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Abstract6

The thermal evolution of planets during their accretionary growth is strongly7

influenced by impact heating. The temperature increase following a collision8

takes place mostly below the impact location in a volume a few times larger9

than that of the impactor. Impact heating depends essentially on the radius of10

the impacted planet. When this radius exceeds ∼ 1000 km, the metal phase11

melts and forms a shallow and dense pool that penetrates the deep mantle12

as a diapir. To study the evolution of a metal diapir we propose a model13

of thermo-chemical readjustment that we compare to numerical simulations in14

axisymmetric spherical geometry and with variable viscosity. We show that the15

metallic phase sinks with a velocity of order of a Stokes velocity. The thermal16

energy released by the segregation of metal is smaller but comparable to the17

thermal energy buried during the impact. However as the latter is distributed18

in a large undifferentiated volume and the former potentially liberated into a19

much smaller volume (the diapir and its close surroundings) a significant heating20

of the metal can occur raising its temperature excess by at most a factor 2 or 3.21

When the viscosity of the hot differentiated material decreases, the proportion22

of thermal energy transferred to the undifferentiated material increases and a23

protocore is formed at a temperature close to that of the impact zone.24

Key words: core formation; meteoritical impacts; early earth; numerical25

modeling; differentiation.26
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1. Introduction27

Core formation is the most important differentiation event that occured dur-28

ing Earth’s history. Metal/silicates separation is a rapid event (< 60 My) (Yin29

et al., 2002; Kleine et al., 2002; Touboul et al., 2007) contemporaneous with30

Earth accretion and involving gravitational mechanisms such as percolation,31

negative diapirism and Rayleigh-Taylor instabilities (Stevenson, 1990; Honda32

et al., 1993). In the homogeneous accretion hypothesis, metal segregation and33

thereby core formation need significant heating to exceed the melting temper-34

ature of iron alloys or of silicates. During the early stages of planetesimals35

formation, heating by decay of short lived radionuclides is a potential energy36

source to enhance early differentiation (Yoshino et al., 2003). As a planetesimal37

grows, its gravity increases and it will increasingly attract the other surrounding38

planetesimals. The dissipation of the kinetic energy of the impacts provides a39

later shallow source of heat.40

Impacts of large planetesimals have strongly influenced the late accretionary41

and thermal state of nearly fully-formed planetary bodies (Tonks and Melosh,42

1992; Senshu et al., 2002). During an impact, when the relative velocity between43

a planet and an impactor overcomes the seismic velocities of the medium, a shock44

wave develops. The shock pressure is nearly uniform in a spherical region next45

to the impact (the isobaric core), and strongly decays away from it (Croft, 1982;46

Pierazzo et al., 1997). In this isobaric core, the kinetic energy of the impact47

is dissipated and leaves a temperature anomaly of several hundred degrees on48

Moon to Mars size bodies (Senshu et al., 2002; Monteux et al., 2007). The49

temperatures reached are mostly related to the properties (density and radius)50

of the impacted body, and only weakly to those of the impactor (Monteux et al.,51

2007). The melting temperature of iron alloys is lower than the silicates solidus52

(Fei et al., 1997; Agee, 1997; Ghosh and McSween, 1998). On large impacted53
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planets, a local differentiation may occur between heavy metal and light silicates54

in the heated anomaly (Tonks and Melosh, 1992). Hence, a thermo-chemical55

readjustment follows, associated with the sinking of the metallic component56

toward the center of the impacted protoplanet (Fig. 1).57

For large planets, gravitational energy release due to core formation can58

induce melting of the whole planet (Stevenson, 1989; Ricard et al., 2009). This59

subsequent melting depends on the mechanisms of the metal descent (Samuel60

and Tackley, 2008; Golabek et al., 2008). The aim of this study is to determine61

the thermal evolution of metal during descent and the thermal state of the core.62

First, we propose analytical and numerical isoviscous models of segregation63

of a purely spherical iron diapir. As the viscosity contrast between molten metal64

and undifferentiated cold material can reach several orders of magnitude, we65

then focus on more realistic models of segregation of metal after a large impact66

with temperature dependent rheologies. We show that the size of impactors and67

viscosities involved largely determine the inner thermal state of a young planet.68

2. Thermo-chemical state after large impact69

2.1. Thermal state70

After a meteoritical impact, heating is localized in a spherical region called71

the isobaric core just beneath the impact site. The radius of the isobaric core72

Ric is comparable to the radius of the impactor Rimp and depends on en-73

ergy conversion during the shock. With a minimal set of assumptions, we get74

Ric = 31/3 Rimp following Senshu et al. (2002) and Pierazzo et al. (1997). Just75

after the adiabatic pressure release, the isobaric core is isothermal and we call76

∆T0 the shock induced temperature increase. The lower script 0 indicates that77

we consider this instant as the origin of our time variable. Outside the isobaric78

core, the temperature anomaly decays as ∆T0(r) = ∆T0 (Ric/r)m with m ∼ 4.479
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as proposed by Senshu et al. (2002). Assuming that the kinetic energy of the80

impactor is controlled by the escape velocity of the impacted body and that81

impactor and impacted body have the same densities (i.e., ρic = ρimp ≡ ρ0), a82

simple energy balance (see e.g., Monteux et al., 2007), indicates that83

∆T0 =
4π

9

γ

h(m)

ρ2
0GR2

ρCp
, (1)

where ρCp is the average heat capacity of the impacted body that is plausibly a84

mixture of silicate and metal, G is the gravitational constant, ρ0 is the density of85

the undifferentiated material, R is the radius of the impacted planet and where86

the function h(m) represents the volume effectively heated normalized by the87

volume of the isobaric core (typically h(m) ∼ 2 − 3 (Monteux et al., 2007)).88

The empirical coefficient γ is the fraction of the kinetic energy of the impactor89

dissipated as heat. From shock experiments, γ ranges between 0.2 and 0.4 de-90

pending on material properties and shock velocities (O’Keefe and Ahrens, 1977)91

(i.e., 20 to 40% of the kinetic energy is buried at depth, the rest rapidly radiated92

away during or shortly after the impact). The shock-induced temperature ex-93

cess, ∆T0, strongly increases with the radius of the impacted body. According94

to the set of parameters of Table 1, ∆T0(K) = 4.7 × 10−5R2(km); for a Moon95

size body ∆T0 is 140 K while it is 1925 K for an Earth size body.96

The thermal state of a protoplanet before an impact depends on its growth97

history and on its initial heating caused by short lived radionuclides like 26Al98

and 60Fe. This early radioactive heating can eventualy cause melting and differ-99

entiation of planetesimals that have quickly grown (Yoshino et al., 2003). The100

impact heating superimposed to a sufficiently hot protoplanetary interior can101

trigger melting of the Fe-FeS system (the eutectic temperature is close to 1250102

