appl. Phys, vol.24, pp.633-641, 1991.

R. Loloee, B. Chorpening, S. Beer, and R. N. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors, Sens. Actuators B Chem, vol.129, pp.200-210, 2008.

B. Wang, Y. Wang, Y. Lei, S. Xie, N. Wu et al., Vertical SnO 2 nanosheet-SiC nanofibers with hierarchical architecture for high-performance gas sensors, J. Mat. Chem. C, vol.4, pp.295-304, 2016.

A. Gaiardo, P. Bellutti, B. Fabbri, S. Gherardi, A. Giberti et al., Chemoresistive Gas Sensor based on SiC Thick Film: Possible Distinctive Sensing Properties between H 2 S and SO 2. Proceedoa Eng, vol.168, pp.276-279, 2016.