W. Adam, C. R. Saha-möller, and P. A. Ganeshpure, Synthetic applications of non metal catalysts for homogeneous oxidations, Chemical Reviews, vol.101, issue.11, pp.3499-3548, 2001.

P. L. Anelli, C. Banfi, F. Montanari, and S. Quici, Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions, Journal of Organic Chemistry, vol.52, issue.12, pp.2559-2562, 1987.

P. L. Anelli, S. Banfi, F. Montanari, and S. Quici, Oxidation of diols with alkali hypochlorites catalyzed by oxammonium salts under two-phase conditions, Journal of Organic Chemistry, vol.54, issue.12, pp.2970-2972, 1989.

S. Arola, T. Tammelin, H. Setälä, A. Tullila, and M. B. Linder, , 2012.

, Immobilization-stabilization of proteins on nanofibrillated cellulose derivatives and their bioactive film formation, Biomacromolecules, vol.13, pp.594-603

G. O. Aspinall and A. Nicolson, The catalytic oxidation of European larch I-galactan, Journal of Chemical Society, pp.2503-2507, 1960.

W. F. Bailey, J. M. Bobbitt, and K. B. Wiberg, Mechanism of the oxidation of alcohols by oxoammonium cations, Journal of Organic Chemistry, vol.72, issue.12, pp.4504-4509, 2007.

S. Bang, E. Lee, Y. Ko, W. I. Kim, and O. H. Kwon, Injectable pullulan hydrogel for the prevention of postoperative tissue adhesion, International Journal of Biological Macromolecules, vol.87, pp.155-162, 2016.

G. Biliuta, L. Fras, S. Strnad, V. Harabagiu, and S. Coseri, Oxidation of cellulose fibers mediated by nonpersistent nitroxyl radicals, Journal of Polymer Science, Part A: Polymer Chemistry, vol.48, pp.4790-4799, 2010.

G. Biliuta, L. Fras, M. Drobota, Z. Persin, T. Kreze et al., Comparison study of TEMPO and phthalimide-N-oxyl (PINO) radicals on oxidation efficiency toward cellulose, Carbohydrate Polymers, vol.91, pp.502-507, 2013.

J. M. Bobbitt and M. C. Flores, Organic nitrosonium salts as oxidants in organic chemistry, Heterocycles, vol.27, issue.2, pp.509-533, 1988.

N. Bordenave, S. Grelier, and V. Coma, Advances on selective C-6 oxidation of chitosan by TEMPO, Biomacromolecules, vol.9, pp.2377-2382, 2008.

P. L. Bragd, A. C. Besemer, and H. Van-bekkum, Selective oxidation of carbohydrates by 4-AcNH-TEMPO/peracid systems, Carbohydrate Polymers, vol.49, pp.397-406, 2002.

P. L. Bragd, H. Van-bekkum, and A. C. Besemer, TEMPO-mediated oxidation of polysacharrides: Survey of methods and applications, Topics in Catalysis, vol.27, pp.49-66, 2004.

P. Campia, E. Ponzini, B. Rossi, S. Farris, T. Silvetti et al., Aerogels of enzymatically oxidized galactomannans from leguminous plants: Versatile delivery systems of antimicrobial peptides and enzymes, Carbohydrate Polymers, vol.158, pp.102-111, 2017.

S. Camy, S. Montanari, A. Rattaz, M. Vignon, and J. S. Condoret, Oxidation of cellulose in pressurized carbon dioxide, The Journal of Supercritical Fluids, vol.51, pp.188-196, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00499383

S. Caron, R. W. Dugger, S. G. Ruggeri, J. A. Ragan, and D. H. Brown-ripin, Large-scale oxidations in the pharmaceutical industry, Chemical Reviews, vol.106, issue.7, pp.2943-2989, 2006.

J. A. Cella, J. A. Kelley, and E. F. Kenehan, Nitroxide-catalyzed oxidation of alcohols using m-chloroperbenzoic acid. New method, The Journal of Organic Chemistry, vol.40, issue.12, pp.1860-1862, 1975.

P. S. Chang and J. F. Robyt, Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion, Journal of Carbohydrate Chemistry, vol.15, pp.819-830, 1996.