K at 1 bar) (Fei et al., 1997) and potentially of silicates (solidus temperature is103

around 1500 K at 1 bar) (Agee, 1997). In these cases, a fraction of the thermal104
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energy is converted to latent heat during the phase transformations.105

2.2. Compositional state106

An impact on a large enough undifferentiated protoplanet composed of a107

mixture of metals and silicates can trigger phase transformations and initiate108

differentiation. The first component that melts is the metal phase. In the region109

where metal melting occurs, the liquid metal can percolate through the solid110

silicate matrix. Percolation is only possible for small dihedral angles (< 60◦)111

or for large melt volume fraction above a percolation threshold. The dihedral112

angle of liquid iron alloy within silicates is large (∼ 100◦) in the upper mantle113

but decreases with increasing pressure (Shannon and Agee, 1996). However,114

the volume fraction of liquid alloy is typically larger than 10% if melting is115

complete, which overcomes the percolation threshold (Von Bargen and Waff,116

1986). On Earth the core represents 17% of the volume of the planet, Mars has117

likely a slightly smaller core but Mercury’s core is 43% of the planet. The metal118

is collected at the bottom boundary of the melted zone forming a diapir that119

ultimately sinks within the interior of the impacted protoplanet (Ricard et al.,120

2009).121

If the temperature exceeds the silicate solidus and eventually the liquidus,122

the separation of metal and silicates can occur as a metal rainfall through a123

turbulent magma (Stevenson, 1990; Höink et al., 2005). Small droplets of heavy124

metal sediment at the bottom of the melted region. This scenario may not be125

the generic one, as it would imply that a planet embryo maintains a melted126

metal component without differentiating until the silicates start melting. It has127

been suggested that the metal may segregate per percolation, as soon as it melts,128

while the silicates are still mostly solid (Ricard et al., 2009). Locally, however,129

the impact of an undifferentiated planetesimal on an already differentiated large130

planetary embryo, may of course, be energetic enough to melt (or even vaporize)131
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the silicate and metal contents of the impactor and the silicates of the impacted132

body inside the isobaric core.133

The two processes (percolation or metal “rain”) lead to a local differentiation134

within the melted region between light silicates and heavy metals on a short135

timescale compared to that of the slow viscous deformation (Tonks and Melosh,136

1992). The melted region is as large as or a few times larger than the isobaric137

core (Pierazzo et al., 1997). Here, we identify the initially differentiated zone to138

the isobaric core, metal being overlaid by pure silicates shortly after the impact139

(see Fig.1).140

3. Dynamic model of differentiation141

The setting described in the previous section is gravitationally unstable and142

the metal phase sinks toward the center of the impacted planetesimal while the143

silicates (lighter than undifferentiated material) spread underneath the surface.144

To study the global dynamics of this differentiation event, we develop a thermo-145

mechanical model in spherical axisymmetrical geometry, of viscous flow with146

three chemical components. Using a viscous and linear rheology during the147

segregation of the core is clearly a large approximation. The large deviatoric148

stress generated by the metallic diapirs should lead to a non-linear rheology149

(Samuel and Tackley, 2008), elasto-plastic deformations (Gerya and Yuen, 2007)150

or even to hydrofracturation if they exceed the ultimate strength of rocks which151

is ∼ 1 − 2 GPa (Davies, 1982). Pressure dependence of the rheology can also152

influence the metal sinking time but is not considered here since we focus on153

small growing planets. During the early stages of accretion, the interior of the154

growing planets may have been colder or hotter than the outer layers depending155

on the ratio of radioactive and impact heating and on the history of accretion.156

For simplicity, we assume in our models an homogenous temperature on the157
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growing planet before the impact.158

3.1. Physical model159

Sinking occurs under the action of gravity in a spherical homogeneous pro-160

toplanetary body. We neglect for simplicity the changes of gravity during the161

differentiation. Hence gravitational acceleration g(r) increases linearly with ra-162

dius r:163

g(r) =
4

3
Gπρ0r = g0

r

R
, (2)

where g0 the surface gravity. The density of undifferentiated material is ρ0 =164

f0ρFe + (1 − f0)ρSi where f0 is the volume fraction of metal and ρFe, ρSi, the165

densities of the metallic phase and the pure silicates, respectively (see typical166

numerical values in Table 1.)167

The dynamics of segregation potentially involves a series of multiscale physi-168

cal processes, especially to take the effects of melting into account and a realistic169

multiphase dynamics (Golabek et al., 2008; Ricard et al., 2009). No numerical170

models can handle simultaneously all these complexities and as a consequence,171

we follow the approach of Samuel and Tackley (2008) and consider a thermo-172

chemical system with infinite Prandtl limit, with no possible subsequent phase173

separation within the undifferentiated material except that caused by the im-174

pact (e.g., the volumes of pure metal and pure silicates remain constant during175

the simulations and equal to 17% and 83% of the initial isobaric core).176

The necessary approximations are somewhat different from the classic treat-177

ment of thermal convection (see e.g., Ricard, 2007). We non-dimensionalize the178

lengths by the planetary radius R, the velocities by a Stokes velocity ∆ρ0g0R2/η0179

(where ∆ρ0 = ρFe−ρSi and η0 is the reference viscosity of cold material far from180

the impact site), the temperature by ∆T0 (see Eq.1). The governing mechanical181

non-dimensionnal equations are the conservation of mass182

8



∇ · v = 0, (3)

and the conservation of momentum183

−∇P + ∇ ·

(

η

η0

[

∇v + [∇v]T
])

