|
||
---|---|---|
hal-00943409v1
Reports
A generator of random convex polygons in a disc [Research Report] RR-8467, INRIA. 2014, pp.9 |
||
hal-01015603v1
Poster communications
A generator of random convex polygons in a disc AofA 2014- 25th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, Jun 2014, Paris, France |
||
hal-01214021v2
Reports
Smoothed complexity of convex hulls by witnesses and collectors [Research Report] 8787, INRIA. 2015, pp.41 |
||
hal-00784900v1
Journal articles
A tight bound for the Delaunay triangulation of points on a polyhedron Discrete and Computational Geometry, Springer Verlag, 2012, 48 (1), pp.19-38. ⟨10.1007/s00454-012-9415-7⟩ |
||
inria-00523812v2
Journal articles
2D Centroidal Voronoi Tessellations with Constraints Numerical mathematics : a journal of Chinese universities, Nanjing University Press, 2010, 3 (2), pp.212--222. ⟨10.4208/nmtma.2010.32s.6⟩ |
||
hal-00793636v1
Conference papers
Canonical Ordering for Triangulations on the Cylinder, with Applications to Periodic Straight-line Drawings Graph Drawing - 20th International Symposium, GD 2012, Sep 2012, Redmond, WA, United States. pp.376-387, ⟨10.1007/978-3-642-36763-2_34⟩ |
||
hal-00793592v1
Conference papers
ESQ: Editable SQuad Representation for Triangle Meshes 25th SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2012, Aug 2012, Ouro Preto, Brazil. pp.110-117, ⟨10.1109/SIBGRAPI.2012.24⟩ |
||
hal-01216212v1
Reports
The worst visibility walk in a random Delaunay triangulation is $O(\sqrt{n})$ [Research Report] RR-8792, INRIA. 2015, pp.25 |
||
hal-01285120v1
Journal articles
Smoothed complexity of convex hulls by witnesses and collectors Journal of Computational Geometry, Carleton University, Computational Geometry Laboratory, 2016, 7 (2), pp.101-144. ⟨10.20382/jocg.v7i2a6⟩ |
||
hal-01144473v2
Conference papers
On the smoothed complexity of convex hulls Proceedings of the 31st International Symposium on Computational Geometry, Jun 2015, Eindhoven, Netherlands. pp.224-238, ⟨10.4230/LIPIcs.SOCG.2015.224⟩ |
||
inria-00075274v1
Reports
Applications of random sampling to on-line algorithms in computational geometry [Research Report] RR-1285, INRIA. 1990 |
||
inria-00075003v1
Reports
Dynamic location in an arrangement of line segments in the plane [Research Report] RR-1558, INRIA. 1991 |
||
inria-00413144v1
Conference papers
Isotropic Surface Remeshing International Conference on Shape Modeling and applications,, May 2003, Seoul, South Korea |
||
inria-00413506v1
Journal articles
Dynamic location in an arrangement of line segments in the plane Algorithms Review - newsletter of the ESPRIT II Basic Research Action Project no. 3075 (ALCOM) , Utrecht University, 1992, 2 (3), pp.89-103 |
||
hal-01348831v1
Journal articles
The worst visibility walk in a random Delaunay triangulation is $O(\sqrt{n})$ Journal of Computational Geometry, Carleton University, Computational Geometry Laboratory, 2016, 7 (1), pp.332-359. ⟨10.20382/jocg.v7i1a16⟩ |
||
inria-00344053v1
Reports
Delaunay Triangulations for Moving Points [Research Report] RR-6750, INRIA. 2008 |
||
hal-01179730v1
Conference papers
Dog Bites Postman: Point Location in the Moving Voronoi Diagram and Related Problems Proceedings of 1st European Symposium on Algorithms, 1993, Nad Honef, Germany. pp.133-144, ⟨10.1007/3-540-57273-2_50⟩ ![]() |
||
hal-01179450v1
Conference papers
Computing the Maximum Overlap of Two Convex Polygons Under Translations International Symposium on Algorithms and Computation, 1996, Osaka, Japan. pp.126-135 |
||
inria-00413159v1
Journal articles
An Algorithm for Constructing the Convex Hull of a Set of Spheres in Dimension d Computational Geometry, Elsevier, 1996, 6, pp.123-130. ⟨10.1016/0925-7721(95)00024-0⟩ |
||
hal-01179442v1
Conference papers
Rounding Voronoi Diagram Discrete Geometry and Computational Imagery, 1999, Noisy le grand, France. pp.375-387 |
||
hal-01180157v1
Conference papers
The space of spheres, a geometric tool to unify duality results on Voronoi diagrams Canadian Conference on Computational Geometry, 1992, St. John's, Canada. pp.263-268 |
||
hal-01179425v1
Conference papers
Geometric compression for interactive transmission Proceedings of the conference on Visualization '00, 2000, Salt Lake City, United States. pp.319-326, ⟨10.1109/VISUAL.2000.885711⟩ ![]() |
||
inria-00325816v1
Reports
State of the Art: Updating Delaunay Triangulations for Moving Points [Research Report] RR-6665, INRIA. 2008, pp.12 |
||
inria-00412646v1
Journal articles
Chromatic Variants of the Erdös-Szekeres Theorem on Points in Convex Position Computational Geometry, Elsevier, 2003, 26, pp.193-208. ⟨10.1016/S0925-7721(03)00013-0⟩ |
||
hal-01180161v1
Conference papers
On-line geometric algorithms with good expected behaviours 3th World Congress on Computation and Applied Mathematics, 1991, ~, France. pp.137-139 |
||
inria-00099624v1
Journal articles
Anisotropic Polygonal Remeshing ACM Transactions on Graphics, Association for Computing Machinery, 2003, 22 (3), pp.485-493. ⟨10.1145/1201775.882296⟩ |
||
|
||
inria-00166709v1
Journal articles
Algebraic methods and arithmetic filtering for exact predicates on circle arcs Computational Geometry, Elsevier, 2002, 22, pp.119-142. ⟨10.1016/S0925-7721(01)00050-5⟩ |
||
hal-01117289v1
Conference papers
Transmission progressive de modèles triangulés sur le réseau CORESA, Jan 2003, Lyon, France |
||
inria-00413181v1
Journal articles
Convex Tours of Bounded Curvature. Computational Geometry, Elsevier, 1999, 13, pp.149-160. ⟨10.1016/S0925-7721(99)00022-X⟩ |
||
|