X. Chen, S. Xang, M. Lu, Y. Chen, L. Zhao et al., Formation and characterization of light-responsive TEMPO-oxidized konjac glucomannan microspheres, Biomacromolecules, vol.15, pp.2166-2171, 2014.

Y. Chen, H. Zhao, X. Liu, Z. Li, B. Liu et al., TEMPO-oxidized Konjac glucomannan as appliance for the preparation of hard capsules, Carbohydrate Polymers, vol.143, pp.262-269, 2016.

D. Cheng, Y. Wen, X. An, X. Zhu, and Y. Ni, TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood, Carbohydrate Polymers, vol.151, pp.326-334, 2016.

R. Ciriminna and M. Pagliaro, Industrial oxidations with organocatalyst TEMPO and its derivatives, Organic Process Research and Development, vol.14, issue.1, pp.245-251, 2010.

V. A. Cosenza, D. A. Navarro, C. A. Pujol, E. B. Damonte, and C. A. Stortz, Partial and total C-6 oxidation of gelling carrageenans: Modulation of the antiviral activity with the anionic character, Carbohydrate Polymers, vol.128, pp.199-206, 2015.

S. Coseri, G. Nistor, L. Fras, S. Strnad, V. Harabagiu et al., Mild and selective oxidation of cellulose fibers in the presence of N-hydroxyphthalimid, Biomacromolecules, vol.10, pp.2294-2299, 2009.

S. Coseri, A. Spatareanu, L. Sacarescu, C. Rimbu, D. Suteu et al., Green synthesis of the silver nanoparticles mediated by pullulan and 6-carboxypullulan, Carbohydrate Polymers, vol.116, pp.9-17, 2015.

S. Coseri, M. Bercea, V. Harabagiu, and T. Budtova, Oxidation vs. degradation in polysaccharides: Pullulan-a case study, European Polymers Journal, vol.85, pp.82-91, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01411764

P. L. Cunha, J. S. Maciel, M. R. Sierakowski, R. C. De-paula, and J. P. Feitosa, Oxidation of cashew tree gum exudates polysaccharide with TEMPO reagent, Journal of the Brazilian Chemical Society, vol.18, pp.85-92, 2007.

N. J. Davis and S. L. Flitsch, Selective oxidation of monosaccharide derivatives to uronic acids, Tetrahedron Letters, vol.34, pp.1181-1184, 1993.

P. L. Deangelis, Glycosaminoglycan polysaccharide biosynthesis and production: Today and tomorrow, Applied Microbiology and Biotechnology, vol.94, pp.295-305, 2012.

S. Delagrave, D. J. Murphy, J. L. Rittenhouse-pruss, A. M. Maffia, . Iii et al., Application of a very high-throughput digital imaging screen to evolve the enzyme galactose oxidase, Protein Engineering, vol.14, pp.261-267, 2001.

S. Delagrave, I. Maffia, A. M. Murphy, D. J. Rittenhouse-pruss, J. L. Bylina et al., Variant galactose oxidase nucleic acid encoding same, and methods of using same, 2002.

C. Delattre, P. Michaud, R. Elboutachfaiti, B. Courtois, and J. Courtois, Production of oligocellouronates by biodegradation of oxidized cellulose, Cellulose, vol.13, pp.63-71, 2006.

C. Delattre, P. Michaud, C. Keller, R. Elboutachfaiti, L. Beven et al., Purification, characterization and biological properties of a novel polysaccharide lyase from Trichoderma sp, GL2. Applied Microbiology and Biotechnology, vol.70, pp.437-443, 2006.

C. Delattre, L. Rios, C. Laroche, N. H. Le, D. Lecerf et al., Production and characterization of new families of polyglucuronic acids from TEMPO-NaOCl oxidation of curdlan, International Journal of Biological Macromolecules, vol.45, pp.458-462, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01866804

C. Delattre, L. Chaisemartin, M. Favre-mercuret, J. Y. Berthon, and L. Rios, Biological effect of -(1, 3)-polyglucuronic acid sodium salt on lipid storage and adipocytes differenciation, Carbohydrate Polymers, vol.87, pp.775-783, 2012.