+

(

T

B
− f

)

rer = 0, (4)

where v, P , T and r are the non-dimensional velocity, pressure, temperature184

and radius, η the viscosity, T0 the temperature (assumed uniform) before the185

impact and er the radial unit vector. The buoyancy ratio B (Christensen and186

Yuen, 1985) is:187

B =
∆ρ0

ρ0α∆T0

. (5)

The downward buoyancy force that drives the flow increases with the volume188

fraction of metal f that varies between 0 (pure silicates) and 1 (pure metal),189

0.17 being that of undifferentiated material. A depth dependent and constant190

in time gravity has been used in the momentum equation Eq.4 although, in191

principle, gravity should have been computed self-consistently from the time-192

dependent density distribution. We assume a temperature dependent viscosity193

such as η = η0λT with λ being the viscosity factor (lower than 1) which is194

equivalent to the viscosity ratio between the hottest and coldest material at the195

start of the experiment. Such a viscosity decreases sharply with temperature196

and is simpler to implement than the usual Arrhenius law (Ratcliff et al., 1997;197

Ziethe and Spohn, 2007).198

The conservation of energy writes199

DT

Dt
=

∇2T

Raχ
+ Dχ

η

η0

Φ +
1

B

∆ρ

ρ

T

∆T0

Dχ
DP

Dt
. (6)

The importance of diffusion is controlled by the compositional Rayleigh num-200
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ber Raχ,201

Raχ =
∆ρ0g0R3

κη0

, (7)

the chemical dissipation number is202

Dχ =
∆ρ0g0R

ρCp∆T0

, (8)

considering for simplicity that ρCp = ρFeCFe
p = ρSiCSi

p (truely, see Table 1,203

ρFeCFe
p = 4 × 103 kJ K−1 m−3, ρSiCSi

p = 3.85 × 103 kJ K−1 m−3, and we use204

ρCp = 4 × 103 kJ K−1 m−3). As g0 is proportional to R and ∆T0 to R2, see205

Eq.1, the chemical dissipation is independent of the planet radius and amounts206

to 36.6 (see Table 1).207

An important energy source is provided by the dimensionless dissipation208

function Φ that expresses the conversion of potential energy into heat209

Φ = 2 ε : ε. (9)

where ε is the dimensionless strain rate tensor. For simplicity, we make the210

approximation that the thermal conductivities of the metal, silicates and undif-211

ferentiated materials are the same (truely kFe=10 W m−1 K−1>kSi=3 W m−1
212

K−1).213

The metal volume fraction is then simply advected by the flow,214

Df

Dt
= 0. (10)

3.2. Model approximations215

The equations of momentum and energy conservations, Eq.4 and Eq.6, are216

similar to those classically used for mantle convection simulation but a number217

of differences should be discussed. As the buoyancy number B is very large (the218
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density difference between metal and silicates is 40 to 620 times larger than the219

thermal density variations), the thermal buoyancy T/B can be safely neglected220

in the momemtum equation.221

Neglecting the terms in 1/B implies to omit the adiabatic heat transfer222

(the term in (DP/Dt)) in Eq.6 but to keep the dissipation term Dχ(η/η0)Φ.223

The differentiation of the planet liberates a large amount of potential energy224

converted into heat by the dissipation term but the adiabatic heating remains225

small. This is very different from the typical convection situation in which226

there is no time variation of the potential energy, and where the dissipation is227

on average, balanced by the work due to compression and expansion over the228

convective cycle (Hewitt et al., 1975).229

3.3. Numerical model230

We implement a finite volume numerical model to solve Eq.3, Eq.4, Eq.6231

and Eq.10 in axi-symmetric spherical geometry. We use a stream function for-232

mulation for the equations of motion with a direct implicit inversion method233

(Schubert et al., 2001). Eq.6 and Eq.10 are solved by an Alternating Direc-234

tion Implicit (ADI) scheme (Peaceman and Rachford, 1955; Douglas, 1955).235

The stream function, temperature and compositional fields are described by a236

second-order approximation in space. To limit numerical diffusion when solving237

the transport equations, especially for the compositional field, we use a Total238

Variation Diminishing Superbee scheme (Roe, 1986; Laney, 1998) implemented239

in an implicit way (Sramek, 2007) which enables a high resolution of pure advec-240

tive fields. We use at least 200× 200 grid points. Velocity boundary conditions241

are free-slip at the surface and along the symmetry axis. Thermal boundary con-242

ditions are isothermal at the surface and insulating along the symmetry axis.243

We benchmark the viscous flow solver with variable viscosity and the transport244

scheme against several analytical solutions (Monteux, 2009).245
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4. Thermal evolution of sinking metallic diapir: Analytical consider-246

ations247

Before showing the results of complex numerical simulations with temper-248

ature dependent rheologies, we develop a simple model describing the thermal249

evolution of the sinking metal diapir, by approximating the metal diapir by a250

spherical drop falling into undifferentiated medium of uniform viscosity with251

a Stokes-like velocity. The radius of the metal drop RFe, can be related to252

the radius Ric of the volume initially differentiated after impact heating, by253

R3
Fe = f0R3

ic and to the radius of the impactor by R3
Fe = 3f0R3

imp.254

4.1. Sinking velocity255

The velocity V of the metallic diapir in an undifferentiated medium is compa-256

rable to the Stokes velocity of a sphere of similar volume. The density difference257

between the metal and the undifferentiated material is a function of tempera-258

ture and composition but the temperature contribution is minor. Hence, we259

consider ∆ρ = (1 − f0)∆ρ0. Because gravity is a linear function of depth, the260

velocity of the sphere decreases during sinking as261

V =
dr

dt
= −c1(1 − f0)

∆ρ0g0R2
Fe

ηS

r

R
. (11)

In equation Eq.11, the dimensionless constant c1 depends on the geometry of262

the system and on the viscosity contrast between the falling sphere and the263

surrounding medium.264

The viscosity of the surrounding undifferentiated material ηS controls the265

sinking velocity. In the case of a sphere sinking in an infinite medium, the266

coefficient c1 is given by the Hadamard-Rybczynski equation and varies from267

4/15 = 0.27 (isoviscous) to 1/3 = 0.33 for an inviscid sphere (Hadamard, 1911;268

