Control Design for Electronic Power Converters - INRIA - Institut National de Recherche en Informatique et en Automatique Accéder directement au contenu
Thèse Année : 2010

Control Design for Electronic Power Converters

Conception de commandes pour des convertisseurs électroniques de puissance

Résumé

A lot of research has recently been focused on converters due to the increasing deal of interest in power electronics. This is mainly caused by their broad applicability domain that includes battery-operating portable equipment, computers, appliances, vehicles, industrial electronic equipment, uninterruptible power supplies, telecommunication systems and much more. This current research is specially focused on finding highly-efficient converter topologies for every system application and, on designing control mechanisms that accomplishes the converter objectives. Among all variety of converters, this thesis is focused on providing a control solution for two converters topologies, which have some interesting properties and applications. The converters that will be dealt with are: firstly, a switch inverter topology; and secondly, a DC-DC converter for low power application. The first application is focused on controlling an SMPC boost inverter. This converter is particularly interesting because it does not only allow generating an alternating current, but it can also obtain an output voltage larger than the input signal. It has a high efficiency due to its switching character. Nevertheless, it has a non-minimum phase, 4th-order model. In addition, the desired behavior is not an equilibrium point but a limit cycle. Due to all the mentioned boost inverter characteristics, the main objective is to design a control law that guarantees not only the convergence to the desired limit cycle, but also the stability of it, with the particularity that no external reference is applied to the system. Likewise, the system has to accomplish right performance not only for known loads, but also for unknown loads. Another important aim is to estimate a set of initial voltage and current values, for which the system variables tend to the desired limit cycles when the control law before is applied to the boost inverter. If all these objectives are achieved, a control system guarantees a stable and robust behavior from an initial condition, which is within an estimated attraction region. And, in addition, the system is autonomous in the sense that no reference signals are needed. The second application deals with the control of a discrete DC-DC Vdd-Hooping converter. This is a low-power converter with a high-efficiency. Furthermore, it has suitable properties, for instance, it is a 1st-order model and its control objective is an equilibrium. Nevertheless, in low-power technology, this low level of efficiency may not become enough if certain requirements are demanded (e.g. high energy-efficiency, small current peaks, fats transient-times and reduced space). For this, to design a control law focused on achieving an optimal energy-efficiency may be an attractive problem. Indeed, the control problem of the Vdd-Hopping converter in this thesis comes directly demanded by the industry. Concretely, it is included in a French national project called ARAVIS, sponsored by the global competitive cluster Minalogic. The main objective of this converter is to guarantee that the system reaches the desired equilibrium point, achieving certain required features as: high-efficiency, stability, low computational cost, robustness with respect to parameter uncertainties and robustness with respect to delays due to synchronization and computation issues. In this way, the control law must be designed taken these objectives into account.
Les convertisseurs électroniques font actuellement l'objet d'intensives recherches en raison de l'intérêt grandissant pour l'électronique de puissance. Ceci est principalement dû au grand nombre d'applications dans lesquelles ils apparaissent, comme, par exemple, dans les ordinateurs et téléphones portables, les véhicules, les équipements électroniques industriels, les grands systèmes de communication et bien plus encore. Ces investigations portent particulièrement deux points. Le premier concerne la recherche de topologies de convertisseurs dédiées à chaque application. Le second point traite de la conception de mécanismes de contrôle assurant que les objectifs de conversion sont satisfaits. Ma thèse se concentre sur l'élaboration des solutions de contrôle pour deux types de convertisseurs, qui ont des propriétés et des applications intéressantes. Les convertisseurs considérés sont, premièrement, un inverseur type « boost », et ensuite, un convertisseur « DC-DC VddHopping » pour les applications de faible puissance. Dans le premier cas, l'inverseur type boost, l'objectif de contrôle peut être vu comme la génération d'un cycle limite stable. Ce cycle limite est défini par une amplitude et une fréquence données. Les tensions de sortie des deux parties du système présentent, pour cette fréquence, un comportement sinusoïdal avec un changement de phase pré-spécifié. De plus, la loi de commande doit inclure des propriétés de robustesse par rapport à un certain nombre de contraintes. Par exemple, nous considérerons le cas de charges connues mais aussi inconnues. Un autre objectif important est de déterminer un ensemble de valeurs initiales de voltage et de courants, pour lesquelles les variables du système tendent vers leurs équilibres lorsque la loi de commande est appliquée à l'investisseur « boost». La deuxième partie de la thèse met l'accent sur le contrôle du convertisseur Vdd-Hopping DC-DC, consacré à des technologies de faible puissance. Ce travail se situe dans le cadre du projet national français appelé ARAVIS, parrainé par le pôle de compétitivité international Minalogic. Bien que ce soit aussi un convertisseur, la structure et la dynamique de ce système ainsi que les objectifs de contrôle sont radicalement différents du précédent. Ici il s'agit d'un système non linéaire du premier ordre. La sortie doit atteindre une valeur constante désirée et certaines requêtes exigées pour des systèmes de faible puissance doivent être satisfaites, telles qu'une haute efficacité, la stabilité de l'équilibre, la robustesse de l'équilibre incluant des retards et des incertitudes sur les paramètres, des phases transitoires rapides, la fiabilité, etc...
Fichier principal
Vignette du fichier
thesis.pdf (2.18 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-00539077 , version 1 (24-11-2010)

Identifiants

  • HAL Id : tel-00539077 , version 1

Citer

Carolina Albea-Sanchez. Control Design for Electronic Power Converters. Automatic. Institut National Polytechnique de Grenoble - INPG; Universidad de Sevilla, 2010. English. ⟨NNT : ⟩. ⟨tel-00539077⟩
712 Consultations
23378 Téléchargements

Partager

Gmail Facebook X LinkedIn More