C. Delattre, P. Michaud, L. Chaisemartin, J. Y. Berthon, and L. A. Rios, A transcriptomic approach to predict the impact of -(1, 3)-polyglucuronic acid sodium salt and derivatives in the main biological processes, Carbohydrate Polymers, vol.87, pp.1828-1836, 2012.

C. Delattre, G. Pierre, C. Gardarin, M. Traikia, R. Elboutachfaiti et al., Antioxidant activities of a polyglucuronic acid sodium salt obtained from TEMPO-mediated oxidation of xanthan, Carbohydrate Polymers, vol.116, pp.34-41, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01206750

A. E. De-nooy, A. C. Besemer, and H. Van-bekkum, Highly selective TEMPO mediated oxidation of primary alcohol groups in polysaccharides, Recueil des Travaux Chimiques des Pays-Bas, vol.113, pp.165-166, 1994.

A. E. De-nooy, A. C. Besemer, and H. Van-bekkum, Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water soluble glucans, Carbohydrate Research, vol.269, pp.89-98, 1995.

A. E. De-nooy, A. C. Besemer, and H. Van-bekkum, Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution. Kinetics and mechanisms, Tetrahedron, vol.51, pp.8023-8032, 1995.

A. E. De-nooy, A. C. Besemer, H. Van-bekkum, J. A. Van-dijk, and J. A. Smit, TEMPO mediated oxidation of pullulan and influence of ionic strength and linear charge density on the dimensions of the obtained polyelectrolyte chains. Macromolecules, p.29, 1996.

R. Durana, I. Lacík, E. Paulovi?ová, and S. Bystrick´y, Functionalization of mannans from pathogenic yeasts by different means of oxidation-preparation of precursors for conjugation reactions with respect to preservation of immunological properties, Carbohydrate Polymers, vol.63, pp.72-81, 2006.

R. Elboutachfaiti, E. Petit, C. Beuvain, B. Courtois, J. Courtois et al., Development of new ulvan-like polymer by regioselective oxidation of gellan exopolysaccharide using TEMPO reagent, Carbohydrate Polymers, vol.80, pp.485-490, 2010.

R. Elboutachfaiti, C. Delattre, E. Petit, and P. Michaud, Polyglucuronic acids: Structures, functions and degrading enzymes, Carbohydrate Polymers, vol.84, pp.1-13, 2011.

R. Elboutachfaiti, E. Petit, M. Pillon, B. Courtois, J. Courtois et al., Evaluation of antioxidant capacity of ulvan-like polymer obtained by regioselective oxidation of gellan exopolysaccharide, Food Chemistry, vol.127, pp.976-983, 2011.

S. Fujisawa, Y. Okita, H. Fukuzumi, T. Saito, and A. Isogai, Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups, Carbohydrate Polymers, vol.84, issue.1, pp.579-583, 2011.

H. Fukuzumi, S. Fujisawa, T. Saito, and A. Isogai, Selective permeation of hydrogen gas using cellulose nanofibril film, Biomacromolecules, vol.14, issue.5, pp.1705-1709, 2013.

V. A. Golubev, E. G. Rozantsev, and M. B. Neiman, Some reactions of free iminoxyl radicals with the participation of the unpaired electron, Bulletin of the Academy of Sciences. USSR Division of Chemical Science, vol.14, issue.11, pp.1898-1904, 1966.

L. D. Hall and M. Yalpani, A high-yielding, specific method for the chemical derivatization of d-galactose-containing polysaccharides: Oxidation with d-galactose oxidase, followed by reductive amination, Carbohydrate Research, vol.81, pp.10-12, 1980.

R. Hiraoki, H. Fukuzumi, Y. Ono, T. Saito, and A. Isogai, SEC-MALLS analysis of TEMPO-oxidized celluloses using methylation of carboxyl groups, Cellulose, vol.21, pp.167-176, 2014.

M. Hirota, N. Tamura, T. Saito, and A. Isogai, Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions, Carbohydrate Polymers, vol.78, pp.330-335, 2009.

J. Huang, W. Chen, S. Hu, J. Gong, H. Lai et al., Biochemical activities of 6-carboxy -chitin derived from squid pens, Carbohydrate Polymers, vol.91, pp.191-197, 2013.