Rybczynski, 1911). In the situation described in this paper, the boundary condi-269
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tions are applied at a finite distance (the planetary surface) and the Hadamard270

and Rybczynski equation is thus only an approximation (Honda et al., 1993;271

Samuel and Tackley, 2008). The exact value of the constant c1 will be obtained272

later through numerical experiments.273

The position of the metallic drop obtained by solving Eq.11 varies from an274

initial position r0 (r0 = R − RFe ∼ R) as275

r(t) = r0 exp(−
t

τS
), (12)

with a characteristic time equal to276

τS =
ηSR

c1∆ρ0g0

1

(1 − f0)

1

R2
Fe

. (13)

As g0 is proportional to the planetary radius R (Eq.2), the time τS is inde-277

pendent of the planetary radius but depends only on the diapir size RFe. Of278

course, no segregation occurs, i.e., τS → +∞, for a planet of pure silicates279

(f0 = 0 which means RFe = 0) or of pure metal (f0 = 1). This characteristic280

sinking time is strongly dependent of the viscosity of the surrounding undiffer-281

entiated material which is poorly constrained. With the typical values of Table282

1, this time can be computed from the size Rimp of the impactor and we find283

τS(kyr) = 2.7 × 109(ηS/η0)R
−2

imp(km).284

4.2. Global energy conversion285

As we assume that gravity remains constant with time (albeit non-uniform),286

the energy equation Eq.6 integrated over the whole planet with the use of the287

momentum equation Eq.4 and neglecting the adiabatic decompression of the288

planet during the core segregation is simply289

d

dt
(∆Ep + ∆ET ) = F, (14)
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where the total potential and thermal energies changes are290

∆Ep =

∫

Ω

1

2
[ρ(r, t) − ρ(r, 0)] g0

r2

R
dV, (15)

(Ω is the planetary volume),291

∆ET =

∫

Ω

ρCp [T (r, t) − T (r, 0)] dV, (16)

and the heat flux F is ,292

F =

∫

Σ

k
∂T

∂r
dS, (17)

(Σ is the planetary surface).293

As we neglect the term in 1/B in the energy equation Eq.4, the budget Eq.14294

misses the energy variation ∆Ea due to the changes in pressure (the subscript295

a means that this term is related to changes in adiabatic compression)296

d∆Ea

dt
=

∫

Ω

αT
∂P

∂t
dV ∼ αT0

d

dt

∫

Ω

[P (r, t) − P (r, 0)] dV (18)

(where the last approximation assumes that the temperature remains close297

to T0). The difference of pressure between a homogeneous and a differentiated298

planet is easy to compute analytically and is of order αT0∆Ep, i.e., a few percent299

of the changes in potential energy. This confirms that the energy change due to300

pressure changes is a minor effect.301

4.3. Maximum temperature302

The maximum temperature that the sinking metal can reach can be esti-303

mated by assuming that the whole variation of potential energy is only used to304

heat up the metal, without any heat transfer to the surrounding material.305
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Let us consider a melted zone of radius Ric underneath and tangent to the306

planetary surface that differentiates ultimately forming a metallic core of volume307

VFe and radius RFe (with R3
Fe = f0R3

ic) and a silicate layer of volume VSi within308

a shell surrounding the whole planet with inner shell radius RS and outer shell309

radius R i.e., R3
S = R3−(1−f0)R3

ic. The change of potential energy is according310

to Eq.15 (see also Flasar and Birch, 1973):311

∆Ep =
2π

5R
g0

(

(ρFe − ρ0)R
5
Fe + (ρSi − ρ0)(R

5 − R5
S)

)

. (19)

Assuming Ric << R, a Taylor expansion of Eq.19 leads to312

∆Ep ∼ −
1

2
∆ρ0g0Rf0(1−f0)Vic = −

1

2
(ρFe−ρ0)g0RVFe = −

1

2
(ρ0−ρSi)g0RVSi,

(20)

where Vic is the volume of the isobaric core. The change of potential energy313

is thus equivalent to that released by the sinking of the isobaric volume Vic314

and excess density f0(1 − f0)∆ρ0. Alternatively it corresponds to the energy315

released by a metal sphere of volume VFe sinking, or of a silicate sphere rising,316

through undifferentiated material. If only the metal heats up, the change of317

thermal energy according to Eq.16 is ∆ET = ρCpf0∆ΘVic where ∆Θ is the318

temperature increase (just after the impact, the metal temperature is T0 +∆T0,319

then it reaches at most T0 + ∆T0 + ∆Θ). A scaling value for the temperature320

increase during segregation is thus321

∆Θ =
1 − f0

2

1

ρCp
∆ρ0g0R. (21)

As g0 is proportional to R (Eq.2), the core segregation can increase the tem-322

perature by a quantity proportional to R2 (in agreement with Flasar and Birch,323

1973; Ricard et al., 2009). The ratio of ∆Θ to the post impact temperature324
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∆T0 is, according to Table 1 and Eq.1,325

∆Θ

∆T0

=
3h(m)

2γ
(1 − f0)

∆ρ0

ρ0

∼ 11.8 (22)

or, ∆Θ(K) = 11.8 ∆T0(K) = 5.6 × 10−4R2(km) which rapidly becomes a large326

quantity as R increases. Of course, in a real situation not all energy will remain327

within the metal, and we will see that, when the metal diapir is too small, the328

metal can even cool off rather than warm up during its motion.329

4.4. Thermal regime of the metallic sphere330

While the hot metallic sphere is sinking, it warms up by shear heating but331

it also cools down by diffusion. In the reference frame of the sinking drop, the332

conservation of energy integrated over the volume VFe of the metallic drop (or333

through its surface SFe) indicates that334

ρCpVFe
d∆T

dt
= −k

∆T

δ
SFe + τ : ∇v VFe, (23)

where we assume that the temperature and the dissipation are at first order335

uniform in the metal. The difference ∆T is the difference between the diapir336

and the undifferentiated material. We assume that ∆T = T − T0, i.e., that337

the hot diapir sinks into a medium that keeps its initial temperature outside338

the boundary thickness δ. Even when the diapir viscosity is low and when the339

dissipation occurs significantly outside it, our numerical simulations shows that340

the maximum temperature is reached inside the diapir.341

The thickness δ over which the temperature diffuses should be written as RFe342

times a dimensionless function c2 of the various parameters of the problem. The343

thickness of the diffusive boundary layer, c2, should decrease with the sinking344

velocity of the diapir (i.e., with the Peclet number V RFe/κ) as a power law345

with exponent -1/2 or -1/3, depending on the viscosity ratio between the metal346
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and the undifferentiated material (see e.g., Ribe, 2007). We can also write the347

dissipation τ : ∇v = ηeV 2/R2
Fe where ηe is the effective viscosity of the region348

where dissipation occurs. In this case, Eq.23 using the expressions of the time349

dependent position, Eq.12, and of the maximum temperature increase, Eq.21,350

can be recast as351

d∆T

dt
= −

∆T

τD
+ 2a

(r0

R

)2 ∆Θ

τS
exp

(

−2
t

τS

)

