Skip to Main content Skip to Navigation
Conference papers

Non-Negative Spherical Deconvolution (NNSD) for Fiber Orientation Distribution Function Estimation

Abstract : In diffusion Magnetic Resonance Imaging (dMRI), Spherical Deconvolution (SD) is a commonly used approach for estimating the fiber Orientation Distribution Function (fODF). As a Probability Density Function (PDF) that characterizes the distribution of fiber orientations, the fODF is expected to be non-negative and to integrate to unity on the continuous unit sphere S2 . However, many existing approaches, despite using continuous representation such as Spherical Harmonics (SH), impose non-negativity only on discretized points of S2. Therefore, non-negativity is not guaranteed on the whole S2 Existing approaches are also known to .exhibit false positive fODF peaks, especially in regions with low anisotropy, causing an over-estimation of the number of fascicles that traverse each voxel. This paper proposes a novel approach, called Non-Negative SD (NNSD), to overcome the above limitations. NNSD offers the following advantages. First, NNSD is the first SH based method that guarantees non-negativity of the fODF throughout the unit sphere. Second, unlike approaches such as Maximum Entropy SD (MESD), Cartesian Tensor Fiber Orientation Distribution (CT-FOD), and discrete representation based SD (DR-SD) techniques, the SH representation allows closed form of spherical integration, efficient computation in a low dimensional space resided by the SH coefficients, and accurate peak detection on the continuous domain defined by the unit sphere. Third, NNSD is significantly less susceptible to producing false positive peaks in regions with low anisotropy. Evaluations of NNSD in comparison with Constrained SD (CSD), MESD, and DR-SD (implemented using L1-regularized least-squares with non-negative constraint), indicate that NNSD yields improved performance for both synthetic and real data. The performance gain is especially prominent for high resolution (1.25 mm)^3 data.
Complete list of metadata

Cited literature [17 references]  Display  Hide  Download
Contributor : Jian Cheng Connect in order to contact the contributor
Submitted on : Monday, March 31, 2014 - 4:09:14 AM
Last modification on : Wednesday, February 2, 2022 - 3:59:38 PM
Long-term archiving on: : Monday, April 10, 2017 - 6:40:27 AM


Files produced by the author(s)




Jian Cheng, Rachid Deriche, Tianzi Jiang, Dinggang Shen, Pew-Thian yap. Non-Negative Spherical Deconvolution (NNSD) for Fiber Orientation Distribution Function Estimation. MICCAI Workshop Computational Diffusion and Brain Connectivity, Sep 2013, Nagoya, Japan. pp.81-93, ⟨10.1007/978-3-319-02475-2_8⟩. ⟨hal-00967829⟩



Record views


Files downloads