N. Iihashi, J. Nagayama, N. Habu, N. Konno, and A. Isogai, Enzymatic degradation of amylouronate (-(1 ? 4)-linked glucuronan) by -glucuronidase from Paenibacillus sp. TH501b. Carbohydrate Polymers, vol.77, pp.59-64, 2009.

A. Isogai and Y. Kato, Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation, Cellulose, vol.5, pp.153-164, 1998.

T. Isogai, T. Saito, and A. Isogai, TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber, Biomacromolecules, vol.11, pp.1593-1599, 2010.

A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, vol.3, pp.71-85, 2011.

T. Jaschinski, S. Gunnars, A. C. Besemer, P. Bragd, D. Jau?ovec et al., Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation, Carbohydrate Polymers, vol.116, pp.74-85, 2001.

J. M. Jetten, R. T. Van-den-dool, W. Van-hartinggsveldt, and M. Van-wandelen, , 2000.

Y. Jia, X. Zhai, W. Fu, Y. Liu, F. Li et al., Surfactant-free emulsions stabilized by tempo-oxidized bacterial cellulose, Carbohydrate Polymers, vol.151, pp.907-915, 2016.

F. Jiang and Y. Hsieh, Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing, Journal of Material Chemistry A, vol.2, issue.2, pp.350-359, 2013.

F. Jiang and Y. Hsieh, Chemically and mechanically isolated nanocellulose and their self-assembled structures, Carbohydrate Polymers, vol.95, issue.1, pp.32-40, 2013.

F. Jiang and Y. Hsieh, Self-assembling of TEMPO oxidized cellulose nanofibrils As affected by protonation of surface carboxyls and drying methods, ACS Sustainable Chemistry and Engineering, vol.4, pp.1041-1049, 2016.

B. Jiang, E. Drouet, M. Milas, and M. Rinaudo, Study on TEMPO-mediated selective oxidation of hyaluronan and the effects of salt on the reaction kinetics, Carbohydrate Polymers, vol.327, pp.455-461, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00309641

Y. Jiang, Y. Zhao, X. Feng, J. Fang, and L. Shi, TEMPO-mediated oxidized nanocellulose incorporating with its derivatives of carbon dots for luminescent hybrid films, RSC Advances, vol.6, pp.6504-6510, 2016.

Y. Kato, N. Habu, J. Yamaguchi, Y. Kobayashi, I. Shibata et al., Biodegradation of -1, 4-linked polyglucuronic acid, 2002.

, Cellulose, vol.9, pp.75-81

Y. Kato, J. Kaminaga, R. Matsuo, and A. Isogai, TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan, Carbohydrate Polymers, vol.58, pp.421-426, 2004.

Y. Kato, J. I. Kaminaga, R. Matsuo, and A. Isogai, Oxygen permeability and biodegradability of polyuronic acids prepared from polysaccharides by TEMPO-mediated oxidation, Journal of Polymers and Environment, vol.13, pp.261-266, 2005.

H. Koga, T. Saito, T. Kitaoka, M. Nogi, K. Suganuma et al., , 2013.

, Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube, Biomacromolecules, vol.14, pp.1160-1165

N. Konno, N. Habu, I. Maeda, N. Azuma, and A. Isogai, Cellouronate (-1, 4-linked polyglucuronate) lyase from Brevundimonas sp. SH203: Purification and characterization, Carbohydrate Polymers, vol.64, pp.589-596, 2006.

N. Konno, N. Habu, N. Iihashi, and A. Isogai, Purification and characterization of exo-type cellouronate lyase, Cellulose, vol.15, pp.453-463, 2008.

N. Konno, K. Igarashi, N. Habu, M. Samejima, and A. Isogai, Cloning of the Trichoderma reesei cDNA encoding a glucuronan lyase belonging to a novel polysaccharide lyase family, Applied Environmental Microbiology, vol.75, pp.101-107, 2009.

M. Lavazza, C. Formantici, V. Langella, D. Monti, U. Pfeiffer et al., Oxidation of galactomannan by laccase plus TEMPO yields an elactic gel, Journal of Biotechnology, vol.156, pp.108-116, 2011.

K. Y. Lee and D. J. Mooney, Alginates: Properties and biomedical applications, Progress in Polymer Science, vol.37, pp.106-126, 2012.