, (24)

where the dimensionless constant352

a = c1

ηe

ηS
(25)

characterizes the proportion of heat effectively dissipated in the metal and τD353

the characteristic time of diffusion354

τD =
c2R2

Fe

3κ
, (26)

where c2, measuring in terms of RFe the thickness of the thermal boundary355

layer around the metal, δ = c2RFe, is a dimensionless number.356

Eq.24 cannot be used predictively in a complex situation as it requires the357

knowledge of various parameters c1, c2 and a. The dependences of these param-358

eters with more fundamental quantities (mostly with the temperature depen-359

dence of the viscosity) have to be determined empirically. We will see however,360

that for a given choice of the rheology, Eq.24 captures the evolution of the361

metallic diapir temperature as a function of time and the dependence of this362

temperature with the diapir size. For example, Eq.24 suggests that the diffusion363

term decreases with RFe (as R−2

Fe if one considers c2 as a constant) while the364

dissipation term increases with R2
Fe. We can also use Eq.24 qualitatively by365
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assuming a ∼ c1 ∼ 4/15 (using Stokes law) and c2 ∼ 1.366

The expression Eq.24 shows that the temperature is not necessarily an in-367

creasing function of time. More precisely, according to Eq.24 the metal temper-368

ature increases just after the impact (t ∼ 0), if369

−
∆T0

τD
+ 2a

(r0

R

)2 ∆Θ

τS
> 0 (27)

Using the expressions for the temperature increase upon impact ∆T0 (see Eq.1),370

the maximum temperature increase during segregation ∆Θ (see Eq.21) and for371

the two time constant τS and τD (see Eq.13 and Eq.26), this condition implies372

that dissipative heating overcomes the conductive diffusion when373

RFe > RFe,min (28)

where RFe,min involves the properties of the planet, but not its radius since374

∆T0 is proportional to R2:375

R4
Fe,min =

9

8π

(r0

R

)2 1

c1c2a

∆T0

∆Θ

ηSκ

Gρ0(1 − f0)∆ρ0

. (29)

According to the set of parameters shown in Table 1, RFe,min ∼ 45 km376

(using c1 ∼ a ∼ 4/15, r0 ∼ R and c2 ∼ 1 but using values fitted from experi-377

ments does not change this radius very much for the moderate level of viscosity378

variations used in our simulations herafter). Such a diapir corresponds to an379

impactor of radius Rimp ∼ 60 km (Rimp = Ric/31/3 = RFe/(3f0)1/3). There-380

fore, only impactors larger than Rimp = 60 km generate metallic diapirs that381

heat up during sinking, although their initial temperature set by the impact is382

not dependent on the size of the impactor.383
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Integration of Eq.24 leads to:384

∆T = ∆T0 exp(−
t

τD
)+a

(r0

R

)2

∆Θ
2τD

2τD − τS

(

exp(−
t

τD
)−exp(−2

t

τS
)

)

. (30)

The initial temperature anomaly ∆T0 decreases exponentially with time while385

the interplay between diffusion and dissipation controls the general temperature386

evolution. For the diapir to heat up, the heating time τS/2 must be shorter387

than the diffusive time τD. Typically r0 ∼ R and in the regime where the diapir388

heats up, the dissipation occurs before the diffusion, τS/2 << t << τD; the389

temperature rapidly increases to ∆T = ∆T0 + a (r0/R)2 ∆Θ, and the physical390

interpretation of a is therefore the percentage of heat dissipated inside the metal.391

According to Eq.25, a should be lower than the coefficient c1 of the Rybczinski-392

Hadamard velocity as the effective viscosity of the hot diapir ηe is likely lower393

than the average viscosity ηS . For a numerical application we take however394

a ∼ c1 = 4/15 ∼ 0.27 as obtained for the isoviscous Rybczinski-Hadamard395

velocity. As ∆Θ and ∆T0 are simultaneously proportional to R2, the maximum396

temperature of the diapir is at most ∆T = 4.2 ∆T0 and is independent of the397

planet size.398

Dissipation decreases as exp(−2t/τs) = (r/r0)2 according to Eq.12. Hence,399

the dissipation term in Eq.24 decreases with depth. When a diapir heats up, its400

temperature increases therefore to the maximum ∆Tmax reached at the radius401

r that satisfies d∆T/dt = 0 or402

0 = −
∆Tmax

τD
+ 2a

∆Θ

τS

( r

R

)2

, (31)

which implies403

(

r

r0

)2

=
∆Tmax

∆T0

(

RFe,min

RFe

)4

. (32)

The factor ∆Tmax/∆T0 varies between 1 (no heating) and 4.2 (maximum esti-404
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mated temperature). As an example, an impactor of radius 120 km, generates405

a metallic diapir of 96 km (two times RFe,min) that heats up until it reaches406

half the radius of the impacted planet. The expression Eq.32 is only valid when407

RFe > RFe,min, otherwise the diapir temperature simply decreases.408

5. Numerical simulations409

We compare the predictions of the analytical model to spherical axisymmet-410

ric calculations of a sinking metallic drop, especially to extract the diffusive and411

sinking times τD and τS and the fraction of heat trapped in the metallic phase412

(e.g., the constants c1, c2 and a, that we expect to be close to 4/15, 1 and 4/15).413

We then compare these results to more complex numerical experiments where414

a compositional anomaly is generated in the isobaric core after a large impact.415

The effect of variable viscosity is also studied in these models.416

5.1. Numerical models of sinking metallic drops417

5.1.1. Sinking velocity418

We solve numerically a set of problems in which we introduce metallic spheres419

(f0 = 1) of different sizes, tangent to the surface, in undifferentiated planets420