S. Lemoine, C. Thomazeau, D. Joannard, S. Trombotto, S. Descottes et al., Sucrose tricarboxylate by sonocatalysed TEMPO-mediated oxidation, Carbohydrate Polymers, vol.16, pp.176-184, 2016.

Y. Li, R. De-vries, M. Kleijn, T. Slaghek, J. Timmermans et al., Preparation and characterization of oxidized starch polymer microgels for encapsulation and controlled release of functional ingredients, Biomacromolecules, vol.10, pp.1931-1938, 2009.

Y. Li, R. De-vries, M. Kleijn, T. Slaghek, J. Timmermans et al., Lysozyme uptake by oxidized starch polymer microgels, Biomacromolecules, vol.11, pp.1754-1762, 2010.

Y. Li, Z. Zhang, H. P. Van-leeuwen, M. A. Cohen-stuart, W. Norde et al., Uptake and release kinetics of lysozyme in and from an oxidized starch polymer microgel, Soft Matter, vol.7, pp.10377-10385, 2011.

M. Lu, Z. Li, H. Liang, M. Shi, L. Zhao et al., Controlled release of anthocyanins from oxidized konjac glucomannan microspheres stabilized by chitosan oligosaccharides, Food Hydrocolloids, vol.51, pp.476-485, 2015.

H. Lu, M. Behm, S. Leijonmarck, G. Lindbergh, and A. Cornell, Flexible paper electrodes for Li-Ion batteries using low amount of TEMPO-oxidized cellulose nanofibrils as binder, Applied Materials and Interfaces, vol.8, pp.18097-18106, 2016.

M. Marzorati, B. Danieli, D. Haltrich, and S. Riva, Selective laccase-mediated oxidation of sugars derivatives, Green Chemistry, vol.7, pp.310-315, 2005.

N. Masruchin, B. Park, V. Causin, and I. C. Um, Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties, Cellulose, vol.22, 1993.

S. Mathew and P. Adlercreutz, Mediator facilitated, laccase catalysed oxidation of granular potato starch and the physico-chemical characterisation of the oxidized products, Bioresource Technology, vol.100, pp.3576-3584, 2009.

K. Maurer and G. Reiff, Oxidation of cellulose with NO2, Journal of Macromolecular Chemistry, vol.1, pp.27-34, 1943.

L. Melone and C. Punta, Metal-free aerobic oxidations mediated by N-hydroxyphthalimide: A concise review, Beilstein Journal of Organic Chemistry, vol.9, pp.1296-1310, 2013.

L. Melone, L. Altomare, I. Alfieri, A. Lorenzi, L. De-nardo et al., Ceramic aerogels from TEMPO-oxidized cellulose nanofibre templates: Synthesis, characterization, and photocatalytic properties, Journal of Photochemistry and Photobiology A: Chemistry, vol.261, pp.53-60, 2013.

L. Melone, S. Bonafede, D. Tushi, C. Punta, and M. Cametti, Dip in colorimetric fluoride sensing by a chemically engineered polymeric cellulose/bPEI conjugate in the solid state, vol.5, pp.83197-83205, 2015.

L. Melone, B. Rossi, N. Pastori, W. Panzeri, A. Mele et al., TEMPO-oxidized cellulose cross-linked with branched polyethyleneimine: Nanostructured adsorbent sponges for water remediation, ChemPlusChem, vol.80, pp.1408-1415, 2015.

Q. Meng, S. Fu, and L. A. Lucia, The role of heteropolysaccharides in developing oxidized cellulose nanofibrils, Carbohydrate Polymers, vol.144, pp.187-195, 2016.

L. Merlini, A. C. Boccia, R. Mendichi, and Y. M. Galante, Enzymatic and chemical oxidation of polygalactomannans from the seeds of a few species of leguminous plants and characterization of the oxidized products, Journal of Biotechnology, vol.198, pp.31-43, 2015.

K. Mikkonen, K. Parikka, J. P. Suuronen, A. Ghafar, R. Serimaa et al., Enzymatic oxidation as a potential new route to produce polysaccharide aerogels, vol.4, pp.11884-11892, 2014.

R. A. Muzzarelli, C. Muzzarelli, A. Cosani, and M. Terbojevich, 6-Oxychitins, novel hyaluronan-like regiospecifically carboxylated chitins, Carbohydrate Polymers, vol.39, pp.361-367, 1999.

R. A. Muzzarelli, M. Miliani, M. Cartolari, R. Tarsi, G. Tosi et al., Polyuronans obtained by regiospecific oxidation of polysaccharides from Aspergillus niger, Trichoderma reesei and Saprolegnia sp, Carbohydrate Polymers, vol.43, pp.55-61, 2000.

R. A. Muzzarelli, F. Greco, A. Busilacchi, V. Sollazzo, and A. Gigante, , 2012.

. Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: A review, Carbohydrate Polymers, vol.89, pp.723-739

H. Orelma, L. S. Jfilpponen, I. Filpponen, O. J. Rojas, and J. Laine, Generic method for attaching biomolecules via avidin-biotin complexes immobilized on films of regenerated and nanofibrillar cellulose, Biomacromolecules, vol.13, pp.2802-2810, 2012.

H. Orelma, M. Vuoriluoto, L. Johansson, J. M. Campbell, I. Ilari-filpponen et al., Preparation of photoreactive nanocellulosic materials via benzophenone grafting, RSC Advances, vol.6, pp.85100-85106, 2016.

T. J. Painter, A. Cesaro, F. Delben, and S. Paoletti, New glucuronoglucans obtained by oxidation of amylose at position 6, Carbohydrate Research, vol.140, pp.61-68, 1985.

T. J. Painter, Preparation and periodate oxidation of C-6-oxycellulose: Conformational interpretation of hemiacetal stability, Carbohydrate Research, vol.55, pp.95-103, 1977.

L. Panzella, L. Melone, A. Pezzella, B. Rossi, N. Pastori et al., Surface-functionalization of nanostructured cellulose aerogels by solid state eumelanin coating, Biomacromolecules, vol.17, issue.2, pp.564-571, 2016.

K. Parikka, A. S. Leppänen, L. Pitkänen, M. Reunanen, S. Willför et al., Oxidation of polysaccharides by galactose oxidase, Journal of Agricultural and Food Chemistry, vol.58, pp.262-271, 2010.

K. Parikka, A. S. Leppanen, C. Xu, L. Pitkanen, P. Eronen et al., Functional and anionic cellulose-interacting polymers by selective chemo-enzymatic carboxylation of galactose-containing polysaccharides, Biomacromolecules, vol.13, pp.2418-2428, 2012.

Y. C. Peng, D. J. Gardner, and Y. S. Han, Drying cellulose nanofibrils: In search of a suitable method, Cellulose, vol.19, issue.1, pp.91-102, 2012.

J. M. Pereira, M. Mahoney, and K. J. Edgar, Synthesis of amphiphilic 6-carboxypullulan ethers, Carbohydrate Polymers, vol.100, pp.65-73, 2014.

C. L. Petkowicz, F. Reicher, and K. Mazeau, Conformational analysis ofgalactomannans: From oligomeric segments to polymeric chains, Carbohydrate Polymers, vol.37, pp.25-39, 1998.

G. Pierre, R. Salah, C. Gardarin, M. Traikia, E. Petit et al., Enzymatic degradation and bioactivity evaluation of C-6 oxidized chitosan, International Journal of Biological Macromolecules, vol.60, pp.383-392, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00847410

K. Pridz, Determinants of glycosaminoglycan (GAG) structure. Biomolecules, vol.5, 2003.

F. Recupero and C. Punta, Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide, Chemical Reviews, vol.107, pp.3800-3842, 2007.

R. Rohaizu and W. D. Wanrosli, Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose, Ultrasonics Sonochemistry, vol.34, pp.631-639, 2017.

B. Rossi, P. Campia, L. Merlini, M. Brasca, N. Pastori et al., An aerogel obtained from chemo-enzymatically oxidized fenugreek galactomannans as a versatile delivery system, Carbohydrate Polymers, vol.144, pp.353-361, 2016.