(f0 = 0.17) of various radii. From this set of experiments, we compare the421

temporal evolution of the sphere position to what is predicted by Eq.12. The422

calculations presented here are isoviscous for simplicity but variable viscosity423

will be introduced in more complex cases. Fig.2 shows that the values of τS424

obtained by fitting the center of the diapir position to an exponential in the425

numerical models, vary as 1/R2
Fe as expected from the analytical model, with426

c1 = 0.187 (almost 70% of the Hadamard-Rybczynski velocity for a homogenous427

viscosity 4/15=0.27). For large sphere radii, boundary effects are stronger and428

the sinking times are slightly larger.429
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5.1.2. Temperature evolution430

Large sinking diapirs heat up before cooling down by diffusion when the431

velocity of the metal decreases sufficiently towards the center. Our theoretical432

predictions given by Eq.30 are in good agreement with the computed evolutions433

with the value c1 obtained previously. Fig.3 shows the consistency between434

the numerical results and the theory when the parameters c2 and a are fitted435

(c2 = 0.72, a = 0.2 which is reasonably close to c1 = 0.187). The value of a ,436

indicates that 20% of the released heat is trapped in the metal. The maximum437

temperature value, 2.2 ∆T0, is in rough agreement with the estimate ∆T =438

∆T0 + a (r0/R)2 ∆Θ = 2.88 ∆T0. This value is obtained for sufficiently large439

impactors (> 200 km) since smaller ones can cool off very early upon sinking as440

seen from Eq.32.441

We monitor the temperature evolution for various diapir radii. Fitting the442

temperature evolution with Eq.30 leads to values of τD and a for each diapir443

radius. The corresponding characteristic diffusive times are plotted in Fig.4.444

These times are consistent with analytical predictions from Eq.26 and increase445

with the square of the diapir size. For all the experiments, the fraction of heat446

a trapped in the metal is therefore reasonably constant (∼ 22 ± 5%) and close447

to c1.448

To verify condition Eq.32 that predicts the radius for which dissipation over-449

comes diffusion, we computed the rate of heating or cooling of metallic spheres450

as a function of their radius and depths. Various planetary radii have been used451

and, as predicted, the heating always occur in the external part of the planet452

(filled symbols). Near the center of the impacted planet, when the gravity de-453

creases, diffusion dominates (open symbols) and the temperature of the sinking454

metallic phase decreases. As shown in Fig.5, the transition between heating and455

cooling occurs consistently within the shaded area predicted by the analytical456
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expressions Eq.32. For small diapirs (RFe ≤ 45 km), diffusion dominates and457

prevents heating. Large diapirs reach their maximum temperature and start458

cooling near the high temperature estimate of the analytical model.459

5.2. Application to global evolution after an impact460

The thermo-chemical initial conditions after an impact differ from a simple461

hot metallic sphere sinking within an undifferentiated material. Indeed, the462

denser metallic pond collected at the bottom of the isobaric core is not spher-463

ical and above it, a volume of light silicates rises and spreads underneath the464

surface until it covers the entire surface of the planet. These deviations from465

our analytical model potentially modify the results obtained from the sinking466

metallic drop model. Here we show numerical simulations of segregation after467

an impact and compare them to the analytical model previously developed.468

Fig.6 depicts the thermal and compositional evolution after an impact of469

a large impactor (R = 4000 km, Rimp = 600 km and RFe = 480 km). The470

four rows correspond to real time snapshots at 0, 1.4, 3.8 and 546 Myrs. The471

temperature field is depicted in the left column, and the composition in the right472

column (undifferentiated material in light blue, metal in red, silicates in green).473

The metallic pond sinks towards the center of the planet while heating. This474

heating is in agreement with our previous findings that dissipation is larger than475

diffusion for large impacts. However, the metal develops a tail through sinking476

and is significantly deformed. In the meantime, the light silicates rise upward477

and heat up as well, while stretching laterally to cover the whole surface of the478

planet. Of course, the diffusion of heat out of the silicate layer near the surface,479

is much faster than that out of the deep protocore and this shallow hot silicate480

layer cools rapidly. On a much longer time scale (assuming irrealistically that481

no other impact occurs, hot thermal plumes should start from the proto core-482

mantle boundary and deliver the protocore heat to the surface (Behounkova and483
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Choblet, 2009).484

Fig.7 illustrates the evolution of the conversion from potential to thermal485

energy with time. During the thermo-chemical reequilibration, the potential486

energy (thick line) decreases as the metal approaches the center and as the487

silicates spread beneath the surface. Viscous heating induces an increase of488

thermal energy (grey line). Once the metal has reached the center of the im-489

pacted protoplanet, the thermal energy can only decrease. During this whole490

process, heat is slowly removed by diffusion through the surface of the planet491

and the cumulative heat flux (dotted line) balances the total energy budget.492

This global balance (sum of potential energy, thermal energy and cumulative493

heat flux (see Eq.14)) is closely satisfied which illustrates the good accuracy of494

the numerical code.495

We now introduce a temperature-dependence of the viscosity in the calcu-496

lations. Experimental results suggest that the viscosity contrast between melt497

iron and solid silicates can reach 20 orders of magnitude (Vocadlo et al., 2000).498

Such a viscosity contrast is difficult to handle numerically and we use much499

smaller values.500

In our models, the viscosity varies as η = η0λT and as the temperature of501

metal may increase while sinking by a factor up to 2, it implies maximum viscos-502

ity contrasts up to 1/λ2 orders of magnitude between cold and hot materials.503

Using a composition dependent viscosity would have been more realistic but504

viscous fronts are too difficult to handle numerically. We compare the thermo-505

chemical states at the same time, t = 3.2 Myr for different viscosity factors in506