T. Saito and A. V. Isogai, TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions, Biomacromolecules, vol.5, 1983.
URL : https://hal.archives-ouvertes.fr/hal-00305562

T. Saito, M. Yanagisawa, and A. Isogai, TEMPO-mediated oxidation of native cellulose: SEC-MALLS analysis of water-soluble and -insoluble fractions in the oxidized products, Cellulose, vol.12, pp.305-315, 2005.

C. N. Sakakibara, M. R. Sierakowski, N. Lucyszyn, and R. A. De-freitas, TEMPO-mediated oxidation on galactomannan: Gal/Man ratio and chain flexibility dependence, vol.153, pp.371-378, 2016.

M. F. Semmelhack, C. R. Schmid, D. A. Cortes, and C. S. Chou, Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion, Journal of American Chemical Society, vol.106, pp.3374-3376, 1984.

M. F. Semmelhack, C. R. Schmid, and D. A. Cortés, Mechanism of the oxidation of alcohols by 2,2,6,6-tetramethylpiperidine nitrosonium cation, Tetrahedron Letters, issue.10, pp.1119-1122, 1986.

R. A. Sheldon and I. W. Arenas, Organocatalytic oxidations mediated by nitroxyl radicals. Advanced Synthesis and Catalysis, vol.346, pp.1051-1071, 2004.

R. A. Sheldon, Oxidations, Organic reactions in water: Principles, strategies and applications, pp.215-235, 2007.

R. A. Sheldon, Green catalytic oxidations in water. Metal-Catalyzed Reactions in Water, pp.139-172, 2013.

F. Shen, H. Zhu, W. Luo, J. Wan, L. Zhou et al., Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries, Applied Materials and Interfaces, vol.7, pp.23291-23296, 2015.

M. Shi, J. Bai, L. Zhao, X. Yu, J. Liang et al., Co-loading and intestine-specific delivery of multiple antioxidants in pH-responsive microspheres based on TEMPO-oxidized polysaccharides, Carbohydrate Polymers, vol.157, pp.858-865, 2017.

M. R. Sierakowski, M. Milas, J. Desbrières, and M. Rinaudo, Specific modifications of galactomannans, Carbohydrate Polymers, vol.42, pp.51-57, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00309673

M. R. Sierakowski, R. A. Freitas, J. Fujimoto, and D. F. Petri, Adsorption behavior of oxidized galactomannans onto amino-terminated surfaces and their interaction with bovine serum albumin, Carbohydrate Polymers, vol.49, pp.167-175, 2002.

X. Song and M. A. Hubbe, TEMPO-mediated oxidation of oat -d-glucan and its influences on paper properties, Carbohydrate Polymers, vol.99, pp.617-623, 2014.

B. Soni, E. B. Hassan, M. W. Shilling, and B. Mahmoud, Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical andbarrier properties, Carbohydrate Polymers, vol.151, pp.779-789, 2016.

C. F. Souza, N. Lucyszyn, F. Ferraz, and M. R. Sierakowski, Oxidation and N-alkylation at the C-6 position of galactomannan extracted from Caesalpinia ferrea var. ferrea seeds. Macromolecular Symposia, 299/300, pp.66-73, 2011.

A. Spatareanu, M. Bercea, T. Budtova, V. Harabagiu, L. Sacarescu et al., Synthesis, characterization and solution behavior of oxidized pullulan, Carbohydrate Polymers, vol.111, pp.63-71, 2014.

R. L. Stilwell, M. G. Marks, L. Saferstein, and D. M. Wiseman, Oxidized cellulose: Chemistry, processing and medical applications, Drug Target Recovery Handbook of Biodegradable Polymers, vol.7, pp.291-306, 1997.

Y. Su, B. Chu, Y. Gao, C. Wu, L. Zhang et al., Modification of agarose with carboxylation and grafting dopamine for promotion of its cell-adhesiveness, Carbohydrate Polymers, vol.92, pp.2245-2251, 2013.

A. A. Sundar-raj, S. Rubila, R. Jayabalan, and T. V. Ranganathan, A review on pectin: Chemistry due to general properties of pectin and its pharmaceutical uses, Open Access Scientific Reports, vol.1, issue.550, pp.1-4, 2012.