Figure 8. We use λ = 0.25 (Figure 8 second row), λ = 0.1 (Figure 8 third row)507

and λ = 2.5 × 10−2 (Figure 8 bottom row), the top row being the reference508

isoviscous case.509

Increasing the temperature-dependence of the viscosity softens the surround-510
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ing material around the metallic drop and the metallic diapir, at a given time,511

is closer to the center when its viscosity is decreased, as shown in Fig.8. How-512

ever, this effect remains small. Because the metallic pond becomes less viscous,513

its shape becomes more spherical and the tail developed in isoviscous exper-514

iments becomes thinner. Increasing the sinking velocity increases the rate of515

shear heating but not the total release of thermal energy which is only related516

to the change in gravitational energy. Lowering the viscosity in the surrounding517

material and within the metallic pond has also the effect of diminishing ηe. The518

dissipation is therefore increased in the undifferentiated material and decreased519

in the hot and less viscous metallic diapir. This effect combined with the faster520

spreading of the hot silicate that removes the heat more rapidly lead to lower521

maximum temperatures (see Fig.8).522

We monitor the position of the inertia center of the metallic diapir as a523

function of time and compute the sinking times τS (see Figure 9). The position524

of the diapir obeys reasonably to the exponential law predicted by Eq.12. In the525

isoviscous case, the observed normalized time is τS = 563 which is twice longer526

than what is predicted by Eq.13. This is due to the fact that the initial diapir527

shape is not spherical and to the presence of the rising volume of silicates. When528

the viscosity decreases with temperature the sinking is faster, τS = 249, 170 and529

114, for λ = 0.25, 0.1 and 2.5 × 10−2 (see Fig.9 and Tab.2). This is due to two530

effects: the reduction of viscosity inside the metal (the Rybczinski-Hadamard531

formula predicts an increase of the velocity factor c1 from 0.27 to 0.33 when532

the interior viscosity of the diapir decreases) and the decrease of viscosity of the533

heated surrounding material.534

In the experiments depicted in Fig.6 and Fig.8, the metal temperature in-535

creases and reaches a value close to twice the initial temperature of the isobaric536

core (Fig.10). However, heating within the metal is less pronounced with vari-537
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able viscosity and decreases with the viscosity contrast. Fitting the computed538

temperature evolutions in the metallic diapirs with our theoretical model gives539

values of c2 in the isoviscous case and the variable viscosity cases (see Tab.2540

and Fig.10). The thickness of the thermal boundary measured by c2 decreases541

with the sinking velocity (the Peclet number). The values of c2 and of τD are542

therefore related to Pe−n ∝ τn
S with an exponent ∼1/3 in the range of values,543

n = 1/2 − 1/3 predicted in Ribe (2007).544

When the temperature dependence of the viscosity increases, the proportion545

of energy heating the metal diapir, a, decreases (see Tab.2). As a consequence,546

the heat release of the gravitational energy becomes increasingly efficient in the547

surrounding undifferentiated material. This suggests that a diapir of very small548

viscosity does not heat much during its motion while most of the release of549

gravitational energy occurs in the undifferentiated materials. A low viscosity550

diapir keeps basically its initial temperature because its characteristic diffusive551

time is larger than its sinking time and also because of the buffering effect of552

the temperature dependent viscosity (i.e., a too large cooling would increase the553

viscosity and would bring back the dissipation within the diapir itself).554

6. Discussion and conclusion555

Core formation events induced by meteoritical impacts play a major role in556

determining the early thermo-chemical state of growing planets. Large mete-557

oritical impacts can trigger a local differentiation between metal and silicates558

in a spherical zone above the surface called the isobaric core. The segregation559

of dense and light phases through the undifferentiated material of the impacted560

protoplanet induces a large viscous heating.561

We followed the dynamics of the metal phase after a large impact with nu-562

merical experiments in axisymmetrical spherical geometry. The sinking velocity563
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of the metal phase is Stokes-like and is function of the viscosity contrast be-564

tween the metal phase and the undifferentiated crossed media. The velocity565

increases when viscous heating decreases the viscosity of the surrounding ma-566

terial. A stress dependent viscosity (not considered here) would also increase567

this velocity (Samuel and Tackley, 2008). The sinking process in a planet with568

a cold interior compared to its surface would eventually imply higher viscosity569

contrasts between the metal and the surrounding material and would lead to570

longer sinking times.571

The gravitational energy release during the segregation is converted into vis-572

cous heating in the metal and in the silicates. Our results show that a net viscous573

heating of the metallic phase only occurs for large metallic diapirs (RFe > 45574

km). This metallic volume at the bottom of the isobaric core would be produced575

by an impactor of order Rimp > 60 km. This result underlines the importance576

of accretion conditions on the inner thermal state of planetary bodies. Small577

metallic diapirs cool while sinking and may ultimately bring the metal in a solid578

state to the core of the impacted planet.579

The heat repartition between the metal phase, the silicates and the undif-580

ferentiated material is not only a function of the size of the metallic diapir581

but also of the rheology of the various phases. For low viscosity of the metal582

and of the sheared zone around the metallic diapir, the metal phase is weakly583

heated. Hence, gravitational energy release will mainly lead to the heating of584

the surrounding undifferentiated material and ultimately to its differentiation.585

The viscosity variations that we explore in our simulations are of order586

λ∆Tmax which in the most extreme cases reach about four orders of magni-587

tude over very short distances. This is certainly modest relative to the viscosity588

contrasts of 20 orders of magnitude that exists between liquid metal and solid589

silicates (Vocadlo et al., 2000). Viscosity contrasts based on composition rather590
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than temperature would be more realistic but would have occurred on even591

shorter distances (the computation grid itself) that could not be resolved with592

classical numerical methods. Our model is therefore an end-member of possible593

models on heating modes during core formation. However the description of the594

physics of the processes would still be valid for larger viscosity contrasts.595

As soon as a growing planet reaches a few 1000 km in radius R, the heat-596

ing by impacts becomes significant (the temperature increase varies as R2 and597

reaches 400 K for R = 3000 km, (Monteux et al., 2007)). This temperature598

increase superimposed on the fossil temperature T0 from short half-life radionu-599

cleides (26Al and 60Fe) and previous impacts can lead to a temperature larger600

than the melting temperature of the metallic phase. Our analytical models con-601

firmed by numerical experiments show that the metallic drop reaches the planet602

center in a time depending on the size of the metallic drop and the background603

viscosity of the planet but not of its radius (see Eq.13). Even in the case where604

the impacted planet is relatively cold and with a high viscosity of 1022 Pa s, this605

time is smaller than a few million years for an impactor of 300 km. The sinking606

timescales obtained in our models are comparable to those obtained with an607

Arhenius rheology (Ziethe and Spohn, 2007) and within the timeframe required608

for an early core formation (< 60 My). The temperature increase in the undif-609

ferentiated material localized along the sinking path of the metallic diapir could610

provide a prefential low viscosity chanel for the following differentiation events.611

Proposing predictive models for the thermal consequences of differentiation612

after an impact is fundamental in order to understand the thermal state of the613

interior of growing planets. As shown in Ricard et al. (2009), core formation614

of terrestrial protoplanets could be the consequence of a runaway segregation615

induced by a large enough impact on undifferentiated material. These results616

also underline the importance of accretionary conditions (size and temporal617
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repartition of impacts) on the thermal energy repartition and, hence, on the618

magnetic history of growing planets (Elkins-Tanton et al., 2005).619
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Table 1: Typical parameter values for numerical models

Planet radius R 1000 - 4000 km
Impactor radius Rimp 100 - 400 km
Silicate density ρSi 3500 kg m−3

Iron density ρFe 8000 kg m−3

Density difference ∆ρ0 = ρFe − ρSi 4500 kg m−3

Average density ρ0 4270 kg m−3

Heat capacity ρCp 4×103 kJ K−1 m−3

Heat diffusivity κ 10−6 m2 s−1

Thermal conducivity k 4 W m−1 K−1

Initial temperature T0 K
Metal content f0 0.17
Viscosity η0 1022 Pa s
Viscosity factor λ 2.5 × 10−2 − 1
Gravity g0 = 4πGρ0R/3 m s−2

Stokes velocity scale ∆ρ0g0R2/η0 ∼100 m/yr
Time scale η0/∆ρ0g0R ∼20 kyr
Rayleigh number Raχ ρCp∆ρ0g0R3/η0k ∼108

Buoyancy B ∆ρ0/αρ0∆T0 25-250
Dissipation number Dχ ∆ρ0g0R/ρCp∆T0 36.6
Impact energy conversion coefficient γ 0.3
Volume effectively heated by impact h(m) 2.7
Stokes velocity coefficient c1 0.1-0.2
Heat diffusion coefficient c2 0.3-1.05
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Table 2: Values obtained fitting numerical experiments with theoretical predictions (Eq.12
and Eq.30) for different values of λ (with R = 2000 km and Rimp = 300 km)

λ = 1 λ = 0.25 λ = 0.1 λ = 2.5 × 10−2

τS 563 249 170 114
τD 20 054 16 520 13 316 8974
a 19% 14.7% 11% 7%
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Figure 1: Schematic view of the chemical equilibration following a large impact on an undif-
ferentiated protoplanet. In the isobaric core resulting from the dissipation of the shock wave
(a,b), the temperature increase (c) melts the metal that segregates rapidly (d), then sinks
toward the planetary embryo center by a diapiric instability (e).
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Figure 2: Characteristic sinking time τS as a function of 1/R∗2

F e
, where R∗

F e
is the non-

dimensionalized metallic sphere radius. Results from numerical experiments (with uniform
viscosity ηS = 1022 and R = 1000 km) are representated with black circles. Theoretical fit
from Eq.13 is shown by the dashed line with c1 = 0.187.
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Figure 3: Temperature evolution (black line) of a metallic sphere (RF e = 130 km) falling in
an undifferentiated planet with R = 1000 km. Theoretical evolution from Eq.30 is shown with
a dashed line (c1 = 0.187, c2 = 0.72 and a = 20%).
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Figure 4: Non-dimensional characteristic time of diffusion τD as a function of the non-
dimensionalized metallic sphere radius. Results from numerical experiments (with a uniform
viscosity and R = 1000 km) are represented with black circles. Theoretical fit from Eq.26 is
shown in dashed line with c2 = 1.01.
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Figure 5: Thermal behaviour of a sinking metal sphere in an undifferentiated media as function
of position and sphere radius. Each symbol represents the instantaneous thermal behaviour of
an hot metallic sphere with radius RF e for a given initial position. Filled symbols represent
numerical experiments with viscous heating and open symbols represent numerical experi-
ments with only cooling. Different symbols characterize different planets radii. The analytical
transition between heating and cooling is predicted within the shaded area and the board-
ers of this area are defined with ∆Tmax/∆T0 between 1 (no heating) and 4.2 (maximum
heating)(see, Eq.32).
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Figure 6: Non dimensional temperature (left) and composition (right) at times t = 0 (first
line), t = 1.4 My (second line), t = 3.8 My (third line) and t = 546 My (fourth line) (computed
for a uniform viscosity with R = 4000 km, Rimp = 600 km and 200 × 200 grid points)
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Figure 7: Non dimensionalized potential (solid black line) and thermal (solid grey line) energies
and time integrated surface heat flow (dotted black line) as functions of time. The sum of these
three quantities times 100 is shown in dashed black line. Its difference to zero is indicative of
the accuracy of the energy conservation of the numerical code (for R = 2000 km, Rimp = 300

km and RF e = 240 km and uniform viscosity).
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Figure 8: The four rows depict the temperature (left) and the composition (right) at t = 3.2
My (with R = 2000 km and Rimp = 300 km), for a uniform viscosity (top) and for variable
viscosities (contrast of ∼ 16 (second row), ∼ 100 (third row) and ∼ 1600 (bottom row)). As
expected, the sinking velocity of the metallic diapir and the rising velocity of the silicates,
both increase when their viscosity is decreased.
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Figure 9: Position of the inertia center of the metal phase as a function of time for a uniform
viscosity (black line) and for temperature-dependent viscosities with λ = 0.25 (dashed dotted
line), λ = 0.1 (grey line) and λ = 2.5×10−2 (dotted line) (R = 2000 km and Rimp = 300 km).
Thin dashed lines correspond to simple exponential fittings from which the sinking times are
extracted (see Tab.2).
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Figure 10: Temperature evolution of the metal phase as a function of time for a uniform
viscosity (solid black line) and for temperature-dependent viscosities with λ = 0.25 (dashed
dotted line), λ = 0.1 (grey line) and λ = 2.5 × 10−2 (dotted line) (R = 2000 km and
Rimp = 300 km). Thin dashed lines correspond to theoretical results from Eq.30 from which
the diffusive times and the proportion of energy heating the metal diapir are extracted (see
Tab.2).
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