T. Takeda, J. C. Miller, and S. C. Fry, Anionic derivatives of xyloglycan funbction as acceptor but not donor substrates for xyloglucan endotransglucosylase activity, Planta, vol.227, pp.893-905, 2008.

N. Tamura, M. Wada, and A. Isogai, TEMPO-mediated oxidation of (1 ? 3)--d-glucans. Carbohydrate Polymers, p.77, 2009.

N. Tamura, M. Hirota, T. Saito, and A. Isogai, Oxidation of curdlan and other polysaccharides by 4-acetamide-TEMPO/NaClO/NaClO2 under acid conditions, Carbohydrate Polymers, vol.81, pp.592-598, 2010.

M. L. Tavernier, C. Delattre, E. Petit, and P. Michaud, 4)-polyglucuronic acids-An overview, The Open Biotechnology Journal, vol.2, issue.1, pp.73-86, 2008.

J. Thaburet, N. Merbouh, M. Ibert, F. Marsais, and G. Queguiner, TEMPO-mediated oxidation of maltodextrins and d-glucose: Effect of pH on the selectivity and sequestering ability of the resulting polycarboxylates, Carbohydrate Research, vol.330, pp.21-29, 2001.

L. Viikari, J. Buchert, and K. Kruus, , 1999.

L. Viikari, M. L. Niku-paavola, J. Buchert, P. Forssell, A. Teleman et al., , 1999.

T. Vogler and A. Studer, Applications of TEMPO in synthesis, Synthesis, vol.13, pp.1979-1993, 2008.

S. Wang, Y. Chen, H. Liang, Y. Chen, M. Shi et al., Intestine-specific delivery of hydrophobic bioactives from oxidized starch microspheres with an enhanced stability, Journal of Agricultural and Food Chemistry, vol.63, pp.8669-8675, 2015.

H. Wang, F. Wen, Y. Chen, T. Sun, Y. Meng et al., Electrocatalytic determination of nitrite based on straw cellulose/molybdenum sulfide nanocomposite, Biosensors and Bioeletronics, vol.85, pp.682-687, 2016.

E. Watanabe, N. Habu, and A. Isogai, Biodegradation of (1 ? 3)--polyglucuronate prepared by TEMPO-mediated oxidation, Carbohydrate Polymers, vol.96, pp.314-319, 2013.

J. Wei, Y. Chen, H. Liu, C. Du, H. Yu et al., Thermo-responsive and compression properties of TEMPO-oxidized cellulose nanofiber-modified PNIPAm hydrogels, Carbohydrate Polymers, vol.147, pp.201-207, 2016.

R. Weishaupt, G. Siqueira, M. Schubert, P. Tingaut, K. Maniura-weber et al., TEMPO-oxidized nanofibrillated cellulose as a high density carrier for bioactive molecules, Bioomacromolecules, vol.16, pp.3640-3650, 2015.

E. A. Yackel and W. O. Kenyon, The oxidation of cellulose by nitrogen dioxide, Journal of the American Chemical Society, vol.64, pp.121-127, 1942.

S. Yoo, J. Lee, S. Y. Park, Y. Kim, P. Chang et al., Effects of selective oxidation of chitosan on physical and biological properties, International Journal of Biological Macromolecules, vol.35, pp.27-31, 2005.

K. Zhang, D. Peschel, T. Klinger, K. Gebauer, T. Groth et al., Synthesis of carboxyl cellulose sulfate with various contents of regioselectively introduced sulfate and carboxyl groups, Carbohydrate Polymers, vol.82, pp.92-99, 2010.

X. Zhang, Y. Wang, J. Zhao, M. Xiao, W. Zhang et al., Mechanically strong and thermally responsive cellulose nanofibers/poly(N-isopropylacrylamide) composite aerogels, ACS Sustainable Chemistry and Engineering, vol.4, pp.4321-4327, 2016.

N. Zhang, G. Zang, C. Shi, H. Yu, and G. Sheng, A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(II) removal, Journal of Hazardous Materials, vol.316, pp.11-18, 2016.

Y. Zhao, Y. Zhang, M. E. Lindström, and L. Jiebing, Tunicate cellulose nanocrystals: Preparation, neat films and nanocomposite films with glucomannans, Carbohydrate Polymers, vol.117, pp.286-296, 2015.